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ABSTRACT

The practice of livecoding borrows heavily from the tech-
niques and vocabulary of music and computer program-
ming. In a setting where the design, implementation, ex-
ecution, and reflective redesign of software systems are
simultaneously overlaid and entangled with sonic creativ-
ity in the moment, traditional vocabularies fail to offer
more than ambiguous metaphor. This paper uses exam-
ples from cfml, a minimal livecoding system, to probe
the livecoder’s conceptual landscape, revealing unfamil-
iar structures and processes reminiscent of Hofstadter’s
strange loops. Results from even rudimentary practice
with an intentionally impoverished tool point at the need
for further inquiry into these natively-livecoding concepts
that are at the very edge of expression within the termi-
nology of livecoding’s computer music origins.

1. INTRODUCTION

Canonically, livecoding challenges an artist/programmer
to interactively develop a software system that will gener-
ate musical entertainment for an audience in an real-time
fashion. At a relatively obscure extreme of computer mu-
sic, practitioners of livecoding are left to adopt and awk-
wardly apply loan words from the parent disciplines of
music (e.g. “composition”) and engineering (e.g. “pro-
gram”). In this work, my goal is to highlight the unique
structures and processes inherent and native to livecoding
that go undescribed with traditional vocabularies.

In a recent Leonardo Music Journal article [7], Thor
Magnusson draws on experience with his own livecoding
language (ixi lang) to reflect on the traditional conception
of “score” as a “message from a composer to an instru-
mentalist” in light of livecoding practice. Finding histor-
ical precedent for scores as a musical technology and as
a mnemonic device, Magnusson offers algorithms as the
natural progression of traditional graphic scores. Admit-
ting algorithms as scores generalizes the idea of a score as
a set of steps to follow to determine how the literal notes
of a performance should be realized.

When algorithms are defined and redefined in an on-
the-fly manner [11], it quickly becomes difficult to point
out exactly where is the score for a particular piece. Some
algorithms may be at work producing a stream of notes
for real-time synthesis while others may adjust how high-
level patterns are interpreted and expanded. When all
of these algorithms are available for interactive and ex-

pressive redefinition, how do we determine the object of
“composition” or “performance”? Is it a piece of music,
the score for a piece of music, the procedure for generat-
ing a score, the interpreter for a language designed for de-
scribing score-generating procedures? As most livecoding
systems are tools for making tools in addition to simply
making music, Magnusson notes that they have a “self-
reflexivity” property that suggests that any or all of the
above may legitimately answer what is being composed,
performed, or (more simply) livecoded.

In all but the simplest livecoding performances, the
sequence of notes to be synthesized is not uniquely pre-
scribed by deterministic rules, a product of both aleatori-
cism and indeterminacy. Bringing in computers as the in-
terpreters and performers of music from rigidly-defined
rule systems takes us through algorithmic composition to
generative music [5], however livecoding has something
that goes beyond far this, something difficult to express in
our available musical and engineering terminology.

Livecoding performances are (to single out just one
feature) pathologically indeterminant. The flavor of a live-
coding piece hinges not only on what new code is injected
during performance but when and where that injection oc-
curs with respect to the the sonic and computational state
of the piece. If the audio stream computed in generative
music is only an epiphenomenal shadow of an underlying
algorithm, then the succession of ephemeral algorithms at
play in a livecoded music piece are but shadows of some-
thing we have yet to name.

Hofstadter sketches a strange loop as “a paradoxical
level-crossing feedback loop” or when “there is a shift
from one level of abstraction (or structure) to another,
which feels like an upwards movement in an heirarchy,
and yet somehow the sucessive ‘upward’ shifts turn out to
gives to a closed cycle” [6, p. 102].

