
Automatic Game Progression Design
through Analysis of Solution Features

Eric Butler1, Erik Andersen2, Adam M. Smith1, Sumit Gulwani3, and Zoran Popović1

1Center for Game Science
Computer Science & Engineering

University of Washington
{edbutler,amsmith,zoran}@cs.washington.edu

2Computer Science
Cornell University

eland@cs.cornell.edu

3Microsoft Research
Redmond, WA

sumitg@microsoft.com

ABSTRACT
A long-term goal of game design research is to achieve end-
to-end automation of much of the design process, one aspect
of which is creating effective level progressions. A key diffi-
culty is getting the player to practice with interesting combi-
nations of learned skills while maintaining their engagement.
Although recent work in task generation and sequencing has
reduced this effort, we still lack end-to-end automation of
the entire content design process. We approach this goal
by incorporating ideas from intelligent tutoring systems and
proposing progression strategies that seek to achieve mastery
of not only base concepts but arbitrary combinations of these
concepts. The input to our system is a model of what the
player needs to do to complete each level, expressed as either
an imperative procedure for producing solutions or a repre-
sentation of features common to all solutions. The output is a
progression of levels that can be adjusted by changing high-
level parameters. We apply our framework to a popular math
puzzle game and present results from 2,377 players showing
that our automatic level progression is comparable to expert-
crafted progression after a few design iterations based on a
key engagement metric.

Author Keywords
games; procedural content generation; education

ACM Classification Keywords
H.5.0 Information interfaces and presentation: General

INTRODUCTION
For many types of games, engagement is closely linked to the
quality of the level progression, or how the game introduces
new concepts and grows in complexity as the player pro-
gresses. Several game designers have written about the link
between level progressions and player engagement. Game
designer Daniel Cook claims that many players derive fun
from “the act of mastering knowledge, skills and tools,” and
designs games by considering the sequence of skills that the
player masters throughout the game [11]. Others have writ-
ten about Flow Theory [13] and the importance of engaging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04 ...$15.00.
http://dx.doi.org/10.1145/2702123.2702330

players by providing content that appropriately matches play-
ers’ skill as it grows over time [4]. Producing game content
with an effective progression is difficult to do effectively and
is typically done by hand. As a result, designers may be re-
luctant to revise their progression designs as new information
about what players find interesting or challenging becomes
available.

Intelligent tutoring systems (ITS) [29, 22] have advanced the
teaching potential of computers through techniques that track
the knowledge of students and select the most appropriate
practice problems [8, 12]. We believe that we can leverage
techniques from ITS to more effectively structure learning
in games, which could increase engagement. However, the
open-ended problem structure of many games does not easily
lend itself to many existing ITS techniques.

One goal of game design research is end-to-end automation
of the game design process. We take a step towards this goal
through a framework that reduces the need for explicit exper-
tise in learner modeling. We aim to enable a different method
of game design that shifts away from manual design of levels
and level progressions, towards modeling the solution space
and tweaking high-level parameters that control pacing and
ordering of concepts. A key component of many games is in
the combination of basic concepts. What is interesting and
engaging is not just the individual game rules and interac-
tions, but how the progression combines them in increasingly
complex ways. There is a combinatorial explosion in the
number of ways to mix basic concepts, which, while allowing
for many deep and interesting game experiences, makes cre-
ating progressions a challenge. Theories such as Vygotsky’s
zone of proximal development [34] motivate introduction of
concepts at a controlled rate to allow the player time to master
them. We propose that tracking and seeking mastery of com-
binations of basic elements of solutions is an effective way to
organize and control the design space.

Recently, Andersen et al. [1] proposed a theory to automat-
ically estimate the difficulty of procedural problems by an-
alyzing features of how these problems are solved. Proce-
dural problems are those that can be solved by following a
well-known solution procedure, such as solving integer divi-
sion problems by hand using long division. The system treats
these procedures as computer code and the human solvers as
computers. Given such a procedure and set of problems, the
system considers the code paths that a solver would follow
when executing the procedure for a particular problem, for
example, how many times a particular loop must be executed

or which branch of a conditional statement is taken. We call
these paths procedural traces. Using this information as an
estimate of difficulty, the framework specifies a partial order-
ing of these problems. While the previous framework can
analyze existing progressions and generate problems, it can-
not synthesize full progressions. This is mainly because An-
dersen’s framework does not account for pacing. In contrast,
our system allows a designer to control the rate of increase
in complexity, the length of time spent reinforcing concepts
before introducing new ones, and the frequency and order
in which unrelated concepts are combined together to con-
struct composite problems. Furthermore, Andersen’s system
can only handle highly-constrained procedural tasks. Games
often have open-ended problem structures with many valid
solutions and solution methods, necessitating an alternative
approach.

