
WaveFunctionCollapse is Constraint Solving in the Wild
Isaac Karth

University of California Santa Cruz
Department of Computational Media

Santa Cruz, CA
ikarth@ucsc.edu

Adam M. Smith
University of California Santa Cruz
Department of Computational Media

Santa Cruz, CA
amsmith@ucsc.edu

ABSTRACT
Maxim Gumin’s WaveFunctionCollapse (WFC) algorithm is an
example-driven image generation algorithm emerging from the
craft practice of procedural content generation. In WFC, new im-
ages are generated in the style of given examples by ensuring every
local window of the output occurs somewhere in the input. Op-
erationally, WFC implements a non-backtracking, greedy search
method. This paper examines WFC as an instance of constraint
solving methods. We trace WFC’s explosive influence on the tech-
nical artist community, explain its operation in terms of ideas from
the constraint solving literature, and probe its strengths by means
of a surrogate implementation using answer set programming.

CCS CONCEPTS
• Theory of computation → Constraint and logic program-
ming; Random walks and Markov chains; • Applied comput-
ing → Media arts; Fine arts; • Mathematics of computing →
Solvers;

KEYWORDS
constraint solving, procedural content generation, texture synthesis

ACM Reference format:
Isaac Karth and Adam M. Smith. 2017. WaveFunctionCollapse is Constraint
Solving in the Wild. In Proceedings of FDG’17, Hyannis, MA, USA, August
14-17, 2017, 10 pages.
https://doi.org/10.1145/3102071.3110566

1 INTRODUCTION
Constraint solving is neither a traditional nor well-known ap-
proach to procedural content generation (PCG). Nevertheless, this
approach can be surprisingly effective for building controllable con-
tent generators. (Examples are discussed in section 3.) This paper
examines the WaveFunctionCollapse (WFC) algorithm, an example-
driven image generation algorithm recently developed by game
developer Maxim Gumin, and illuminates it through the lens of
constraint solving.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’17, August 14-17, 2017, Hyannis, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5319-9/17/08. . . $15.00
https://doi.org/10.1145/3102071.3110566

Figure 1: The WaveFunctionCollapse generator in action.
The unresolved information in the images on the left is
shown as the average color value of their possible outputs.

In 2016 and 2017, WaveFunctionCollapse attracted the attention
of several indie and hobby game makers via social media.1 Anima-
tions of the algorithm demonstrated not just the primary output,
a large image generated in the style of a smaller artist-provided
source, but also a surprisingly human-like mode of incremental cre-
ation. Referring to one of the major components of the algorithm,
Gumin writes [12]: “I noticed that when humans draw something
they often follow the minimal entropy heuristic themselves. That’s
why the algorithm is so enjoyable to watch.” The animated visu-
alizations, with the results gradually resolving themselves out of
a fog of possibilities (Fig. 1), instantly showed that the algorithm
works differently than familiar constructive or artifact-at-a-time
generate-and-test methods.

The approach used draws deeply from techniques known in
computer graphics for texture synthesis (we examine this literature
more in a later section). WhereWaveFunctionCollapse departs from

1For example, Maxim Gumin’s first WFC tweet “Procedural generation from a single
example by wave function collapse https://github.com/mxgmn/WaveFunctionCollapse
. . . ” (Which has hundreds of retweets)
https://twitter.com/ExUtumno/status/781833475884277760
and Danny Wynne’s “3d tile placement with WFC.This algorithm is amazing. Inspired
by @OskSta and based on @ExUtumno work #screenshotsaturday #gamedev #in-
diedev”
https://twitter.com/dwtw/status/810166761270243328 and others mentioned below.

https://doi.org/10.1145/3102071.3110566
https://doi.org/10.1145/3102071.3110566
https://twitter.com/ExUtumno/status/781833475884277760
https://twitter.com/dwtw/status/810166761270243328

FDG’17, August 14-17, 2017, Hyannis, MA, USA Isaac Karth and Adam M. Smith

texture synthesis is also a key place where it enables surprising
new applications in game design—it does not allow pixel colors
to be blended, preserving gameplay semantics demonstrated in
the source image. In this sense, it is similar to generative methods
based on Markov chains that, in applications like generative text
(e.g. Michael Walker’s King James Programming [28]), assemble
outputs from locally-consistent chains of unmodified text. Both
traditional texture synthesis and Markov chain approaches are
primarily data-driven and thus accessible to non-programmers, a
feature that stands in contrast with expectations about systems that
operate on the basis of constraint solving.

In this paper, we make the following contributions:
• We trace significant applications of WaveFunctionCollapse
to date.

• We provide a pseudocode explanation of the algorithm’s
major steps in the context of a worked example and the
terminology of constraint solving.

• We reformulate the image generation problem using the
technology of answer set programming to interrogate the
source of the algorithms strengths in relation to traditional
constraint solving techniques.

This work aims to highlight the value of studying the craft prac-
tice of PCG and to clarify the present and future role of constraint
solving as one of the many generative methods we can draw on in
applied PCG systems.

2 BACKGROUND
In this section, we relate the WaveFunctionCollapse algorithm to
some of the earlier approaches to image generation and introduce
the vocabulary that will help us examine WFC as a constraint
solving algorithm.

2.1 Texture Synthesis
In computer graphics, texture synthesis is the problem of generat-
ing a large (and often seamlessly tiling) output image with texture
resembling that of a smaller input image [1]. In many texture syn-
thesis approaches (e.g. the work of Liang et al. [17]), the input and
output images are characterized in terms of the local patterns they
contain where these patterns are typically sub-images of just a
few pixels in width (e.g. 5-by-5 pixel windows). Although differ-
ent algorithms achieve this goal in different ways, many texture
synthesis algorithms intend to produce outputs such that every
local pattern in the output resembles a local pattern in the input. In
the visual setting of graphics, this resemblance need not be exact
pixel-for-pixel matching and is often judged based on a distance
metric (e.g. Euclidean distance of pixel color vectors) that judges
some colors to be closer than others. By contrast, exact matching is
the only sense of resemblance present in WaveFunctionCollapse
(towards important implications for game development discussed
later).