At the heart of livecoding is one such strange loop:
the livecoder’s instantaneous choice of algorithm depends
on how the music is being performed and received by an
audience, and how the music is being performed and re-
ceived depends on the choice of algorithm. Solutions to
this cyclic determination are unstable: springing into ex-
istence from silence, oscillating unpredictably, and even-
tually decaying without any causes that is not equally per-
ceivable as an effect. How the music emerges from the
algorithm is easily recognizable as the domain of genera-
tive music, but how reactions to this music turn into code-
splices or how those splices achieve artistic effect is all
but unknown.
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In this paper, I use examples from my livecoding sys-
tem cfml [9] as a way to point at those strange structures
and processes that seem to be at the core of livecoding.
In section 2, I review cfml as a generative music system
and explain how a series of small, unconscious choices
during its implementation led to it gaining the livecoding
nature. In section 3, I give a walkthrough of the virtual
machine at the heart of cfml’s performance engine to ex-
emplify the unfamiliar processes that the system requires
a programmer to reason through. Finally, in section 4, I
describe a sequence of three études that portray cfml as a
trivial generative music system, an expressive live perfor-
mance tool, and a curiously complex artifact beyond the
understanding of its creator.

2. PROGRAMMING IN CFML

At first glance, cfml is a straight-forward generative mu-
sic programming language. Where cfml diverges from the
languages that inspired it (described later) is in its use of
a strange construct without clear precedent in other lan-
guages. The key structure that every expression in cfml
assembles is that which the programmer composes, that
which composes the music heard, and that which is com-
posed of other instances of the same type: a data/code
structure that I call (for lack of a more transparent name)
a comp. (This is not intended as a universal concept for
computer music; comps are simply the peculiar creatures
that occur in cfml.) To understand the accidental emer-
gence of comps and their unexpected affordances for live
performance, it is important to understand the original in-
tent of cfml and its surface features.

2.1. Development Context

Originally developed for use as a supporting example in a
lecture for an undergraduate computer science audience,
cfml was conceived in late 2009 as the Context Free Mu-
sic Language. Cfml was to be a lightweight sonic ana-
log of Chris Coyne’s cfdg [4] (a language and interpreter
for Context Free Design Grammars in the domain of two-
dimensional visual art) and Mikael Christensen’s Struc-
ture Synth [3] (a three-dimensional adaptation of cfdg).

The grammar constructs used in each of these tools
are derived from shape grammars, a concept from archi-
tecture [1]. Where shape grammars were historically used
descriptively (as a way to reflect on spatial decomposition
and the reuse of geometric motifs), the intended use of
grammars in cfdg and Structure Synth is the generation of
new artifacts. As such, these systems include pragmatic
features (such as context-sensitive, automatic termination
of would-be infinite recursion) that distance them from
their context-free namesakes in the Chomsky hierarchy of
formal languages [2].

The analogy between the visual and sonic arts em-
bodied by cfdg and cfml is by no means original or all-
encompasing (e.g. there is no obvious sonic equivalent of
geometric rotation, nor is there an unambiguous equiva-
lent for temporal succession), however it was deep enough

Figure 1. A sample output from a cfdg program, the vi-
sual analog of the cfml étude in subsection 4.1 entitled
The Escalator.

to serve the purpose of illustrating the abstract concepts of
recursion and nondeterminism in a sensorial yet medium-
agnostic manner. Where cfdg arranges geometric primi-
tives (circles, squares, and triangles) on a two-dimensional
drawing canvas, cfdg arranges musical primitives (equiv-
alent to MIDI note events) on a one-dimensional perfor-
mance timeline. Though this article does not hang on un-
derstanding the analogy between the two languages, the
reader is invited to relate an example piece in cfdg (out-
put sample shown in Figure 1) with the instructions for
performing the cfml étude described in subsection 4.1.

To speed development of my new programming lan-
guage for generative music, I opted to implement cfml
as a embedded domain-specific language within Andrew
Sorensen’s Impromptu [10], a language and environment
for audio-visual livecoding. This choice provided me with
a convenient performance interface, a familiar and well-
defined surface syntax (that of Scheme), and an interac-
tive interpreter that was already integrated with a real-time
synthesis framework. In a bit of lazy programming, I de-
cided that elements of a musical composition would not be
evaluated until just before they were needed. This single
implementation detail (an unconscious reflex from live-
coding practice in Impromptu with no special connection
to grammars) would imbue cfml with a very special prop-
erty: the ability to reactively change the rules of composi-
tion while a piece was concurrently being composed and
performed.

2.2. Literals

The generation of music in cfml starts with literal notes.
The simplest type of comp holds a small collection of
notes to be played back through Impromptu’s scheduling
and synthesis back end. Such a comp is constructed using
the literal keyword:

(literal duration note-descriptors)

The duration of a note bundle is expressed in beats
and the notes themselves are composed of 5-element lists
(o c p v d) where o is a relative onset time (in beats),
c is a MIDI channel, p is a relative pitch number (used
to compute an absolute pitch number given a separately



specified scale), v is a relative velocity, and d is relative
duration (also in beats).