In this paper, we extend the ideas from procedural traces to
automatically synthesize an entire progression for a popular
puzzle game, Refraction. The game Refraction has no unique
or preferred procedure for solving each puzzle. Therefore,
we extend the partial ordering theory of procedural traces to
work in a non-procedural domain. We present a system that
controls the pace at which concepts are introduced to synthe-
size a large space of puzzles and the full progression for the
game.

We evaluated whether this system can produce a game able
to engage players in a real-world setting. We ran a study
with 2,377 players and found no significant difference in time
played compared to the original, expert-crafted version of the
game. This original version found success and popularity on
free game websites (played over one million times), and thus
these empirical results suggest our framework captures im-
portant aspects of game progression design. Our long term
goal is to extend this work to use data to optimize the pro-
gressions for each player.

This work contributes to HCI by demonstrating that classify-
ing game levels by the structure of their solutions can form the
basis of automatic progression design systems that are com-
petitive with expert human-authored content. This framework
is potentially applicable to any game that relies on players ex-
ercising increasingly complex combinations of basic skills, as
is common in educational games and puzzle games.

There is inevitably a learning curve for a person to do any-
thing on computer. One of HCI’s eternal questions is enabling
seamless acquisition of the skills needed to use software tools
effectively. Many software tools are like games in that they
are open ended, allowing the user to work with many differ-
ent concepts. As a result, work on automatic scaffolding and
progression generation in games may apply to other software
systems in the long run.

RELATED WORK

Human Computer Interaction
Previous work in HCI has employed a variety of meth-
ods to increase engagement in games. Some have used
theoretically-grounded or interview-based approaches. For
example, Linehan et al. [25] draw on ideas from behavioral

psychology to provide a series of guidelines for designing ef-
fective educational games. Isbister et al. [19] interviewed de-
sign experts to gain insights for creating learning games. Also
providing guidance and opportunities to game developers, our
work offers automatic methods which can allow designers to
iterate on their designs as they seek to engage players.

Others have attempted to optimize engagement or learning
through large-scale design experiments and data-driven meth-
ods. Andersen et al. measured the effectiveness of tutori-
als [3] and aesthetics [2] through A/B tests, examining met-
rics such as time played, levels played, and return rate. Lomas
et al. [27] ran a large experiment that explored several design
dimensions of an educational game to maximize engagement.
Harpstead et al. [18] demonstrate a toolkit and method for an-
alyzing player learning in games based on replaying players’
games. Our apporach allows designers to tweak high-level
parameters and quickly produce machine-generated playable
games, which could pair with these data-driven apporaches
to more efficiently compare alternative designs. Bauckhage et
al. [5] looked at large datasets of how long players played sev-
eral games and developed techniques to analyze player data
and draw conclusions about player engagement. In this work,
we do only a simple statistical comparison between our ex-
perimental conditions, though a more sophisticated analysis
could be performed in future work.

Intelligent Tutoring Systems
Intelligent Tutoring Systems researchers have explored sev-
eral models for capturing student knowledge and selecting
problems [14]. Cognitive Tutors, such as Knowledge Trac-
ing tutors [12], model student knowledge in terms of knowl-
edge components: the underlying facts, principles, or skills
a student puts to use in larger problem-solving tasks. They
predict from student data whether students know particular
concepts or have particular misconceptions. In contrast, sys-
tems using Knowledge Space Theory [16] use only observ-
able actions. Our system uses a simple model of observable
variables, though it can be extended to integrate more sophis-
ticated models. Many of these tutors use mastery learning
when choosing content; they give students repeated problems
on a particular concept until the model has 95% confidence
in their mastery, then move to the next concept [22].

A key part of progression generation is ordering problems ap-
propriately. While many systems require experts to manually
order content, several researchers have explored automati-
cally learning the relationships between concepts, typically
from user data [15]. Our work concerns capturing the effects
of composite concepts; for example, if X and Y are concepts,
a problem requiring X then Y has a composite concept XY .
Liu et al. introduces a technique to learn relationships of com-
posite concepts [26]. Standard models can capture composite
concepts (e.g., XY) by modeling them as separate concepts,
using prerequisite relationships to preserve ordering.