In Liang’s method [17], the output image is grown incrementally.
Part-way through the generation process, a large region of the out-
put has already been generated, but more remains. A location on
the border of this region is selected, and the surrounding already-
chosen pixels (the context) are used to query an index of patterns
generated from the source image. A pattern with similar local pixels

is retrieved and used to paint in a few more pixels of the output
image, growing the region of completed pixels. WaveFunctionCol-
lapse also grows its output image incrementally, expanding the
known regions of the output by completing them with details from
local patterns of the input image. However, WFC needs to perform
many more bookkeeping operations in the not-yet-known regions
of the output in response to the need for exact pattern matching.

While WFC is loosely inspired by quantum mechanics,2 Gumin
writes that he was inspired by the discrete synthesis approach of
Paul Merrell [18]. Although Merrell worked in computer graph-
ics and was also inspired by texture synthesis, he focused on the
problem of generating three-dimensional geometric models. In this
setting, we want to automatically generate a new (typically large)
3Dmodel which is made up of components and arrangements taken
from a (typically small) 3D model provided by a human artist. Per
texture synthesis traditions, artifacts are characterized in terms of
their local patterns on a regular grid. Instead of blendable pixel
colors, however, discrete model synthesis aims to exactly reuse
geometric chunks.

In personal correspondence with us, Gumin described how he
was inspired by convolutional neural network style transfer, but
found it lacking for level generation. He experimented with several
approaches to model and texture generation, looking for a texture
synthesis algorithm with strong local similarity, where each N ×N
pattern in the output could be traced to a pattern in the input.
Gumin’s intent was to capture the rules for how the source image
was made.

His SynTex project [10] implemented several texture synthesis
methods, yielding attractive results for game texture images but
nonsensical outputs for non-texture images (such as of items like
swords) where pixel-grid analysis destroyed the visual semantics of
structured objects. In the ConvChain project [9], he experimented
with an approach based on Markov Chain Monte Carlo, a statistical
sampling approach that directly measures how likely an output
image is under the distribution of local patterns implied by the input
image. Statistical modeling is also present, if much less explicitly, in
the notion of entropy used in Gumin’s later WaveFunctionCollapse
algorithm.

2.2 Constraint Solving Algorithms
In the field of artificial intelligence (AI), largely disconnected from
computer graphics until recently,3 constraint solving uses ideas
from knowledge representation and search to model continuous
and combinatorial search and optimization problems and solve
them with domain-independent algorithms [23, Chap. 6]

Constraint satisfaction problems (CSPs) are typically defined
in terms of decision variables and values. In the context of WFC-
style image generation, there is a variable associated with each
location in the output image. In a solution to the problem (called
an assignment), each variable takes on a value. Depending on the

2Very loosely, and mostly confined to how it uses the superposition of possible image
states. As Gumin explains, “The coefficients in these superpositions are real numbers,
not complex numbers, so it doesn’t do the actual quantum mechanics, but it was
inspired by QM.” [12]
3Recent innovations in style transfer were sparked by a breakthrough in using deep
convolutional neural network classifiers to mimic artistic styles [4] This has lead to a
flood of related research, along with the exploration of other applications of neural
networks to graphics.

WaveFunctionCollapse is Constraint Solving in the Wild FDG’17, August 14-17, 2017, Hyannis, MA, USA

context, values may come from continuous or discrete domains.
For the task addressed by WaveFunctionCollapse, the values are
associated with the discrete set of unique local patterns in the input
image. The choice to assign a specific variable a specific value will
often influence the available choices that can be made for other
variables. Constraints relate the legal combination of values that a
set of variables might take on in a valid assignment. For the image
generation task, we want to model the idea that the patterns chosen
at each location in the output are compatible in terms of exact
matches for the pixels in which their associated local windows
overlap.

The goal of an algorithm for solving CSPs (a solver) is to find
a total assignment (an assignment for every variable) such that
no constraints are violated. Although there are many different ap-
proaches to constraint solving, most operate by searching in the
space of partial assignments. That is, they search the space of in-
complete solutions, not generating a single candidate solution until
that solution is known to be free of conflicts (constraint violations).
The solver repeatedly selects an unassigned variable and then de-
cides on a value to assign from the variable’s domain. If the solver
encounters a partial assignment for which no subsequent variables
can be assigned without violating constraints, the solver typically
backtracks on a recent decision—backing out of a dead-end.

To the skeleton of backtracking search sketched above, advanced
constraint solvingmethods add improvements that attempt to speed
up identification of a legal total assignment. Some heuristics (ei-
ther domain-specific or domain-independent) aid the selection of
a promising variable to select next while others aid the decision
of a promising value to assign for that variable. The addition of
heuristics typically alter the order in which the solver explores
the space without impacting completeness guarantees (i.e. that the
solver will eventually, in finite time, return a solution if at least one
exists).

Complementary to heuristics, constraint propagationmethods do
additional bookkeeping in order to prune away values from domains
that would lead to dead-ends later. Constraint propagation ideally
allows a solver to skip past fruitless search without impacting
the order in which the space is explored. AC3 is a well known
constraint propagation algorithm [23, Chap. 6]. Although AC3 and
other propagators can end up making assignments to variables as
part of their operation, they are not complete solvers by themselves.
Propagators are typically run after each choice by a solver in order
to simplify the remaining search problem.

For a game-focused audience, we refer the reader to the Game AI
Pro 2 book chapter “Rolling Your Own Finite-Domain Constraint
Solver” [2] for more details.

2.3 Constraint Solving in PCG
Although there are a few examples of note, constraint solving is
mostly overlooked for the purposes of content generation. Tax-
onomies of PCG such as in the notable search-based PCG sur-
vey [27] do not account for approaches to content generation that
are neither directly constructive nor perform their search at the
level of completed candidate designs. The concept of working with
partial designs is part of what makes the animations derived from

WaveFunctionCollapse executions so visually stunning—we aren’t
used to seeing our generators work this way.