Comps are performed using the perform command,
passing the comp, a tempo (in beats-per-minute), and a
scale (a list of relative MIDI pitch offsets within each oc-
tave). This expression plays a single half-second note on
middle-C through whichever synthesizers are responding
on MIDI channel 1.

(perform (literal 1 '((0 1 0 1 1)))
120
(pc:scale 0 'dorian)))

2.3. Procedures

To simplify larger expressions, Scheme’s define opera-
tor can be used to bind comp values in the interpreter’s
global symbol table. This first expression gives the result
of our expression a concise reusable name:

(define beep
(literal 1 '((0 1 0 1 1))))

This slight variation has radically different semantics
(note the parentheses):

(define (beep)
(literal 1 '((0 1 0 1 1))))

In the first version, beep is bound to the comp re-
turned by literal. In the second version, beep is bound
to a procedure that will return a comp when invoked. For
consistency purposes, comp-returning procedures are also
considered comps. In most cfml programs, nearly all def-
initions are of this second form: defining Scheme proce-
dures that take no arguments (making them context free,
in a sense). Being able to delay the evaluation of the
body of a procedure until a later time (during which vari-
ous other global names have been redefined) is critical for
livecoding uses of cfml.

2.4. Modifiers

Hand-entering the parameters for a note bundle is tedious.
Thus, cfml includes operators for modifying how a pre-
defined comp will be performed. Currently, transposition,
velocity (volume) scaling, and duration (tempo) scaling
are the only modifiers:

(tra shift comp) ; transpose by shift
(vol ratio comp) ; scale velocity by ratio
(dur ratio comp) ; scale duration by ratio

This expression describes a comp that will perform
beep at triple length, half volume, and shifted up by two
pitches in the working scale:

(tra 2 (vol 1/2 (dur 3 beep)))

2.5. Combinators

Cfml has three operators (called combinators) for building
more complex comps from simpler ones: after, during,

and choose. Like modifiers, expressions using combina-
tors can be nested arbitrarily. The following expression
yields a comp encoding the nondeterministic performance
of three possibilities (a triple-beep, a short chord, or a long
beep):

(choose (after beep beep beep)
(dur 1/2 (during beep

(tra 2 beep)
(tra 4 beep))

(dur 2 beep))

Like the other combinators, after, is an operator that
can be applied to any number of comps. As the name
suggests, the comp returned by an after expression will
result in the performance of the first element of its argu-
ments followed by successive performance of the remain-
ing elements. For the purposes of sequencing, the duration
(first argument) to a literal comp is used to determine
the length of a note bundle (allowing for bundles with si-
lence or notes that extend beyond the nominal boundaries
of a local pattern).

The during combinator yields similar results to after
except that all comps are performed in parallel instead of
in a series. The performance length of a comp produced
with during is the length of the longest comp it performs.

Finally, to allow the expression of aleatoric compo-
sition rules, the choose operator accepts any number of
comps as arguments and will decide randomly (with a uni-
form distribution) which one to perform. The length of a
comp resulting from choose is the length of the randomly
chosen comp it performed.

2.6. Live Execution State

At this point, I have introduced all of cfml’s surface fea-
tures. Any comp can be produced by some combination
of literals, modifiers, combinators, and procedure defini-
tions. Fluent performance with this language, however,
requires understanding more. During live execution of a
cfml program inside of Impromptu, there are four primary
types of program state that can effect either how audio is
synthesized or which program edits a programmer should
consider making to achieve a certain effect.

The first type of execution state is the queue of notes
to be played. This data structure, holding a set of fully-
resolved MIDI events, is maintained by Impromptu and is
not directly visible to the programmer. Once notes enter
the queue, they are committed for synthesis and cannot be
directly affected by the programmer from within cfml.

The next type of execution state is also an invisible,
internal queue. When a comp is delayed in time (through
the use of an after combinator), a reference to that comp
and its intended execution environment are saved in a data
structure associated with Impromptu’s callback scheduler.
While the programmer cannot easily un-schedule future
performance tasks, the programmer does have direct con-
trol over the environment in which these future tasks will
run. Because of the use of procedure definitions to delay
computation, one version of a comp can be made to refer



to a future version of itself (a state unheard of in conven-
tional programming tasks).