In games, there are often non-linear dependencies between
base skills and skill combinations. For example, a player
might be able to handle X or Y independently but strug-
gles when doing them together. Therefore, consideration of
concept combinations is crucial both for verifying mastery

and also for driving the increase in complexity. However, if
all combinations of base skills are modeled as an indepen-
dent skill, this space grows exponentially large. Addition-
ally, analysis of this joint conceptual space is often reduced
to someone manually selecting combinations of skills to treat
as standalone concepts. Therefore, a structured and automatic
way of sampling this space is desirable.

Our system, rather than depending on a pre-existing database
of user data or hand-designed relationships, determines the
relationships from the structure of the solutions to problems,
both for procedural and some non-procedural domains. Stern
et al. describe a system that sequences problems using a scor-
ing function of concepts and their prerequisites [33]. We
build on this work in our sequencing policy. Another im-
portant aspect of creating progressions is controlling pacing.
Beck et al. [6] explore choosing problems of appropriate dif-
ficulty by ranking problems based on the number of required
skills and the student model’s prediction of proficiency at
those skills. We take a similar approach when choosing ap-
propriate problems in our framework.

We do not directly innovate ITS methods in our work, nor
do we use the most sophisticated ones. Instead, we seek
to demonstrate that a framework inspired by ITS principles,
when combined with some additional machinery to drive the
growth of complexity and reasonable parameter settings, can
produce engaging game content that is comparable to content
produced by an expert game designer. Researchers have pre-
viously looked into bringing ITS techniques into educational
games [17]. The primary difficulty stems from an open-ended
problem nature in most games that does not easily lend itself
to ITS-based structures that are geared towards mastery of
concepts rather than a large space of creative recombinations
of concepts and skills required to solve an explorative prob-
lem. We address this in our framework by focusing on the
ability to use combinations of concepts to reach a solution.

Games
Content for games has traditionally consisted of hand-crafted
progressions and levels. Game design researchers have ex-
plored procedural content generation to automatically create
games. Several systems aim to automatically generate game
levels. To measure the quality or diversity of generated con-
tent, many approaches measure static properties of the con-
tent [24] or affect of players [35]. Other approaches focus
on what the player must do, measuring properties related to
player action. For example, Launchpad characterizes levels
by the rhythm of the actions the player must perform [32].
We generalize such ideas; for example, actions in a platform
game can be viewed as segments of a trace of a procedure for
solving platformer levels.

Generated levels are not useful in isolation; they must be se-
quenced into some design-relevant order, called a progres-
sion. A good game progression is critical for game de-
sign [11]. For generated games, if only a small number of
global parameters need to be controlled, the problem can be
treated as dynamic difficulty adjustment, such as in the game
Polymorph [21]. However, our domains have many indepen-
dent conceptual building blocks, and adjusting a few param-

eters fails to capture the many different dimensions by which
levels create difficulty. In the platform game Endless Web
[32], the player explores a large design space of levels that
are classified based on various features. The player makes
choices that influence what levels they will receive. Per-
haps the closest work to our approach is Square Logic1 by
Everyday Genius, a Sudoku-style puzzle game that features
20,000 automatically constructed puzzles that are arranged
into a progression based on which logical inference rules are
required to solve them. Few details of the techniques used
are available, but one difference with our problem is that Re-
fraction does not have a clear set of inference rules used to
form solutions. Further, many Refraction levels have more
than one possible solution (though these solutions will often
share high-level structure and concepts).

Several researchers have proposed mixed-initiative editors in
which the system and human designer take turns producing
the content [31, 24]. These systems were limited to the cre-
ation of single levels. Butler et al. [10] proposed a mixed-
initiative system for end-to-end game production allowing for
manual designer intervention at all stages of content genera-
tion. By contrast, the present work borrows inspiration from
ITS to drive conceptual growth automatically, reducing the
need for expertise in the form of manual authoring. Using
our system, the designer does not manually edit levels or the
progression on a per-level basis, but instead controls them
through high-level parameters that describe the overall goals
of the progression. These parameters allow the designer to
make sweeping, purposeful changes to the progression.

APPLICATION

Figure 1. A level of Refraction. The goal is to use the pieces on the
right to split lasers into fractional values and redirect them to satisfy
the target spaceships. The user can pick up and put down pieces by
clicking on them. The grid interface, pipe-flow game mechanics, and
spatial reasoning puzzles are similar to many other puzzle games.