Constraint based PCGmethods are often associated with making
strong guarantees about outputs as well as having the cost of those
guarantees paid in unpredictability of total running time. Most
backtracking solvers yield good performance on their associated
search tasks for real world problems, but this outcome is hard to
characterize in terms of theory (where exponential worst case anal-
yses are uninformative). Horswill and Foged [14] describe a “fast”
method for populating a level design with content under strong
playability guarantees. Their algorithm is based on backtracking
search with (AC3) constraint propagation. Although it makes only
modest demand on processor and memory resources, it is expected
to be used by programmers who are at least moderately literate in
search algorithm design.

In G. Smith’s Tanagra system [25], a mixed-initiative platformer
level design tool, the Choco [22] solver is invoked to solve a specific
geometric layout subproblem in the overall level design process. In
this system, the user is in a designer role rather than a programmer
role. When the solver determines that the given CSP is impossible
to solve (we say the constraints are unsatisfiable), it signals to the
larger tool that other decisions about the working level design,
such as what activity the player performs on each platform, need
to be relaxed (backtracked). Although Tanagra illustrates that CSPs
need not only be created by programmers (they can be assembled
programmatically from the data input into a graphical user inter-
face), backtracking still plays a major role. By contrast, Gumin’s
WaveFunctionCollapse does not backtrack.

2.4 ASP in PCG
Answer set programming (ASP) is a form of logic programming
targeted at modeling combinatorial search and optimization prob-
lems [5]. In ASP, low-level constraints are automatically derived
from the high-level rules in a problem formulation program, and
the implied CSP is solved using algorithms rooted in the SAT/SMT
literature [6].

A. M. Smith proposed the use of ASP in PCG [24] within the
paradigm of modeling design spaces. Rather than directly aiming
to code and algorithm for generating content, we should declara-
tively model the space of content we want to see and let a domain-
independent solver take care of the procedural aspects for us. Al-
though programmers using ASP need not have or use any knowl-
edge of search algorithm design, they are expected to be familiar
with the declarative programming paradigm and Prolog-like syntax.
That background is not common amongst those, predominantly
technical artists, who were recently excited to find WaveFunction-
Collapse.

Modern answer set solvers (such as Clingo [15]) allow for speci-
fication of custom heuristics, externally checked constraints inter-
leaved with the search process, and hooks for scripting languages
in the service of integrating solvers with outside environments. We
will make use of Clingo later in this paper to implement an exper-
imental surrogate for WaveFunctionCollapse on top of advanced
constraint solving algorithms to better understand the features of
Gumin’s invention.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Isaac Karth and Adam M. Smith

Figure 2: Behind the scenes of level generation in the
first use of WaveFunctionCollapse in a game, Proc Skater
2016. [21] Copyright 2016 Joseph Parker. Used with permis-
sion.

3 WFC IN THEWILD
Within a day of the September 30th 2016 release of WaveFunc-
tionCollapse to the public [8], other developers were actively ex-
perimenting with it in the wild. Spreading through social media,
particularly via images and animations on Twitter, WFC soon had
reimplementations in many environments, including multiple im-
plementations for the Pico-8 fantasy console.4

Joseph Parker, an indie game developer, was one of the first to
start usingWFC. He stated on Twitter5 that he had, “never been this
excited about an algorithm!” Parker immediately started work on a
toolset for the Unity3D engine,6 releasing it as a Unity asset before
the end of October.7 This toolset incorporated the overlapping
pattern system, but applying it to 3D Unity game objects rather
than colored pixels. This toolset was, in turn, quickly in active use
by others.8

An active member of the experimental procedural genera-
tion community, Parker had previously participated in ProcJam
2015. ProcJam 2016 was the next month, and Parker’s entry was
Proc Skater 2016, developed along with Ryan Jones and Oscar
Morante [21]. Proc Skater 2016 was the first game to use WaveFunc-
tionCollapse for level generation,9 generating skate parks from
the designer’s sampled input. The output skate parts were formed
by arranging discrete geometric chunks (akin to Merrell’s discrete
4By Joseph Parker https://twitter.com/jplur_/status/873551783347589120
and TRASEVOL_DOG https://trasevol.dog/2017/06/19/week60
5“Wave Function Collapse in #unity3d, never been this excited about an algorithm!”
https://twitter.com/jplur_/status/784591710777147392
6“getting https://github.com/mxgmn/WaveFunctionCollapse. . . running in unity”
https://twitter.com/jplur_/status/782271940694306816
7“New Tool: Unity Wave Function Collapse - procedural generation from sample
patterns! https://selfsame.itch.io/unitywfc #unity3d #procjam”
https://twitter.com/jplur_/status/792440594845032448
8“Got that sweet level generation going on. Courtesy of @jplur_’s WCF package
(https://selfsame.itch.io/unitywfc)”
https://twitter.com/oh_cripes/status/807565996957564928
9“Forgot to mention it: WFC generates skateparks in Proc Skater 2016 https://arcadia-
clojure.itch.io/proc-skater-2016 . . . , it was the first game to use WFC for levelgen”
https://twitter.com/ExUtumno/status/812703329834962944

Figure 3: Two different historical site levels in Caves of Qud
generated via WaveFunctionCollapse. Copyright 2016 Free-
hold Games. Used with permission.

model synthesis) for which exact matching of local patterns ensured
the smooth traversability required during gameplay. Fig. 2 shows a
screenshot of the level generation.

Another game developer who has contributed to the populariza-
tion of WaveFunctionCollapse is Oskar Stålberg. A technical artist
who previously worked on Tom Clancy’s The Division [13], Stålberg
was among the first to start generalizing WaveFunctionCollapse,
extending it with other tile shapes,10 3D, meshes11 performance
optimizations,12 and adding backtracking.13 In May 2017, as part
of a talk about his approach to procedural generation, he released
a “small browser demo”14 to illustrate how the algorithm works
under the hood [26].

WaveFunctionCollapse has also been used in commercially-
released indie games, most notably Caves of Qud [3]. Caves of Qud
is a roguelike developed by Freehold Games that is currently in
early-access release. Brian Bucklew, one of the developers, started
experimenting with using WaveFunctionCollapse for level genera-
tion.15 Two of the levels are shown in Fig. 3).