The third and most obvious type of live execution state
is the global symbol table (the structure that stores the
mappings created by define). By re-evaluating a modi-
fied version of a definition, the newly defined comp will
be made available to any procedures attempting to look up
the old comp by name (though it is also possible to retain
a reference to the older version of the definition, a fact
exploited in the étude described in subsection 4.3)

The final (and often overlooked) type of execution state
is the state of the programmer’s text editor. Even though
this state exists outside of composition rules in play at any
time, it is still data stored in Impromptu’s memory. Know-
ing which of the definitions visible on screen is still valid
with respect to the global symbol table takes programmer
effort (though an alternate graphical interface might ease
this burden). When considering a redefinition of an exist-
ing procedure definition, the programmer must choose be-
tween destructively editing the current definition in place
(losing access to the old version) or writing a new def-
inition below (possibly with the help of copy/paste) so
that the old definition can be restored or re-edited with
ease. Opting to leave more code-at-hand requires time to
create new code, consumes valuable screen-space while
performing, and increases the cognitive burden of remem-
bering which definitions are active when there are more to
choose between.

Mentally tracking each of these types of execution state
and using that knowledge to make strategic decisions about
what with, how, and when to redefine names in the global
symbol table seems to be a skill unique to livecoding.

3. UNPACKING PERFORMANCE

In the preceding discussion, I have referred to composi-
tion, programming, performance, and execution as if they
were nearly separable concepts. In livecoding, however,
this separation can never be complete. In this section, I
aim to give an accurate description of the distinct artis-
tic and technical processes that are carelessly attached to
overloaded terms when talking about cfml at a high level.

When I use cfml as notation, an instrument, or a prop
for performance, I am referring to performance as the pro-
cess of being a livecoder in the moment of play. Second-
by-second, my performance will consist of creating and
naming comps. When I use cfml as a compiler, interpreter,
synthesizer, or computation engine, I’m referring to the
performance as in the generative music mode, where a
virtual machine is consuming comps as machine instruc-
tions, performing the operations they describe, and yield-
ing result data (some of which is directed to a real-time
synthesizer).

As comps are the glue between these two very distinct
senses of performance in cfml, I should describe how they
are created and consumed in more detail.

3.1. Comps as Data Structures, Code Structures

Having initially gotten cfml to a functioning state in an
exploratory mode of software development, I must admit
that comps, as the central representation structure in my
system, are more the product of accident than conscious
design. In a Scala-based reimplementation of the core
ideas of cfml, I took the opportunity to reflect on what
a comp is and what it means. After this, I best understood
comps as data structures that describe a single action to
be performed by a strange kind of virtual machine (VM).
This reading is supported by cfml’s interpreter being or-
ganized as an opcode dispatch loop (albeit for a slightly
different language than the programmer sees on the sur-
face).

When a cfml expression such as (after beep (tra

2 beep) is evaluated (as if it were no different from any
other Scheme expression) the result is actually a graph of
comps. It is this graph (a root comp and all of the other
comps it points to, transitively) that is actually interpreted
by the cfml VM. Depending on the type of the comp, the
action performed is sometimes better read as code com-
pilation, high-level composition work, or low-level score
realization (i.e. even at the machine level, performance is
not a simple concept).

Comps can be read as instructions for how and when
to compose new musical material; they are data structures
that can be interpreted to yield synthesizable notes. Con-
trast this with the cfml expressions seen throughout the
paper so far. None of these were really programs for com-
posing music; they were programs for composing comps
(in the sense of nesting parts to form wholes). Comps are
not just scores or rules for generating scores (one met-
alevel up), but potentially rules-for-rules-for-rules-. . . -for
generating scores at an ambiguous metalevel. Cfml ex-
pressions say one thing and do another, but seem to end up
doing what they say eventually. Understanding the mix-
ing meta-levels of languages within languages and inter-
preters for interpreters is another facet of the riddle cfml
unintentionally presents to those who would use it (and
similar systems) fluently.

3.2. VM Instructions

There are six types of comps: four have a relatively clean
mapping to cfml’s surface language, one is an understand-
able abstraction, and the final type stretches the limits of
the VM-metaphor for cfml’s operation.