Before describing the technical details of our system, we de-
scribe Refraction, the application with which we performed
our study. In Refraction, players solve spatial puzzles by
splitting virtual lasers into fractional amounts. Each puzzle
is played on a grid that contains laser sources, target space-
ships, and asteroids which obstruct lasers, as shown in Fig-
ure 1. Each target spaceship requires a fractional amount of
laser power, indicated by a yellow number on the ship. The
1http://www.squarelogicgame.com/

player can satisfy the targets by placing pieces that change the
laser direction and pieces that split the laser into two or three
equal parts. All targets must be correctly satisfied at the same
time to complete the puzzle. Although Refraction was built
to teach fractions to schoolchildren, it has found popularity
with players of all ages and has been played over one mil-
lion times. Refraction is freely available and can be played
by anyone with a web browser and Adobe Flash.

The game relies primarily on the quality of puzzles to engage
players. The original version of Refraction contains 61 puz-
zles that game designers created by hand over many dozens
of hours. As the player progresses, the puzzles gradually in-
crease in difficulty through the introduction of new concepts,
such as benders, splitters, combiners, multiple sources, and
multiple targets. The puzzles also increase in difficulty by
combining base concepts together in way that necessitates
more complex search processes, such as puzzles that require
bending a laser clockwise and then counterclockwise to cir-
cumvent an obstacle, or puzzles that require splitting a laser
into halves and then into thirds in order to produce one sixth.
Describing a player’s exact solution process for Refraction is
very difficult, as there are many different procedures that may
lead to the correct answer. Furthermore, there are often multi-
ple configurations of pieces that can solve a puzzle correctly.
Although most of these solutions are slight positional pertur-
bations of other solutions, solutions can also differ in qualita-
tive ways. When the network of laser beams is examined as
a graph, different solutions may involve different connectiv-
ity patterns or even omit different sets of pieces from usage.
For this reason, we cannot directly model solutions as unique
sequences as in the previous procedural trace framework [1].

SYSTEM OVERVIEW
We first summaraize the components of our system, then go
into detail about each component in subsequent sections. In
this work, we use the game-termonology levels to mean any
completable chunk of content, such as an single puzzle in Su-
doku, a math problem in a workbook, or a one of the stages
in Nintendo’s Super Mario Bros. For our application, Refrac-
tion, a level is an individual puzzle. A level progression is a
sequence of levels that create an entire game.

In order to arrange a given set of levels into a progression,
we need to be able to extract features from the levels that can
be used to create an intelligent ordering. In this work, we
propose the use of solution features, which are properties of
the solution to a level. In Refraction, a solution is a particular
board configuration, and the features are deduced from the
structure of the board pieces in the solution. The techniques
we describe, while containing game-specific components, can
be applied to a variety of games.

Of course, before we can automatically arrange levels into a
progression, we fisrt have be able to create individual levels
automatically. Creating levels is entirely game-specific, and
we discuss the techniques used to create Refraction levels for
our study.

Finally, the system must have a method for using the solution
features to arrange levels into a progression. The method we

present treats features indistinguishably and therefore applies
generally to any game for which solution features are com-
puted.

EXTRACTING SOLUTION FEATURES
Andersen et al. [1] proposed the use of n-grams (sub-
sequence of length n from a larger sequence) to abstract pro-
cedural traces, allowing the creation of a natural partial or-
dering on traces. In this section we describe how we extend
this to extract features from non-procedural games such as
Refraction.

Procedural Traces and n-grams
We begin with a review of traces and n-grams for procedu-
ral domains. Consider the algorithm for subtraction detailed
in Algorithm 1. We indicate traces through this algorithm as
sequences of letters; these letters are output when the pro-
gram executes commented lines in the above procedure. A
few problems and their traces are shown in Table 1.

Algorithm 1 Subtraction: Given as input a minuend p and
subtrahend q, both sequences of digits nm, ..., n0:

1: procedure SUBTRACT(p, q)
2: for i := 0 to len(p)− 1 do . Each digit (D)
3: if i < len(q) then . Subt. digit present (S)
4: if q[i] > p[i] then . Must borrow (B)
5: p[i] := p[i] + 10
6: j := 0
7: while p[i+ j] = 0 do . Zero (Z)
8: p[i+ j] := 9
9: j := j + 1

10: end while
11: p[i+ j] := p[i+ j]− 1
12: end if
13: a[i] := q[i]− p[i]
14: else . Copy down (C)
15: a[i] := q[i]
16: end if
17: end for
18: end procedure

Subtraction Problem Trace
1− 1 DS
11− 11 DSDS
11− 1 DSDC
11− 2 DSBDC
101− 2 DSBZDCDC

Table 1. Example subtraction problems used in elementary-school math-
ematics and their corresponding traces.