10“Content-agnostic algorithm for placing tiles. Heavily based on the work of @ExU-
tumno. Basically a Sudoku-solver on steroids.”
https://twitter.com/OskSta/status/784847588893814785
11“More procedural tile placement. Now in 3D. Algorithm inspired by the work of
@ExUtumno”
https://twitter.com/OskSta/status/787319655648100352
12“It’s getting faster (mostly due to bitwise operations). Actual speed depicted below”
https://twitter.com/OskSta/status/794993371261665280
13“I gave it an extra difficult tileset to work with to make sure it can repair itself when
it has screwed up”
https://twitter.com/OskSta/status/793806535898136576
14“I built a small browser demo to help explain how the WFC algorithm works. Give it
a go: http://oskarstalberg.com/game/wave/wave.html . . . ”
https://twitter.com/OskSta/status/865200072685912064
15“The peaceful gardens of Inner Aarranip. A Caves of Qud dungeon generated via
https://github.com/mxgmn/WaveFunctionCollapse . . . based synthesis. ”
https://twitter.com/unormal/status/805987523596091392

https://twitter.com/jplur_/status/873551783347589120
https://trasevol.dog/2017/06/19/week60
https://twitter.com/jplur_/status/784591710777147392
https://twitter.com/jplur_/status/782271940694306816
https://twitter.com/jplur_/status/792440594845032448
https://twitter.com/oh_cripes/status/807565996957564928
https://twitter.com/ExUtumno/status/812703329834962944
https://twitter.com/unormal/status/814569437181476864
https://twitter.com/OskSta/status/784847588893814785
https://twitter.com/OskSta/status/787319655648100352
https://twitter.com/OskSta/status/794993371261665280
https://twitter.com/OskSta/status/793806535898136576
https://twitter.com/OskSta/status/865200072685912064
https://twitter.com/unormal/status/805987523596091392

WaveFunctionCollapse is Constraint Solving in the Wild FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 4: The 4 × 4 pixel Red Maze sample, used as a source
image. Note that it tiles periodically, with the edges wrap-
ping around.

Caves of Qud uses a multipass WFC system, with templates
applied successively to combine into a larger variety of outcomes
with more extreme variation.16 One of the benefits of WFC that
Caves of Qud has demonstrated is that the simple inputs mean
that it is much easier for the entire team to experiment with the
generator.17

In addition to level design, WaveFunctionCollapse has been ap-
plied to other kinds of content. One of the most unexpected was
developed by Martin O’Leary, a glaciologist who also makes “weird
internet stuff” [20] including twitter bots and procedurally gen-
erated travel guides. O’Leary created a poetry generator inspired
by WaveFunctionCollapse that enforced rhyme/meter constraints
to make sonnets from Alice in Wonderland,18 Pride and Prejudice
as a limerick,19 and “Moby Dick in a conveniently singable ballad
form.”20 In personal correspondence with us, O’Leary explained
that, “‘I treat syllables as the basic unit, so each ‘tile’ is a sequence of
syllables (tagged with the word/position it comes from).” This is en-
tered into a 1-dimensional WFC sequence, together with “some ex-
tra long-distance constraints induced by rhyme, meter, etc.” O’Leary
has publically released the source code for this project [19].

In this setting, the texture synthesis view of WFC (operating
on images composed of pixels) is not nearly as informative as a
constraint solving viewwhere the algorithm is seen to make choices
for variables from domains in a way that avoids violating stated
constraints.

4 THEWFC ALGORITHM
In this section, we examine the details of Gumin’s original for-
mulation of the WaveFunctionCollapse algorithm [11]. Although
Gumin’s project (including utilities for generating the example an-
imations that attracted so many others to WFC) is not large—it
involves less than a thousand lines of C# code—the broad ideas of
the algorithm are difficult to interpret by reading the code directly.
In personal correspondence with several users of WFC, we learned
that many of them treated the code as a black box, using it directly
16https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=
68893&perpage=40&pagenumber=23#post467126402
17“Ha! I’m experimenting with the WFC map generator @unormal just added.”
https://twitter.com/ptychomancer/status/805964921443782656
18“Using @ExUtumno’s ẅavefunction collapseälgorithm to enforce rhyme/meter con-
straints in text (Alice in Wonderland as Shakespearean sonnet)”
https://twitter.com/mewo2/status/789167437518217216
19“Also, Pride and Prejudice as a limerick. Turns out the limerick constraints are much
harder to satisfy than sonnets, which are easy to write”
https://twitter.com/mewo2/status/789177702620114945
20“Moby Dick in a conveniently singable ballad form, thanks to WFC”
https://twitter.com/mewo2/status/789187174683987968

Figure 5: The patterns derived from the Red Maze sample,
with a pattern size of N = 2, reflection, and rotation. Their
order here, from left to right, top to bottom, is the same as
the index ordering used in the original C# implementation.
Note that only patterns that appear in the original sample
are present.

without attempting to alter it. In response, we offer a pseudocode
summary below.

Throughout the explanation of the algorithm, we’ll use one of
Gumin’s sample files as a running example. The Red Maze.png
image (Fig. 4) is a compact, three-color sample that can produce a
wide variety of outcomes, showing the features of the generator. At
the same time, the 16 source pixels and limited number of patterns
makes it easier to follow than larger examples.

At the top level, WFC performs four key tasks: it extracts the
local patterns from the input image; it processes those patterns
into an index that speeds up constraint checking; it incrementally
generates the output image by growing a partial assignment; and it
finally renders the total assignment back into an image in the same
format as the input.

defn Run():
PatternsFromSample()
BuildPropagator()
Loop until finished:

Observe()
Propagate()

OutputObservations()

A pattern here is a particular, unique configuration of input tiles.
In the simple tiled version of the algorithm, the patterns are spec-
ified as explicit tile constraint relationships. In the overlapping
version, the constraints are inferred from the source image, con-
structing a set of the unique N ×N patterns from subimages (Fig. 5).
Symmetry and reflection can optionally be taken into account.