The internal state of the cfml VM is encoded in seven
registers: score (a reference to a single comp to be per-
formed), tempo (set in perform and altered by dur),
scale (set in perform), root (offset in scale altered
by tra), time (logical time in samples that this comp
should be performed, incremented by nominal durations),
volume (velocity scaling ratio altered by vol), and k (a
continuation to be called when performance of the current
comp completes).



3.2.1. op-literal

Unsurprisingly, op-literal instructions are produced by
expressions using the literal operator. That is, when
I evaluate (literal 1 '((0 1 0 1 1))), the result I
see is a new list data structure: (op-literal 1 ((0

1 0 1 1))) (no sound is produced until this VM instruc-
tion is passed to perform, the function that kicks off tem-
porally recursive VM execution).

To execute an op-literal instruction, the VM inter-
prets the note descriptors in the context of the current val-
ues of the VM registers (mapping relative pitch to in-scale
absolute pitch, determining duration in samples from the
current tempo, etc.) and passes the resulting data to Im-
promptu’s MIDI event scheduler. Knowing the exact du-
ration of the literal data, the VM uses Impromptu’s callback
command to schedule the continuation k (which will be-
gin performance of any comps that might have been sched-
uled after this one) for the appropriate delay.

3.2.2. op-after

Evaluating an expression like (after beep beep beep)

results in a value like (op-after #<beep> (op-after

#<beep> #<beep>)) where #<beep> is a reference to
the current value of beep in the global symbol table. That
is to say, the after combinator dynamically translates its
list of arguments into a chain of two-argument op-after
instructions.

To execute an op-after instruction, the VM recur-
sively executes the first argument to the instruction, pass-
ing the current continuation (extracted with call/cc) for
the new value of the k register. This way, when the child
instruction completes performance, the VM will resume
execution in the state it had upon entrance into this in-
struction (any transpositions or volume adjustments made
in a subordinate comp cannot affect the parent). Upon
completion of performance of the left child, the right child
is executed.

So far, I have just followed the standard idiom for
delayed computation in Impromptu: temporal recursion
[10]. The essence of temporal recursion is to perform
some operation right now and then schedule a delayed
callback to your own code, passing only the remainder
of the work to be performed later. To overcome jitter and
computation delays, it is conventional to schedule a tem-
porally recursive call a brief moment ahead of when the
first notes created by that computation might start playing
(cfml uses an offset of 100ms).

3.2.3. op-during

The relation between during expressions and the op-during
VM instruction is analogous to the relation between after
expressions and op-after instructions. The only twist is
that, instead of waiting for the left child of an op-during
to complete before executing the right child, both are im-
mediately scheduled for execution in parallel. Once both
children have completed (in any order), the execution/per-

formance of the op-during instruction is considered com-
plete.

3.2.4. op-choose

Comps created with the choose combinator (op-choose
instructions) are simple enough to execute: a random ar-
gument of the instruction is selected and then that instruc-
tion is recursively executed.

3.2.5. op-tweak

To capture the environment adjustment (register tweak-
ing) required by the tra, vol, and dur modifiers, a sin-
gle type of instruction suffices. Evaluating an expression
like (tra +2 beep) results in a comp like (op-tweak
#<fun> #<beep>) where #<fun> is a dynamically cre-
ated function that takes the current assignment of the note-
parameter related VM registers and computes a new value
for each of them.

To execute an op-tweak instruction, the tweaking func-
tion is applied to the current VM registers and the child
comp is recursively executed by a VM in the newly de-
scribed state.

3.2.6. {procedure}

The final type of instruction is not associated with an op-
code tag. Recall that we previously defined procedures as
a kind of comp. Execution of comps that are really pro-
cedure references is trivial: run the procedure (assumed
to take no arguments) and recursively execute the comp it
returns.

When used as part of a livecoding piece, the only kind
of procedures passed to the cfml VM are procedures de-
fined by cfml surface language expressions. So, when
the VM executes this type of comp, it is actually twist-
ing back a meta-level to ask the outer Scheme interpreter
to dynamically compile programmer-entered expressions
down to the VM’s language (another strange loop), po-
tentially collecting up recently redefined values out of the
global symbol table.

