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Figure 1: A regular pentagon

1 The Regular Pentagon

a.) Show 4EDF '4BDF in Figure 1.

Begin by observing that the marked angle θ is equivalent to ∠FEB, ∠DEF, ∠EBD,
∠EDA, and ∠BDA because each angle covers a segment with an equivalent central
angle. Also observe that ∠EFB is 2θ less than two right angles (because the interior
angles of a triangle sum to two right angles). Next, observe that ∠EFD is 2θ because
it is adjacent to ∠EFB. Surely ∠EDF and ∠DEB are also 2θ because they are sums
of two angles of θ. Taken together, we can conclude that 4EDF '4BDF because of
angle-angle-angle similarity. �

b.) Conclude τ−1
1

= 1
τ

and τ = 1+
√

5
2

.

Let us give the name τ the entire diagonal BD. From our previous result we know
4EDF '4BDF. Similar logic can show that 4BCF is similar to these as well. Note,
that with ED=BC we can conclude 4EDF ∼= 4BFC, implying that the length of BF
is 1. Furthermore, we know the length of ED is to DF in the same ratio as BD is to
DE by triangle similarity. In other words, 1 is to τ − 1 in the same ratio as τ is to 1.
�

If we rewrite the relation above after cross multiplying terms we find τ(τ − 1) = 1
or τ 2 − τ − 1 = 0. By the well known quadratic formula, this relation is satisfied by
τ = 1+

√
5

2
. �

c.) Construct τ and given a unit segment construct a regular pentagon.

The construction below is depicted in Figure 2.

1. Label the points on the unit segment O and A (O as the origin).

3



2. Extend the line out from O past A.

3. Copy the unit segment five times past A on this line and mark point B.

4. Form C from the midpoint of OB.

5. Construct a circle with C is its center and CB as its radius.

6. Construct a line perpendicular to OA at A.

7. Mark the intersection of the perpendicular line and the circle D. The segment AD
is the geometric mean of OA and AB, or exactly

√
5.

8. Copy the length of AD along the first line starting from A and call its terminal
point E.

9. Form F from the midpoint of OE. The segment OF has length 1+
√

5
2

, exactly τ .

10. Construct circles from A and O (one unit part) with the length OF (τ).

11. Call the intersection of these circles G. Note, G is the top of the pentagon.

12. Construct a unit circle centered at O and call its intersection with the unit circle
centered at A closest to G the point H.

13. Construct a unit circle centered at A and call its intersection with the unit circle
centered at O closest to G the point I.

14. Connect O, A, I, G, and H with line segments. These line segments form a regular
pentagon with unit side-length.

d.) Show τ = 1 + 1
1+ 1

1+ 1
1+...

.

We have shown that τ−1
1

= 1
τ
. Observe that this is simply τ − 1 = 1

τ
. Isolating τ by

adding 1, we have have the following recursive definition:

τ = 1 +
1

τ
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Repeated substitution confirms the desired result.

τ = 1 +
1

τ

τ = 1 +
1

1 + 1
τ

τ = 1 +
1

1 + 1
1+ 1

τ

τ = 1 +
1

1 + 1
1+ 1

1+ 1
τ

τ = 1 +
1

1 + 1
1+ 1

1+ 1

1+ 1
τ

τ = 1 +
1

1 + 1
1+ 1

1+ 1

1+ 1

1+ 1
τ

...

τ = 1 +
1

1 + 1
1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1

1+ 1
τ

and so on.

�

Also of interest, we can rewrite the above relation to give this alternative recursive
definition:

τ =
1

τ − 1

Yielding:

τ =
1

1
1

···−1
−1
− 1
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2 Circular Segments and Lunes

a.) Show that similar segments are to one another as squares on their chords.