As can be seen in Fig. 5, when N = 2, the maze sample contains
twelve unique patterns. Four with a single black pixel, four with
two black and two white, and four around the red pixel. The red
and white pixels are never next to each other in the source image,
so there is no pattern with that combination. Note that the sampled
image is periodically tiling. This is optional, and only relevant for

https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://forums.somethingawful.com/showthread.php?threadid=3563643&userid=68893&perpage=40&pagenumber=23#post467126402
https://twitter.com/ptychomancer/status/805964921443782656
https://twitter.com/mewo2/status/789167437518217216
https://twitter.com/mewo2/status/789177702620114945
https://twitter.com/mewo2/status/789187174683987968

FDG’17, August 14-17, 2017, Hyannis, MA, USA Isaac Karth and Adam M. Smith

Figure 6: The nine ways that two 2 × 2 patterns can over-
lap. For each pattern, the index datastructure holds the pre-
calculated list of which other patterns are valid.

Figure 7: A slice of the index datastructure for the first pat-
tern in Red Maze, showing which of the other patterns can
overlap with the first pattern. Compare with Fig. 5. For each
offset, only a subset of the 12 patterns are valid. Note that,
of course, the only pattern that has valid overlap at zero off-
set is the pattern itself. The index datastructure also stores
similar information for the other patterns.

cataloging the patterns. But makes it much easier to specify some
classes of input.

From the set of patterns, BuildPropagator() creates an index
datastructure that describes the ways that the patterns can be placed
near one another. For the overlap version, the index contains the
pre-calculated answers to whether the union between two patterns
match when one placed near the other with a particular x,y offset.
(When N = 3 there are (2(N − 1) + 1)2 = 36 offsets to consider.)
For the tiled version, this index can be created directly from the
designer-specified tile relationships. In either case, this creates a
sparse relation between the patterns (sparse in the sense that most
patterns cannot occur with most offsets to most other patterns).
AlthoughGumin’s code refers to this index as propagator in C#, we
here call it an index to avoid confusion with constraint propagator
algorithms like AC3 (which WFC implicitly implements).

During the core incremental generation process, decision vari-
ables (grid locations) are repeatedly selected and then assigned. In
constraint solving, in addition to the current partial assignment,
solvers typically keep track of remaining domains for unassigned
variables. In Gumin’s C# code, this is stored in a table called wave
in loose reference to a quantum wave function. The entries of the
table, which Gumin calls the coefficients, are Boolean values that
record whether or not the algorithm might yet still assign a given
pattern to a given location. All coefficients in the wave are initial-
ized to a true value, which is equivalent to saying each decision
variable has an unreduced initial domain. Assignment and propaga-
tion both serve to pare down the domains of variables. Accordingly,
coefficients only go from true to false during the execution of WFC.
Gumin’s algorithm does not implement local backtracking and
instead globally restarts in the rare case a conflict is reached.

defn Observe(coefficient_matrix):
FindLowestEntropy()
If there is a contradiction, throw an error and quit
If all cells are at entropy 0, processing is complete:

Return CollapsedObservations()
Else:

Choose a pattern by a random sample, weighted by the
pattern frequency in the source data

Set the boolean array in this cell to false, except
for the chosen pattern

The purpose of Observe() is to identify the location on the grid
with the lowest nonzero entropy. Entropy here corresponds to the
interpretation of the wave as implying a probability distribution
over the patterns to be found at each grid location. The cell with
lowest entropy is the variable with the tightest or smallest domain
after propagation. The heuristic of selecting the most constrained
variable or equivalently the variable with minimum remaining val-
ues (MRV) is well known in constraint solving [23, Chap. 6].

The strategy of selecting the location with the lowest non-zero
entropy (or minimum remaining values) might seem arbitrary at
first. If we want to optimize our chances of uncovering a total
assignment without backtracking, we should make each of our
choices in a way that maximizes the number of number of total
assignments consistent with our choices so far. This avoids ruling
out (potentially extremely rare) legal total assignments under the
assumption that they are distributed amongst other total assign-
ments. If the number of number of remaining total assignments is

WaveFunctionCollapse is Constraint Solving in the Wild FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 8: The result of the first observation and propagation
step with the Red Maze sample. Since all of the locations
have equal entropy, the start was chosen at random. The se-
lected pattern is the the first one, with a single black pixel in
the lower right corner. Note that the propagationhas already
resolved two additional white pixels, since every remaining
pattern that can cover those locations has a white pixel in
that location.

approximated as the product of the size of the domains of the unas-
signed variables (in other words, assuming the remaining choices
are independent), then assigning the location with the smallest do-
main (lowest entropy / minimum remaining values) maximizes the
value of the product after the assignment. To make another loose
physics connection (this time to statistical mechanics), GuminâĂŹs
(least) entropy heuristic is one realization of the maximum entropy
principle.

defn FindLowestEntropy(coefficient_matrix):
Return the cell that has the lowest greater-than-zero

entropy, defined as:
A cell with one valid pattern has 0 entropy
A cell with no valid patterns is a contradiction
Else: the entropy is based on the sum of the frequency

that the patterns appear in the source data, plus
Use some random noise to break ties and

near-ties.

Since there is more than one valid pattern for the selected
location—or it would already have been set to zero entropy in
the previous loop—one of those patterns needs to be chosen. One
of the patterns is chosen with a random sample, weighted by the
frequency that pattern appears in the input image. This imple-
ments Gumin’s secondary goal for local similarity: that patterns
appear with a similar distribution in the output as are found in the
input [12].

Once a location has been observed (a variable has been assigned),
it is flagged as a location in the wave to be updated (as a place to
start updating variable domains via constraint propagation). Like
AC3, WFCs propagation procedure implements arc consistency—it
ensures that a value only appears in a domain of a variable if there
exists a valid value in the domain of related variables such that
constraints over those variables could be satisfied. Updating the

domain of one variable implies the need to potentially update all
of the adjacent variables. As such, propagation proceeds via an
algorithm recognizable from a graphics perspective as a flood fill.

defn Propagate(coefficient_matrix):
Loop until no more cells are left to be update:

For each neighboring cell:
For each pattern that is still potentially valid:

Compare this location in the pattern with the
cell's values

If this point in the pattern no longer
matches:

Set the array in the wave to false for this
pattern

Flag this cell as needing to be updated in
the next iteration

Each observation finalizes the result for at least location and
potentially reduces the entropy for surrounding regions (Fig. 9).