3.3. Human Input

Armed with a better understanding of what it means for
the cfml VM to perform a comp (a stretched sense of ma-
chine instruction execution), I should return to the sense of
performance in being a human livecoder, in the moment.

I have shown that the programmer’s input is clearly
scoped to putting new procedure definitions into named
slots in the global symbol table. This operation is non-
destructive and cannot modify any comp that is directly
referenced by another comp. Outside of inspecting the
global symbol table, the VM is insulated from the pro-
grammer’s activity.

Consider the evaluation of this snippet of cfml (the
focus of subsection 4.2):

(define (song) (after phrase song))



The symbol song now points to a procedure. This
procedure, when executed, will produce an op-after in-
struction with the procedures currently pointed to by phrase
and song in the global symbol table as its two arguments
(effectively taking a snapshot of the supporting compo-
sition rules active at that point in time). With no other
changes, execution of (song) always produces identical
results. However, if song is redefined during the perfor-
mance of phrase, the new value of song will be picked
up when the VM executes the instruction’s second argu-
ment in an attempt to resolve it into an concrete instruc-
tion. This is not just a recap of instruction execution; it
is an example of the mental code-tracing process that is
required to decide when to evaluate a redefinition in order
to get it picked up on the appropriate musical cycle.

This required thinking through future-self-reference,
yet another strange loop, is simultaneously at the core
of what makes livecoding unsettling from traditional pro-
gramming perspectives and what makes it comprehensi-
ble as a medium for live musical expression. It is indeed
true that song plays after phrase (just as the surface lan-
guage code said it would), but it does it as part of a cyclic
determination process that wraps up even the livecoder’s
internal thought processes!

The ultimate meaning of op-after instructions is tied
to meta-circular interpretation of self-referential structures
that are generated on the fly from interactively modified
definitions. This situation is clarified little by the use of
continuations in the VM’s implementation (continuations
are a programming language feature often explained with
reference to time travel [8]).

Despite this wild complexity, the affordances for hu-
man expression are clear: redefining phrase will alter
the future of the current piece with the effects becoming
immediately audible after the completion of the current
version of phrase.

4. TROIS ÉTUDES

Explorations of conceptual landscapes aside, the nominal
purpose of cfml is to allow a livecoder to entertain an au-
dience with some simple, synthesized music. In this sec-
tion, I describe three elementary performances that pro-
vide a concrete realization of cfml’s expected and not-so-
expected features.

To simplify the examples below, imagine the follow-
ing definition has been evaluated before any performance:

(define (run comp)
(perform comp 120 (pc:scale 0 'dorian)))

4.1. The Escalator, a Disposable Ditty

My first example, The Escalator, is a rather unreliable
mechanized stairway. See Figure 1 for a visual analog of
the music generated by the definitions below. This piece
exhibits only the basic generative music faculties of the
language, and it can be performed without interactive live-
coding. It was adapted from the self-contained piece, in-

cluded with the cfml source distribution, that plays once
after all of the core definitions are loaded.

First, I define a generic bump of the MIDI keyboard
for use as a building block in larger comps:

(define (bump)
(literal 1/2 '((0 3 0 1 1/2))))

Performing this comp (a comp-generating procedure),
by evaluating (run bump), yields a quarter-second gui-
tar pluck on middle-C. Sequencing four transposed copies
of this pattern into a more interesting unit requires the fol-
lowing definition:

(define (lump)
(after bump

(tra 2 bump)
(tra 5 bump)
(tra 4 bump)))

Before assembling the lumpy stairway, I define two
patterns for the string instrument on another channel.

(define (string-step)
(literal 2 '((0 4 0 1 2)(1 4 2 1 1))))

(define (string-end)
(literal 2 '((0 4 4 1 2)(1 4 -1 1 1))))

Throwing caution to the wind, I define a single future-
self-referential comp that describes choosing between the
option of immediately ending the piece and the option of
the up-transposed sequence of an interesting phrase with
the future performance of the same comp. In Scheme, let
is a construct that enables binding of local variables.

(define (song)
(let ((phrase

(during (vol 3/4 string-step)
(after lump

(tra -4 lump)))))
(choose (vol 2/3 string-end)

(tra +2 (after phrase
song)))))

Evaluating (run song) yields, 50% of the time, sim-
ply performance of the string-end pattern. However,
repeated attempts will often reveal ascending chains of
notes that rise in pitch (inadvertently sonifying the how
many times in a row I can flip heads on a fair coin).