Accept without proof the easily verifiable claims that (1) similar sectors are to one
another as squares on their radii and that (2) like sides sides of similar triangles
are to one another as other like sides on those triangles. Now, observe that 4OAB
is similar to 4PCD because both are isosceles (two legs are radii) and they have a
common angle θ. By (2) we know that OA is to PC as AB is to CD. From (1) we
know segment S is to segment T as OA is to PC. But this is precisely the ratio of
AB is to CD. Taken together, we can see that segment S is to segment T as AB is to
CD, or that similar segments are to one another as squares on their chords. �

b.) Show that the area of lune a ABC is the same as the area of 4ABC, and
hence is squarable. (Figure 4)

Consider the area of a ABC, surely it is exactly the area of 4ABC plus the area
of segments P and Q minus the area of segment R. Observe that segments P , Q
and R are similar because they all share a right triangle at the center of their circles.
Furthermore, since P and Q are similar and have identical chords, they are congruent.
By our previous result, we know that segment R is to segment Q as a square on AC
is to a square on AB. The square of AC is 2 and the square of AB is 1. This implies
that the area of segment R is twice that of segment P , or simply the sum of P and Q.
Taken together with our expression for the area of the lune, we see that the areas added
and subtracted from the triangle to form the lune annihilate, leaving only the area of
the original triangle. Thus, the area of the lune and triangle are equal. Furthermore,
since the triangles are squarable the lune is squarable as well. �
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c.) Show that a ABCD is squarable. (Figure 5)

Consider the area of the a ABCD, surely it is exactly the area of the trapezium ABCD
plus the area of segments T , U , and V minus the area of segment W . Following similar
reasoning as in our last proposition, observe that segments T , U , V and W are similar
because they share an angle of θ at the center of their circles. Furthermore, observe
that since the smaller segments T , U , and V are similar and have identical chords,
they are congruent. By our first result, we know that segment W is to segment T as
a square on AD is to a square on AB. The square of AD is 3 and the square of AB is
1. This implies that the area of segment W is thrice that of segment T , or simply the
sum of the areas of T , U , and V . Taken together with our expression for the area of
the lune, we see that the areas added and subtracted from the trapezium to form the
lune annihilate, leaving only the area of the original trapezium. Thus, the area of the
lune and trapezium are equal. Furthermore, since the trapezium can be decomposed
into two squarable triangles the lune is squarable as well. �
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3 Sum of a Geometric Series

Given a series of areas A,B,C,...,Z of which A is the largest and each is equal to
four times the next in order. Show:

A + B + C + · · ·+ Z +
1

3
Z =

4

3
A

Define b = 1
3
B, c = 1

3
A, ..., z = 1

3
Z.

A + B + C + · · ·+ Z +
1

3
Z = A + B + C + · · ·+ Z +

1

3
Z + (b + c + · · ·+ z)− (b + c + · · ·+ z)

= A + (B + b + C + c + · · ·+ Z + z) +
1

3
Z − (b + c + · · ·+ z)

= A + (
4

3
B +

4

3
C + · · ·+ 4

3
Z) +

1

3
Z − (b + c + · · ·+ z)

= A + (
1

3
A +

1

3
B + · · ·+ 1

3
Y ) +

1

3
Z − (b + c + · · ·+ z)

=
4

3
A + (b + · · ·+ 1

3
y) +

1

3
Z − (b + c + · · ·+ z)

=
4

3
A +

1

3
Z − z

=
4

3
A

�
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4 Parabolic Segments

The problems below refer to Figure 6.

a.) Show using calculus that if QQ′ is parallel to the tangent line at c then a
vertical line through P bisects the chord QQ′.

Let the coordinates of Q be (a, a2) and the coordinates of Q’ be (b, b2). Any line
parallel line to QQ′ must have the same slope as QQ′. Let this slope be m = b2−a2

b−a
=

(b−a)(b+a)
b−a

= b + a. The slope of the tangent line at a point x on the parabola is 2x.

The point c where the tangent to the parabola is parallel to QQ′ is simply c = m
2
. In

more detail, we see c = b+a
2

is the midpoint of these values. The right triangles 4QRT

and 4RQ’T’ are congruent (SAS) so QR = RQ′. Thus, the line through P bisects the
chord QQ′. �

b.) Show using calculus that area of the parabolic segment is 4
3
4PQQ′.

Observe that the coordinates of R are ( b+a
2

, b2+a2

2
) and the coordinates of P are (c, c2).
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Let h(x) = (a + b)x + (a + b)a + a2 − x2 be height of a vertical line intersecting the
parabolic segment at any position x.