Once there is no more entropy in the system (all variables have a
singleton domain), we can output the final generated image (Fig. 10).
Additionally, we can take advantage of the side-effect of each cell
having an array of potential states and output a partially-finished
image after each cycle of observation and propagation. This is what
allowed the enticing visualizations noted in Fig. 9.

defn OutputObservations(coefficient_matrix):
For each cell:

Set observed value to the average of the color value
of this cell in the pattern for the remaining
valid patterns

Return the observed values as an output image

Taken together, we can see WaveFunctionCollapse as a con-
straint solving algorithm. Indeed, Gumin occasionally describes
his algorithm this way.21 It uses the minimum remaining values
(MRV) heuristic to select a variable to decide next. For decisions, it
uses the heuristic of choosing patterns according to their distribu-
tion in the original image. An alternative to this heuristic would
be to use the well known least constraining value (LCV) selection
heuristic [23] (LCV can also be motivated by the maximum entropy
principle). However, it is difficult to predict the implications of this
heuristic choice for the purposes of content generation. The topic
of sampling from combinatorial spaces with statistical uniformity
guarantees is surprisingly subtle [7].

5 REFORMULATINGWFC IN ASP
In this section, we use answer set programming (ASP) to implement
a surrogate for WaveFunctionCollapse. It is not a reimplementation
of WFC per se (for example, we do not attempt to capture Gumin’s
entropy heuristic) but instead an attempt to capture the problem
WFC solves in order to support asking questions about how WFC
might have been implemented differently.

21“I can help with the grasp part. WFC is basically a constraint solver. You start with
everything unknown and when possible...”
https://twitter.com/ExUtumno/status/793601984800624640

https://twitter.com/ExUtumno/status/793601984800624640

FDG’17, August 14-17, 2017, Hyannis, MA, USA Isaac Karth and Adam M. Smith

Figure 9: Consecutive updates with the RedMaze dataset. Partially resolved cells are rendered as the average of their potential
outputs. Note how the propagation spreads to more cells in some steps, as the falling entropy allows multiple cells to be
resolved in the same step.

Figure 10: Two of the possible outcomes of generation using
the Red Maze sample.

Our surrogate reuses Gumin’s original input data examples and
input processing algorithms. Just before Gumin’s observe-and-
propagate cycle begins, we extract the index of legal pattern adja-
cencies (what Gumin calls the propagator) as well as the topology
of the grid that the algorithm is about to fill.

Our formulation of the image generation problem in ASP in-
volves just two rules:

1 { assign(X,Y,P):pattern(P) } 1 :- cell(X,Y).

:- adj(X1,Y1,X2,Y2,DX,DY),
assign(X1,Y1,P1),
not 1 { assign(X2,Y2,P2):legal(DX,DY,P1,P2) }.

The first rule states that every cell should be nondeterministically
assigned exactly one pattern. The next rule is an integrity constraint
(which disallows certain solutions). It states that a (partial) solution
should be rejected if there is an adjacency between two cells of a
certain spatial offset and the first cell is assigned one pattern and
the second cell is not assigned one of the patterns marked as legal
according to the index.

Combinging these two rules with a set of instance-specific facts
automatically derived from the snapshot mentioned above, we have
a logic program that can be solved with Clingo (we use Clingo
5.2.022).

When Clingo runs, two major tasks occur. First, the logic pro-
gram is grounded: symbols from the problem instance are substi-
tuted for all logic variables in the problem formulation. This yields a
low-level constraint problem. The time taken during grounding for
this problem formulation is proportional to the number of grid cells
multiplied by the number of legal pairings of patterns mentioned
in the index. Rather than checking all possible offsets between
patterns, we only consider those in the four cardinal directions

22https://github.com/potassco/clingo/releases/tag/v5.2.0

on the grid (such that |DX | + |DY | = 1) because this constraint
subsumes the longer-range constraints. It bears noting that this
formulation does not pay the cost of all possible combinations of
local pixel values nor even all possible pairs of patterns present in
the input image. Like Gumin’s WFC, we take care to only do work
proportional to the number of sparse pairings of patterns.

After grounding, the generated constraint problem is solved to
find one or more satisfying assignments. By adjusting parameters of
the solver, we can cause Clingo to imitate various traditional search
algorithms. In the case where a solution can be found without back-
tracking, solving takes time proportional to a modest polynomial in
the number of decision variables and constraints in the CSP (where
the details depend on the precise datastructure design choices used
in constraint propagation). When backtracking does occur, the time
taken is difficult to characterize beyond that it is related to the
number of dead-ends (conflicts) encountered during search. In the
discussion below, we focus on the conflict counts rather than wall-
clock times to factor out the performance of the specific machine
used for testing.23

To focus our experiments, we selected three of Gumin’s scenarios,
illustrated in Fig. 11: Platformer, Skyline, and Flowers (eachwith
N = 3).

5.1 Understanding Heuristics
In our first experiment, we aim to understand the importance of
Gumin’s entropy heuristic. We do this first asking Clingo to run
with all of the built-in heuristics disabled (passing the “--heu=none”
command line flag). This has the effect of causing Clingo to select
grid location in some default ordering (namely the reading-order
traversal of the grid we used when preparing the problem instance
facts).

Surprisingly, Clingo encounters zero conflicts during search for
the selected scenarios. This result still holds if we tell Clingo tomake
random choices for each selected location (something needed to
achieve varied outputs for gameplay purposes). This suggests that
the strength of WFC comes from constraint propagation (removing
bad choices from variable domains before they are considered for
assignment) rather than the entropy heuristic. Both the entropy
heuristic and the effect of Clingo’s disabled heuristics have similar
behavior: the next cell selected to be assigned is often next to cells
that have already been assigned.