Had cfml been implemented as a batch generation sys-
tem, performances of The Escalator would sound no dif-
ferent. In this piece, the strange loops in cfml lie dormant,
masquerading as a harmless recursive decomposition of a
generative music piece.

4.2. The Noodle, a Livecoded Jam Session

The obvious edge livecoding has over generative music
is that the rules of composition are flexible; the livecoder
can adapt these rules to the evolving tastes of a live audi-
ence. In The Noodle, I demonstrate how repeating a very
simple phrase can provide the foundation for many mo-
ments of enjoyment when the conditions of that repetition
are actively steered by the programmer.



I begin with a staccato note on the piano synthesizer:

(define (blip)
(literal 1/4 '((0 6 0 1 1/4))))

As in The Escalator, I build the overall composition
on a four-note ostinato:

(define (phrase)
(after blip

(tra 4 blip)
blip
(tra 9 blip)))

The initial song structure is the staid trope of temporal
right-recursion:

(define (song) (after phrase song))

At this point, I evaluate (run song) to kick off live
performance of the definitions thus far. This begins a sta-
ble arpeggio that can hold the audience’s interest for per-
haps a few iterations. Left unattended, it would continue
to self-referentially unfold for eternity. To keep the piece
alive, I begin an upward progression with this destructive,
in-place redefinition:

(define (song)
(after phrase (tra +1 song)))

The interest created by the introduction of an upward
trend turns to tension as the notes creep into uncomfort-
ably high register. Again, I step in to rescue the piece
from boredom and increase drama with another redefini-
tion, this time starting a much steeper downward trend:

(define (song)
(after phrase (tra -2 song)))

By now, the trick of steering the noodling melody up
and down by tweaking the transposition parameter is be-
coming clear. As the notes descend, I begin work on fac-
toring out a tweakable knob and catch the recursion just
before it enters an uncomfortably low register, reinstating
the gentle upward trend with this refactored definition:

(define delta +1)
(define (song)

(after phrase (tra delta song)))

From here, sharply tweaking delta between -3 and
+3 can create a few more moments of interest, but the di-
rect control requires too much attention to maintain while
thinking through larger scale flourishes. Capturing and
automating my manual steering with a random walk is
simple enough:

(define delta +1)
(define (song)
(after phrase

(choose (tra (+ delta 2) song)
(tra (- delta 2) song))))

With the current algorithms creating some complex-
ity on their own, I need rarely tweak delta except for
when the piece wanders too far off course. Between these
sparse tweaks, I am free to adjust the spread of notes in

phrase, add an alternative phrase2, build larger phrases
with interactively-swappable substructure, and begin to
automate incremental variation of the dynamics (note ve-
locity) using a similar random-walk scheme.

At no time during the performance of this piece is
there ever a particularly interesting algorithm executing.
Further, most of the algorithms encountered, when left
unattended even for a few seconds, would quickly be pro-
ducing notes with pitches outside the acceptable range
for synthesis. The programmer’s artistic gestures are en-
coded in exploratory vacillations between moments of in-
timate, interactive control and algorithm-moderated dis-
tance while the next big compositional twist is being con-
ceived and encoded without audible feedback.

In The Noodle, the downward causality inherent in
cfml’s strange loops becomes apparent. A bottom-up anal-
ysis of definition such as (define (song) (after phrase

song))would suggest that any interestingness in this piece
must come from phrase–it is the only part of definition
that apparently references concrete notes. However, as I
have demonstrated, the interestingness of this piece comes
from the future-self-reference to song. The particular
moves I make in redefining the future of the piece are a
function of how it has unfolded so far and how that unfold-
ing resonates with the audience. The phrase-generating
algorithms never have any appreciable depth; depth is in-
herited from contrast with as-yet-to-be-defined future ver-
sions of the song comp. That is to say, (define (song)

(after phrase song)) expresses a template for a piece
of music that (however implicitly) includes the reflective
programmer and reactive audience as part of the genera-
tive loop.