A4PQQ′ = A4QRP + A4Q′RP (break triangle along PR)

=
1

2
QT ·RP +

1

2
RT ′ ·RP (area of triangles)

= QT ·RP (QT = RT ′)

=
b− a

2

(
b2 + a2

2
−
(

b + a

2

)2
)

(coordinates)

=
b− a

2

(
b2 + a2

2
− b2 + 2ba + a2

4

)
(expansion)

=
b− a

2

(
b2 − 2ba + a2

4

)
(cancel)

=
b− a

2

(
b− a

2

)2

(factor)

=
1

8
(b− a)3 (combine)

Aparseg =

∫ b

a

h(x)dx (area between line and parabola)

=

∫ b

a

(a + b)x + (a + b)a + a2 − x2dx (def. h(x))

= (a + b)
x

2
− (a + b)ax + a2x− x3

3

∣∣∣∣∣
b

a

(calculus)

=
1

2
(a + b)(b2 − a2)− (a + b)a(b− a)− a2(b− a)− 1

3
(b3 − a3) (evaluation)

= (b− a)

[
1

2
(a + b)2 − (a + b)a + a2 − 1

3
(b2 + ba + a2)

]
(common factor (b− a))

= (b− a)

[
1

2
a2 + ba +

1

2
+

1

2
b2 − a2 − ba + a2 − 1

3
a2 − 1

3
b2

]
(expansion)

= (b− a)

[
1

6
a2 − 1

3
ba− 1

6
b2

]
(cancel)

=
1

6
(b− a)3 (factor)

Thus, Aparseg = 4
3
A4PQQ′ . �
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5 Archimedes’ Spiral

a.) Without using induction, show:

n∑
k=1

k2 =
n3

3
+

n2

2
+

n

6

Consider the following telescoping sums of sequences.

n3 =
n∑

k=1

k3 − (k − 1)3

n2 =
n∑

k=1

k2 − (k − 1)2

n1 =
n∑

k=1

k1 − (k − 1)1

Now consider the expansion of the simple expression into sums over a common range.

n3

3
+

n2

2
+

n

6
=

1

3

(
n∑

k=1

k3 − (k − 1)3

)
+

1

2

(
n∑

k=1

k2 − (k − 1)2

)
+

1

6

(
n∑

k=1

k − (k − 1)

)

=
n∑

k=1

[
1

3

(
k3 − (k − 1)3

)
+

1

2

(
k2 − (k − 1)2

)
+

1

6
(k − (k − 1))

]
=

n∑
k=1

[
1

3

(
3k2 − 3k − 1

)
+

1

2
(2k + 1) +

1

6
(1)

]
=

n∑
k=1

[
k2 − k − 1

3
+ k +

1

2
+

1

6

]

=
n∑

k=1

k2

�

b.) Let Γ be the area inside of the spiral and ∆ be the area of inside the whole
disk shown in Figure 7. Using double contradiction, show:

Γ

∆
=

1

3

Begin by breaking up the spiral into n radial slices. In the arbitrary case, consider
the area of the inscribed and circumscribed sectors. We know similar sectors are to
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Figure 7: Archimedes’ spiral with an arbitrary sector

one another as squares on their radii. Let δ be the area of a single, unit-sided, sector.
Clearly, nδ = ∆ is the whole area of the circle. The sector with radius i

n
(the ith outer

sector) has area δ i2

n2 and the inner (i−1th) sector has area δ (i−1)2

n2 . Thus, the following
expression represents the area of all of the circumscrubed sectors:

Γ < Γabove

=
n∑

i=1

δ
i2

n2

=
δ

n2

n∑
i=1

i2

=
∆

n3

n∑
i=1

i2

13



And the inscribed sectors:

Γ > Γbelow

=
n∑

i=1

δ
(i− 1)2

n2

=
n−1∑
i=0

δ
i2

n2

=
n−1∑
i=1

δ
i2

n2

=
δ

n2

n−1∑
i=1

i2

=
∆

n3

n−1∑
i=1

i2

Or:
1

n3

n−1∑
i=1

i2 >
Γ

∆
>

1

n3

n∑
i=1

i2

Now consider the result derived in the previous problem:

n∑
i=1

i2 =
n3

3
+

n2

2
+

n

6

1

n3

n∑
i=1

i2 =
1

3
+

1

2n
+

1

6n2
>

1

3

And:

n−1∑
i=1

i2 =
(n− 1)3

3
+

(n− 1)2

2
+

n− 1

6

1

n3

n−1∑
i=1

i2 =
1

3

(n− 1)3

n3
+

1

2

(n− 1)2

n3
+

1

6

n− 1

n3

<
1

3

Or:
1

n3

n−1∑
i=1

i2 <
1

3
<

1

n3

n∑
i=1

i2

Thus, we find Γ
∆

and 1
3

trapped between the same bounds. Futhermore, as n increases,

we can become arbitrarily close to their targets. Let Ln = 1
n3

∑n−1
i=1 i2 and Hn =

14



1
n3

∑n
i=1 i2. Suppose Γ

∆
< 1

3
. We can find an n such that Γ

∆
< Ln < 1

3
. However, as we

previously proved, Ln < Γ
∆

but our implication claims the opposite, a contradiction.
Now, suppose Γ

∆
> 1

3
. Similarly, we can find an n such that Γ

∆
> Hn > 1

3
. But 1

3
< Hn,

contradiction! Thus,
Γ

∆
=

1

3
. �

c.) Using upper and lower sums, show:∫ B

0

x2dx =
B3

3

To begin, break interval from 0 to B into n equal length intervals with width B
n
. Over

each interval we can construct a rectangle that fits just under the parabola and one
that fits just above. The total area of the rectangles above the parabola is just:

Aupper =
B

n

n∑
i=1

(B
i

n
)2

=
B3

n3

n∑
i=1

i2

> A

And the area below is similarly:

Alower =
B

n

n∑
i=1

(B
i− 1

n
)2

=
B3

n3

n∑
i=1

(i− 1)2

=
B3

n3

n−1∑
i=1

i2

< A

Or:
1

n3

n−1∑
i=1

i2 <
A

B3
<

1

n3

n∑
i=1

i2

Recall from our previous result that:

1

n3

n−1∑
i=1

i2 <
1

3
<

1

n3

n∑
i=1

i2

15



Observe that we are in the same situation, two bounds, abitrarily close, trap two

expressions. So 1
3

must equal A
B3 . Thus, after cross multiplication, it is clear A =

B3

3
.

�
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6 Rational Approximation to Square Roots

Set
√

c =
√

a2 ± b = a± δ where a is the natural number closest to c when squared.

a.) Show that
√

a2 ± b < a± b
2a

.

Observe that δ2 > 0.

a± δ =
√

a2 ± b (def.)

(a± δ)2 = a2 ± b (squaring)

2a2 ± 2aδ + δ2 = 2a2 ± b (adding a2)

a± δ +
δ2

2a
= a± b

2a
(dividing by 2a)

a± δ < a± b

2a
(replacing δ2 by 0)

√
a2 ± b < a± b

2a
(def.)

�

b.) Show that a± b
2a±1

<
√

a2 ± b.

Observe that |δ| < 1, thus δ2 < |δ|. When δ is negative −δ2 > δ or δ2 < −δ. Let us
express this relationship with the statement δ2 < ±δ.

√
a2 ± b = a± δ (def.)

a2 ± b = a2 ± 2aδ + δ2 (squaring)

±b = ±2aδ + δ2 (subtracting a2)

±b < ±2aδ ± δ (replacing δ2 by ±δ)

±b < ±(2a± 1)δ (collecting terms)

± b

2a± 1
< ±δ (dividing by 2a± 1)

a± b

2a± 1
< a± δ (adding a)

a± b

2a± 1
<
√

a2 ± b (def.)

�

c.) Apply this technique to confirm Archimedes’ result for rational bounds on
the value of π.