23For reference, all non-timeout solving times were under two seconds using single
threaded search on a Early 2011 MacBookPro with a 2.2 GHz Intel Core i7 processor

https://github.com/potassco/clingo/releases/tag/v5.2.0

WaveFunctionCollapse is Constraint Solving in the Wild FDG’17, August 14-17, 2017, Hyannis, MA, USA

Table 1: Results of generating images with Clingo (version 5.2.0 with randomized default sign heuristic “–sign-def=rnd”). Ten
48x48 images were generated for each scenario using the VSIDS heuristic (Clingo’s general-purpose default) and with heuris-
tics disabled (“–heu=none”, resulting in a left-to-right, top-to-bottom selection sequence). #Pat is the number of unique local
patterns in the scenario’s input image. #Var and #Con are the number of decision variables and constraints considered by the
solver. #Choices records howmany times the solvermade a choice (an assignment notmade via constraint propagation) before
emitting a solution (we report mean and standard deviation). #Conflicts records how many times the solver needed to undo a
previous choice to make progress in search.

Scenario #Pat #Var #Con VSIDS #Choices VSIDS #Conflicts Disabled #Choices Disabled #Conflicts

Platformer 116 486,238 1,976,634 390 ± 22 0 433 ± 45 0
Skyline 170 698,544 3,009,600 415 ± 14 0 411 ± 38 0
Flowers 106 485,958 1,909,342 325 ± 14 0 358 ± 34 0

Figure 11: Three input images on the left, paired with their
example outcomes on the right.

Clingo comes with a domain-agnostic heuristic known as VSIDS
(Variable State Independent Decaying Sum [16]), a dynamic heuris-
tic that learns how to make good choices at run-time by observing
where past choices failed. If we give VSIDS a chance to solve the
image generation problem, we find the same results: no conflicts.
Again, this suggests the importance of constraint propagation over
heuristics (See Table 1 for experimental results).

When generating a 48-by-48 output image, we might expect that
the solver needs to make 48 × 48 = 2304 choices (or a much larger
number if we are considering decision variables at the level the
solver sees them: roughly one for each pattern at each location). As
a result of constraint propagation, each a choice for one location
will force (and resolve) choices for a number of other locations. We
report the number of choices in Table 1 to illustrate the consistency
this effect across different scenarios.

Interestingly, a baseline heuristic that selects which cell to assign
next randomly represents a pathological choice for this search task.
This process often selects cells that are not near any other assigned

cell, inviting the opportunity for many choices that need to be
backtracked later. Given a minute to search, the solver always
times out (after many thousands of conflicts) when making random
selections for which cell to assign next.

5.2 Understanding Backtracking
The results above would suggest that (when using non-pathological
heuristics) backtracking is not important. From this, it makes sense
that Gumin was able to achieve reasonable results by simply glob-
ally restarting in the greedy search if a conflict is encountered.

By adding some reasonable global constraints to our ASP for-
mulation, we can probe how brittle this result is. Continuing with
the spirit of the image generation task, we consider adding the
following integrity constraint to our formulation above:

:- pattern(P), not 1 { assign(X,Y,P):cell(X,Y) }.

This constraint says to reject a possible solution if there is some
pattern (from the input image) that isn’t used in at least one assign-
ment for the output image.

Experimentally, we found that while adding this constraint did
not significantly impact the number of conflicts encountered for the
Flowers and Platformer scenarios, it leads to hundreds of conflicts
for the Skyline scenarios. When Clingo is instructed to globally
restart after each conflict (mimickingWFC), it cannot find a solution
within the one-minute timeout window. However, if backtracking
is allowed (the default behavior of Clingo), the constraint can be
quickly resolved by adjusting local choices.

In deeper game design applications of WaveFunctionCollapse
that attribute gameplay semantics to what are just pixel colors
in the image generation task, we expect the demand for global
constraints like this to grow. For example, consider an application
that attempts to use WFC to generate an explorable environment.24
It seems desirable to be able to ask the search algorithm to enforce
global reachability constraints: every location which the player
might occupy should have a feasible path from the initial location
in the environment. A designer might specify this by identifying
a certain pixel color in the input image and flagging that color as

24Such as could potentially be useful for the roguelike dungeons in Caves of Qud,
which currently uses a multi-pass approach that adds doorways and connections
after WFC runs to ensure connectivity. Or the 3D environments in Oskar Stålberg’s
experiments: “Got some basic navigation going” https://twitter.com/OskSta/status/
797119718477991936

https://twitter.com/OskSta/status/797119718477991936
https://twitter.com/OskSta/status/797119718477991936

FDG’17, August 14-17, 2017, Hyannis, MA, USA Isaac Karth and Adam M. Smith

needing to form a single connected graph (a global constraint). A
balance of local backtracking and global restarts [29] will be needed
in the search algorithm to efficiently generate designs satisfying
this constraint.

6 CONCLUSION
We have shown that WaveFunctionCollapse is a significant ap-
plication of constraint solving for PCG with multiple in-the-wild
uses. Because WFC works with abstract chunks of content rather
than literal, blendable color values, it has many exciting applica-
tions such as poetry and constrained level generation. Through
experiments with the ASP surrogate implementation, we show that
WFC’s choice of heuristic and decision to only apply global restarts
of search are reasonable choices for the original discrete image
generation task, but they are not critical going forward. Indeed,
local backtracking is being added to WFC by others such as Oskar
Stålberg who are reconsidering some of the Gumin’s original algo-
rithm and datastructure design choices. We assert that search in
the space of partial assignments and constraint propagation are the
primary strengths of WFC.

As a data-driven content generator with performance attrac-
tive to many practitioners, WaveFunctionCollapse serves to upend
many prior expectations about the properties of constraint solv-
ing methods in PCG. As we can see from the enthusiastic uptake
of the algorithm by artists and designers, the data-driven content
generation is more accessible. Even though many users treat the
algorithm as a black box, they are able to effectively use it to create
interesting content.

ACKNOWLEDGMENTS
The authors would like to thank generative artists Maxim Gumin,
Joseph Parker, Brian Bucklew, Oskar Stålberg, and Martin O’Leary
for their correspondence about their respective projects, and to Free-
hold Games and Joseph Parker for permission to use their images.
Additionally we would like to thank Ruben Fitch for discussions
towards producing a pseudocode version of Gumin’s original code.