4.3. The Bent Pyramid, a Mild Bludgeoning

The Escalator introduced the surface of cfml in an non-
interactive setting, and The Noodle demonstrated how to
fluently wield redefinitions to maintain an audience’s in-
terest far beyond the limits of algorithms expressible in
the language’s intentionally-limited model of computa-
tion. The Bent Pyramid, however, is not so pleasant. It
jumps to an extreme of what this language designer can
comprehend, raising many questions and answering few.

As usual, the piece begins with a single literal comp:

(define (pluck)
(literal 1/2 '((0 2 -14 1 1/2))))

The core definition below is a symmetric variation on
the structure in The Noodle. Note that pyramid refers to
itself, but not as last item of the after combinator. This
definition is recursive, but is not right or tail-recursive.

(define (pyramid)
(after pluck

(tra 2 pyramid)
(tra 1 pluck)))

Beginning live synthesis with (run pyramid), the
audience hears a sequence of plain notes ascending the
scale. Not long after, the unbounded recursion nears the



uncomfortably high register avoided in previous pieces.
Slowing (but not halting) progress into this foreboding ter-
ritory, I redefine pluck to take four times as long:

(define (pluck)
(literal 1/2 '((0 2 -14 1 1/2))))

When the pitch becomes unbearable, I interject:

(define pyramid pluck)

This non-recursive definition would have stopped a
right-recursive piece dead. However, in The Bent Pyra-
mid, it signals the apex. When this new rule is picked up,
the sequence of notes continues, creeping downward.

As time progresses, the pitch eventually reaches the
point where I adjusted the definition of pluck on the way
up. At this point, with no manual intervention, the tempo
unexpectedly quickens to the original pace, continuing to
descend in pitch. Then, right when the sequence would
have passed the pitch at which the bent pyramid had be-
gun construction, the piece terminates (again, without in-
tervention).

How is this possible? Recall that when a comp-generating
function is evaluated, it takes a snapshot of the current
working definitions of the comps it references. When
pyramid is evaluated very early in the piece, the comp
it returns stores a reference to the fast-tempo variant of
pluck, and this is the version it uses when performing
the third term seen in the after expression. Likewise,
when pyramid is redefined to be non-recursive, this does
not modify any comps that are currently in the middle of
performance (all those created in ascending the pyramid
that are currently packaged up inside of continuations).

What does this imply? Fluent livecoding, not just with
cfml but any livecoding system that includes closures (pro-
cedures with environment snapshots), can involve reason-
ing over several parallel versions of code, many of which
may have been long lost from the programmer’s text edi-
tor due to destructive edits made in the service of subse-
quent redefinitions. In addition to reasoning over the hid-
den storage associated with code versions, the program-
mer can exploit knowledge of activation frames in the exe-
cution stack. In The Bent Pyramid, I manage to stuff away
different versions of code I had evaluated and had them
recalled at critical moments, without manual intervention,
and without using any language features that would seem
to have anything to do with storage and retrieval.

What else can we do with these ideas? Assuming that
one could practice fluency with these hidden mechanisms
to the same level of fluency exercised in The Noodle, I
am unqualified to speculate on the range of what might
be possible. It was the unsettling realization that a piece
like The Bent Pyramid was possible in such a limited lan-
guage that drove me to reevaluate my creation and what it
revealed about the nature of livecoding.

5. CONCLUSION

It would seem that the combination of interactively re-
definable functions and just-in-time evaluation of self-references

(perhaps the essence of livecoding) are alone enough to
crack open a new world of fractal complexity.

Livecoding is teeming with unfamiliar concepts that
are just barely describable with our working vocabulary.
I have spotted the ephemerality and simultaneous coexis-
tence of multiple versions of algorithms; the overlaying
of many phases of musical and software development into
a single moment; the joint reasoning over when and how
to update algorithms; a set of low-level machine opera-
tions that seem to have strange loops inherently threaded
through them; and the concept of strategically managing
code-at-hand (typed but not evaluated) as a live, perfor-
mative gesture. I do not intend to have named or fully
described every facet of the livecoder’s conceptual land-
scape, but I hope to have indicated sufficient number of
examples to warrant further inquiry (through methodical
design as well as unguided exploration).

Perhaps, knowing of these mechanisms and understand-
ing their potential for performativity will allow future live-
coding language and system designers to surface the rele-
vant computational details (potentially for the audience as
well as the programmer) in a way that would make these
uniquely-livecoding tricks more practical.
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