265

153
<
√

3 <
1351

780

Applying this technique directly to
√

3, we can find the bounds 5
3

<
√

3 < 7
4
. These,

however, do not match the Archimedian result. Let us now consider finding rational

17



approximations to an integer multiple of
√

3. If we had rational bounds on k
√

3 =
√

3k2

we could turn these into bounds for
√

3 by simply dividing by k. Through computer
search we have determined a promising value for k, namely k = 15. To confirm that
this yields the Archimedian result, let us apply the rational approximation technique
to 15

√
3 =

√
675

Let a = 26, b = −1. Surely a2 + b = 26 ∗ 26− 1 = 675.

a− b

2a− 1
<
√

675 < a− b

2a

(26)− (1)

2(26)− 1
<
√

675 < (26)− (1)

2(26)

26− 1

51
<
√

675 < 26− 1

52
1325

51
<
√

675 <
1351

52
1325

765
<
√

3 <
1351

780
finally

265

152
<
√

3 <
1351

780

�
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7 The Archimedian Approximation of π

Consider the following definitions relating to Figure 8:

pn =
perimeter of inscribed n-gon

diameter

qn =
perimeter of circumscribed n-gon

diameter

a.) Show that pn = n sin π
n

and qn = n tan π
n
.

Observe that4COA and4DOB are similar, right triangles with opposite edges making
up the sides of the inscribed and circumscribed n-gons respectively.

pn =
perimeter of inscribed n-gon

diameter

=
2nCA

2OC

= n
CA

OC

= n sin
π

n

19



qn =
perimeter of circumscribed n-gon

diameter

=
2nDB

2OB

= n
DB

OB

= n tan
π

n

�

b.) Show that p2n =
√

q2npn and q2n = 2qnpn

qn+pn
.

In the following derivations, let α = π
2n

.

√
q2npn =

√
(2n tan α)(n sin 2α) (def.)

=
√

2n2 tan α sin 2α (grouping)

=

√
2n2

(
sin α

cos α

)
(2 sin α cos α) (double angle theorems)

=
√

22n2 sin2 α (canceling)

= 2n sin α (square rooting)

= 2n sin
π

2n
(def. of α)

= p2n (def.)

20



2qnpn

qn + pn

=
2(n tan 2α)(n sin 2α)

(n tan 2α) + (n sin 2α)
(def.)

= 2n
tan 2α sin 2α

tan 2α + sin 2α
(common factor 2n)

= 2n
sin2 2α
cos 2α

sin 2α
cos 2α

+ cos 2α sin 2α
cos 2α

(trig.)

= 2n
sin 2α

1 + cos 2α
(multiply through by cos 2α)

= 2n
2 sin α cos α

1 + 2 cos2 α− 1
(double angle theorems)

= 2n
sin α

cos α
(canceling)

= 2n tan α (trig.)

= 2n tan
π

2
(def. of α)

= q2n (def.)

�

c.) Assume p6 = 3 and q6 = 6√
3
. Compute the next few iterates.

1. Approximation using a 12-gon:

q12 =
2 6√

3
3

6√
3

+ 3

p12 =

√√√√ 2 6√
3
3

6√
3

+ 3
3

2. Approximation using a 24-gon:

q24 =

2
2 6√

3
3

6√
3
+3

√
2 6√

3
3

6√
3
+3

3

2 6√
3
3

6√
3
+3

+

√
2 6√

3
3

6√
3
+3

3

p24 =

√√√√√√√ 2
2 6√

3
3

6√
3
+3

√
2 6√

3
3

6√
3
+3

3

2 6√
3
3

6√
3
+3

+

√
2 6√

3
3

6√
3
+3

3

√√√√ 2 6√
3
3

6√
3

+ 3
3
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3. Approximation using a 48-gon:

q48 =

2

2
2 6√

3
3

6√
3
+3

vuut 2 6√
3
3

6√
3
+3

3

2 6√
3
3

6√
3
+3

+

vuut 2 6√
3
3

6√
3
+3

3

√√√√√√√
2

2 6√
3
3

6√
3
+3

vuut 2 6√
3
3

6√
3
+3

3

2 6√
3
3

6√
3
+3
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4. Approximation using a 96-gon:
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Though the expression above is certainly not in simplest form, it is easy to appreci-
ate the complexity of the expression when we observe that p96 involves the square
root of an expression that involves the square root of an expression that involves
the square root of an expression which involves the square root and expression
that involves the square root of three.
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Figure 9: Ptolemy’s Theorem.