REFERENCES
[1] Alexei A Efros and Thomas K Leung. 1999. Texture synthesis by non-parametric

sampling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, Vol. 2. IEEE, IEEE Computer Society, 1999, 1033–1038.

[2] Leif Foged and Ian D Horswill. 2015. Rolling Your Own Finite-Domain Constraint
Solver. A K Peters/CRC Press, 283–302.

[3] Freehold Games. 2017. Caves of Qud. (2017).
[4] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. A Neural Algo-

rithm of Artistic Style. CoRR abs/1508.06576 (2015). http://arxiv.org/abs/1508.
06576

[5] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2012.
Answer Set Solving in Practice. Morgan and Claypool Publishers.

[6] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. 2012. Conflict-driven
answer set solving: From theory to practice. Artificial Intelligence 187 (2012),
52–89.

[7] Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2006. Near-Uniform Sam-
pling of Combinatorial Spaces Using XOR Constraints. In Advances in Neural
Information Processing Systems. 481–488.

[8] Maxim Gumin. 2016. Bitmap & tilemap generation from a single example by
collapsing a wave function https://github.com/mxgmn/WaveFunctionCollapse
âĂę. (30 Sep 2016). Retrieved May 20, 2017 from https://twitter.com/ExUtumno/
status/781834584136814593

[9] MaximGumin. 2016. ConvChain. https://github.com/mxgmn/ConvChain. GitHub
repository (2016).

[10] Maxim Gumin. 2016. SynTex. https://github.com/mxgmn/SynTex. GitHub
repository (2016).

[11] Maxim Gumin. 2016. WaveFunctionCollapse. https://github.com/mxgmn/
WaveFunctionCollapse. GitHub repository (2016).

[12] Maxim Gumin. 2017. WaveFunctionCollapse Readme.md. (18 May 2017). Re-
trieved May 20, 2017 from https://github.com/mxgmn/WaveFunctionCollapse/
blob/master/README.md

[13] Taylor Holmes. 2016. Interview with phenomenal game designer Oskar Stälberg.
(22 Jan 2016). Retrieved May 20, 2017 from https://taylorholmes.com/2016/01/22/
interview-with-phenomenal-game-designer-oskar-stalberg/

[14] Ian D Horswill and Leif Foged. 2012. Fast Procedural Level Population with
Playability Constraints. In Eighth Artificial Intelligence and Interactive Digital
Entertainment Conference.

[15] Roland Kaminski, Torsten Schaub, and Philipp Wanko. 2017. A Tutorial on
Hybrid Answer Set Solving with clingo. (2017). Retrieved May 20, 2017 from
https://www.cs.uni-potsdam.de/~torsten/hybris.pdf

[16] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czar-
necki. 2015. Understanding VSIDS branching heuristics in conflict-driven clause-
learning SAT solvers. In Haifa Verification Conference. Springer, 225–241.

[17] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. 2001.
Real-time texture synthesis by patch-based sampling. ACM Transactions on
Graphics (ToG) 20, 3 (2001), 127–150.

[18] Paul C Merrell. 2009. Model synthesis. Ph.D. Dissertation. University of North
Carolina at Chapel Hill.

[19] Martin O’Leary. 2017. Oisín: Wave Function Collapse for poetry. (23 May 2017).
Retrieved June 20, 2017 from https://github.com/mewo2/oisin

[20] Martin O’Leary. 2017. Twitter Bio. (2017). Retrieved May 20, 2017 from https:
//twitter.com/mewo2

[21] Joseph Parker, Ryan Jones, and Oscar Morante. 2016. Proc Skater 2016. (2016).
[22] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. 2016. Choco

Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.
http://www.choco-solver.org

[23] Stuart J Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach.
Prentice Hall.

[24] Adam M. Smith and Michael Mateas. 2011. Answer Set Programming for
Procedural Content Generation: A Design Space Approach. IEEE Transac-
tions on Computational Intelligence and AI in Games 3, 3 (Sept 2011), 187–200.
https://doi.org/10.1109/TCIAIG.2011.2158545

[25] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive plan-
ning and constraint solving for mixed-initiative level design. IEEE Transactions
on Computational Intelligence and AI in Games 3, 3 (2011), 201–215.

[26] Oskar StÃělberg. 2017. wave.html. (18 May 2017). Retrieved May 20, 2017 from
http://oskarstalberg.com/game/wave/wave.html

[27] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne.
2011. Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186.

[28] Michael Walker. 2016. King James Programming. (2016). Retrieved May 22, 2017
from http://kingjamesprogramming.tumblr.com/

[29] RyanWilliams, Carla Gomes, and Bart Selman. 2003. On the connections between
backdoors, restarts, and heavy-tailedness in combinatorial search. Structure 23
(2003), 4.

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
https://twitter.com/ExUtumno/status/781834584136814593
https://twitter.com/ExUtumno/status/781834584136814593
https://github.com/mxgmn/ConvChain
https://github.com/mxgmn/SynTex
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://github.com/mxgmn/WaveFunctionCollapse/blob/master/README.md
https://taylorholmes.com/2016/01/22/interview-with-phenomenal-game-designer-oskar-stalberg/
https://taylorholmes.com/2016/01/22/interview-with-phenomenal-game-designer-oskar-stalberg/
https://www.cs.uni-potsdam.de/~torsten/hybris.pdf
https://github.com/mewo2/oisin
https://twitter.com/mewo2
https://twitter.com/mewo2
http://www.choco-solver.org
https://doi.org/10.1109/TCIAIG.2011.2158545
http://oskarstalberg.com/game/wave/wave.html
http://kingjamesprogramming.tumblr.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Texture Synthesis
	2.2 Constraint Solving Algorithms
	2.3 Constraint Solving in PCG
	2.4 ASP in PCG

	3 WFC in the Wild
	4 The WFC Algorithm
	5 Reformulating WFC in ASP
	5.1 Understanding Heuristics
	5.2 Understanding Backtracking

	6 Conclusion
	Acknowledgments
	References