8 Ptolemy’s Inscribed Figures
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Figure 10: Sums and differences of angles.

9 Viete’s Method for π
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Figure 11: A slice of inscribed n and 2n-gons.

10 Higher Parabolas

Suppose yq = kxp where p, q ≥ 0, so y = k
1
q x

p
q . Let γ < 1 be very close to one and

xi = γix0. These make up an infinite partition of the x-axis between 0 and B.

Observe that yi = k
1
q x

p
q

i = k
1
q γix

p
q

0 .

a.) Compute A1, A2, and A3 and find the general pattern.

A1 = (x0 − γx0)y0 = (1− γ)x0y0

A2 = (γx0 − γ2x0)y1 = γx0(1− γ)y0γ
p
q = γ

p
q
+1(1− γ)x0y0 = γ

p
q
+1A1

A3 = (γ2x0 − γ3x0)y2 = γ2x0(1− γ)y0(γ
2)

p
q = γ2(1+ p

q
)(1− γ)x0y0 = γ2(1+ p

q
)A1

So, the general pattern is the following.

Ak = γ(1+ p
q )(k−1)A1

b.) Substitute β = γ1+ p
q (β < 1 since γ < 1) and sum all of the rectangles.

Observe that succesive areas form a geometric sequence with ratio less than unity.
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Figure 12: A higher parabola.

A =
∞∑

k=1

Ak

=
∞∑

k=1

βkA1

=
A1

1− β

=
(1− γ)x0y0

1− β

=
1− γ

1− β
k

1
q x

1+ p
q

0

c.) Let γ = θq. Find A, not in terms of β.

Observe that β = γ1+ p
q = (θq)1+ p

q = θp+q. Using the fact 1−xn+1

1−x
= 1+x+x2 + · · ·+xn,

reconsider our expression for A. Recall that x0 = B.
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A =
1− θq

1− θp+q
k

1
q B1+ p

q

=
1 + θ + θ2 + · · ·+ θq−1

1 + θ + θ2 + · · ·+ θp+q−1
k

1
q x

1+ p
q

0

(as γ → 1) =
q

p + q
k

1
q B1+ p

q

=
1

p
q

+ 1
k

1
q B1+ p

q =

∫ B

0

k
1
q x

p
q dx
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11 Napierian Logarithms

a.) Imagine two points racing along parallel line segments. The first point
starts at x(0) = 107 and moves with velocity x′(t) = −x(t). The second point
starts at y(0) = 0 and moves with constant velocity y(t) = 107. At any point
t, y(t) = NL[x(t)]. Show that y = −107 ln[ x

107 ].

Observe that x(t) takes the form of a first-order, homogeneous, linear differential equa-
tion. Thus, we can immediately write down the form of its solution as x(t) = Ce−t.

Given the initial condition, we can conclude x(t) = 107e−t .

The function y(t) has a constant differential, so clearly its solution takes the form

107t + C. Given the initial conditions, we can conclude y(t) = 107t .

Now, writing y in terms of x using t = y
107 and simplifying notation:

x = 107e−t

x = 107e−
y

107

x

107
= e−

y

107

ln[
x

107
] = − y

107

y = −107 ln[
x

107
] = NL[x]

b.) Show that NL[a] + NL[b] 6= NL[ab].

NL[a] + NL[b] =
(
−107 ln[

a

107
]
)

+

(
−107 ln[

b

107
]

)
= −107

(
ln[

a

107
] + ln[

b

107
]

)
= −107 ln[

ab

1014
]

= NL[a
b

107
] 6= NL[ab]
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1/21/4
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Figure 13: A portion of a circle

12 Finding π using the Binomial Expansion

a.) Show the area of A in Figure 13 is π
24
−

√
3

32
.

By geometry, we know the area of the entire circle in the figure is π
4
. The sector

containing A accounts for 1
6
th of the total area. The triangle adjacent to A, with base

1
4

and height
√

3
4

has area
√

3
4

. Thus, the area of A, the sector minus the triangle is

clearly
π

24
−
√

3

32
.

b.) Write an expression for the area of A as an integral and expand the integrand
to four terms using the binomial expansion. Show A = 1

12
− 1

160
− 1

3584
− 1

36864
−· · · .

We can find the area of A using calculus.

A =

∫ 1
4

0

√
x− x2dx

=

∫ 1
4

0

x
1
2 (1− x)

1
2 dx

Now, let us look at the expansion of (1− x)
1
2 by itself.

(1− x)
1
2 =

∞∑
k=0

(−x)k

k!

k−1∏
i=0

(
1

2
− i

)
Or, more concretely:

(1− x)
1
2 ≈ 1− x

2
− x2

8
− x3

16
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Now, replacing this approximation into the expression for the area of A we get the
following.

A ≈
∫ 1

4

0

x
1
2

(
1− x

2
− x2

8
− x3

16

)
dx

=

∫ 1
4

0

x
1
2 − x

3
2

2
− x

5
2

8
− x

7
2

16
dx

=

[
2

3
x

3
2 − 1

5
x

5
2 − 1

28
x

7
2 − 1

72
x

9
2

] 1
4

0

=
1

12
− 1

160
− 1

3584
− 1

36864

c.) Observe that
√

3 =
√

4·3
4

= 2
√

3
4

= 2
√

1− 1
4
. Expand

√
1− 1

4
to show

√
3 =

2− 1
4
− 1

64
− 1

512
+ 5

16384
.

Consider the binomial expansion of
√

1− 1
4
.

(
1− 1

4

) 1
2

=
∞∑

k=0

(
−1

4

)k
k!

k−1∏
i=0

(
1

2
− i

)
= 1− 1

8
− 1

128
− 1

1024
− 5

32768

So, 2
(
1− 1

4

) 1
2 =

√
3 = 2− 1

4
− 1

64
− 1

512
+

5

16384
.

d.) Combine this expression with the first result to solve for π.

We can take the geometric expression above and solve it for π.

π = 24

(
A +

√
3

32

)

= 24

[(
1

12
− 1

160
− 1

3584
− 1

36864

)
+

(
2− 1

4
− 1

64
− 1

512
+ 5

16384

)
32

]
≈ 3.14219782
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13 Newton’s Generalized Binomial Expansion

a.) Find Newton’s expansion of log[1 + x] using the binomial expansion.

log[1 + x] =

∫ x

0

1

1 + t
dt

=

∫ x

0

(1 + t)−1dt

=

∫ z

0

(1− t + t2 − t3 + t4 − t5 + · · · )dt

= x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · ·

=
∞∑

k=0

(−1)kxk+1

(k + 1)

b.) Invert the previous result to find an expression for ey.

Assume x = a0 + a1y + a2y
2 + a3y

3 + a4y
4. Now, substituting:

log[1 + x] = y = 1 + x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+ · · ·

= 1 + (a0 + a1y + a2y
2 + · · · )− (a0 + a1y + a2y

2 + · · · )2

2
+ · · ·

Observe that the left and right and hand sides of the equation above are polynomials
in y. Because there is only a linear term on the left side, all of the other terms on the
right hand side must cancel out. Now, using this fact, let us find all the ways we can
make a constant term in the expansion of log[1 + x] above:

0 = a0 −
a2

0

2
+

a3
0

3
− a4

0

4
+ · · ·

= log[1 + a0]

And we know log[1] = 0, so clearly, a0 = 0 .
Now, looking for the coefficients of linear terms, of which they must equal just 1 to
match the single y on the left:

1 = a1 −
2a0a1

2
+

3a2
0a1

3
− 4a3

0a1

4
+ · · ·

= a1 − 0 + 0− 0 + · · ·
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So now we know a1 = 1 =
1

1!
.

Similarly, we can collect the coefficients of quadratic terms, of which all must cancel
out (recall that we found that there are really no constant terms, a0 = 0):

0 = a2 −
a2

1

2

= a2 −
1

2

This implies a2 =
1

2
=

1

2!
.

Now, looking for the coefficients of cubic terms:

0 = a3 −
2a1a2

2
+

a3
1

3

= a3 −
1

2
+

1

3

= a3 −
1

6

So a3 =
1

6
=

1

3!
.

Next, the quartic terms:

0 = a4 −
a2

2 + 2a1a3

2
+

3a1a1a2

3
− a4

1

4

= a4 −
1
4

+ 1
3

2
+

1

2
− 1

4

= a4 −
7

24
+

12

24
− 6

24

= a4 −
1

24

So a4 =
1

24
=

1

4!
. Continuing in this pattern we can conjecture the following expan-

sion for x.

x =
∞∑

k=1

yk

k!

33



Putting this result back into the relation log[1 + x] = y we can conclude the follow
expansion of the exponential function (note that the sum starts at k = 0 now).

ey =
∞∑

k=0

yk

k!

c.) Find the binomial expansion of [1+ 1
n
]n. Then let n →∞ to find an expression

for e.

Directly applying the binomial expansion to yields the following.[
1 +

1

n

]n

= 1

(
1

n

)0

+ n

(
1

n

)1

+
n(n− 1)

2

(
1

n

)2

+
n(n− 1)(n− 2)

3!

(
1

n

)3

+ · · ·+ 1

(
1

n

)n

= 1 + 1 +
1− 1

n

2
+

1− 3
n

+ 2
n2

3!
+ · · ·+ 1

1

nn

= 1 + 1 +
1− 1

n

2
+

(1− 1
n
)(1− 2

n
)

3!
+ · · ·+

(1− 1
n
)(1− 2

n
) · · · (1− n−1

n
)

n!

If we plug in ∞ for n in the above all fractions involving n go to zero and can be
dropped. Thus, we are left with this expression for e.

lim
n→∞

[
1 +

1

n

]n

=
∞∑

k=0

1

k!
= e

d.) Next, show the previous result is identical to ex.

Simply replacing 1 by x in the previous derivation we find the following relation.

lim
n→∞

[
1 +

x

n

]n
=

∞∑
k=0

xk

k!

But this just the same formula for ey we found before using an x instead!

e.) Finally, show that log[x] and ex are inverses.

If log[x] and ex are inverses, log[ex] should be simply x. Let us apply our previously
found expansions.
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log[ex] = log
[

lim
n→∞

(
1 +

x

n

)n]
= lim

n→∞
log
[(

1 +
x

n

)n]
= lim

n→∞
n log

[
1 +

x

n

]
= lim

n→∞
n

∞∑
k=0

(−1)k x
n

k+1

(k + 1)!

= lim
n→∞

∞∑
k=0

(−1)k xk+1

nk

(k + 1)!

= x + lim
n→∞

∞∑
k=1

(−1)k xk+1

nk

(k + 1)!

= x
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14 The magic number π

a.) Set x = π
2

in the equation sin x
x

=
∏∞

k=1

(
1− x2

k2π2

)
.

sin
π

2

π

2
=

2

π
=

∞∏
k=1

(
1− 4

k2

)
=

∞∏
k=1

(2k − 1)(2k + 1)

(2k)2

=
1

2

3

2

3

4

5

4

5

6

7

6
· · ·

The final result is exactly the Wallis Product!

b.) Now, replace sin x
x

with cos x.

Let P (x) = cos x = 1 − x2

2
+ x4

4!
− x6

6!
+ · · · . The roots of P (x) (by inspection), are

±π
2
,±3π

2
,±5π

2
, . . .. Therefore, P (x) = (1 − 2x

π
)(1 + 2x

π
)(1 − 2x

3π
)(1 + 2x

3π
) · · · . Or, after

collecting pairs, we can see this formulation. P (x) = (1− frac4x2π2)(1− 4x2

9π2 ) · · · . To

simplify, let z = 4x2

π2 . Now, P (z) = (1−z)(1− z
32 )(1− z

52 ) · · · . Collecting only the terms

linear in z after the product yields 1
2

π2

4
=

pi2

8
= 1 +

1

32
+

1

52
+ · · · =

∞∑
k=1

1

(2k − 1)2
.

Interestingly, this is exactly the sum of the inverses of the odd squares!
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