Given a problem and its trace, the n-grams of a trace
are the n-length substrings of the trace. For example,
in the trace ABABCABAB, the 1-grams are {A,B,C},
the 2-grams are {AB,BA,BC,CA}, and the 3-grams are
{ABA,BAB,ABC,BCA,CAB}. Intuitively, 1-grams
represent fundamental concepts, and higher-value n-grams
represent the sequential interaction, not captured by 1-grams,
of using multiple concepts together. n-grams are intended as
a method for computing comparable features for traces. We

1/2 1/2

1/1

(a)

1/1

1/2 1/2

(b)

1/41/4

1/2

(c)

Figure 2. Three example levels for Refraction, to illustrate solution features and graphlets. When considering the solution graph, levels (a) and (b) have
the same 1-graphlets. They differ in 2-graphlets: (a) has a splitter-target chain, while (b) does not. They differ on several 3-graphlets; notably, (a) has a
splitter branching into a bender and target while (b) has a splitter branching into 2 benders. However, the solution graph is insufficient to distinguish
(a) from (c). We need the additional math graph to capture differences between them with graphlets.

can represent a problem by the n-grams of its trace and use
this to compare problems’ relative complexity. We typically
will only compute n-grams up to a small, fixed n, such as 3
or 4. The choice of n is a trade-off: a small maximum n will
not capture salient interactions between concepts, but a large
n will distinguish problems with only a slight difference in
traces.

Solution Features in Refraction
Because Refraction does not have a preferred solution proce-
dure, we cannot directly apply n-gram analysis. Rather than
attempting to describe the procedure players use, we model
features of solutions (henceforth, solution features), that play-
ers necessarily encounter. For now, we assume that ever puz-
zle has a reference solution that is representitive of all possi-
ble solutions. In the section on level generation, we describe
how we can extract features even though Refraction puzzles
often have many valid solutions.

As the players are forced to connect the pieces into a graph,
one obvious source of solution features is the reference solu-
tion’s laser graph, which we call the solution graph. As the
analogue to n-grams for procedures, we use graphlets, which
are small connected non-isomorphic induced subgraphs of a
larger graph [28]. Figure 2 shows some example Refraction
levels to explain graphlets. In Refraction, graphlets on the
solution graph capture ideas such as the following: an exam-
ple of a 1-graphlet is that a two-splitter is used; an example
2-graphlet is a laser edge linking a bender and a two-splitter;
an example 3-graphlet is a length-3 chain including two two-
splitters and a three-splitter.

While the solution graph captures many features of the so-
lution, particularly the spatial components, we model addi-
tional graphs to capture other mechanics. For example, we
can construct a graph whose nodes are the fraction values of
the source and target pieces, where two nodes are connected
with an edge if, in the reference solution, that source has a

path to that target. We select graphlets on both this auxiliary
math graph and the solution graph. Although we do not claim
to understand how the spatial and mathematical challenges in-
teract when players solve the puzzle, by using multiple graphs
we are able to capture those features we find relevant for pro-
gression design in sufficient depth.

AUTOMATICALLY GENERATING LEVELS
We applied the level generation process described by Smith et
al. [30] to generate a large and diverse database of puzzles. In
each puzzle, we enforced the constraint that all potential solu-
tions to the level share the same solution graph. The genera-
tion process additionally produces a reference solution. Since
all solutions are guaranteed to share the same graph, we can
safely extract general solution features from the single refer-
ence solution produced by the generator. This analysis could
be extended to puzzles with multiple, significantly different
solutions by considering which subset of features must show
up and which optionally may be used to solve the problem,
but we omitted this for sake of simplicity.

CREATING A PROGRESSION
In this section we descirbe how to take a set of levels describe
by solution features and create a full progression. We use the
term n-grams in this section, but everything described applies
euqally to graphlets.

Given a diverse set of a problems and their traces, the solution
features suggest a natural partial ordering of these problems,
described by Andersen et al. [1].To summarize, given two lev-
els L1 and L2, L1 is considered conceptually simpler if, for
some positive integer n, the set of n-grams of L1 is a strict
subset of the set of n-grams of L2. Other approaches use data
collected from players to determine the complexity relation-
ships between problems (e.g., [15]). However, for spaces with
a large set of possible traces, learning all these relationships
from data or specifying them manually can be infeasible. Our
technique uses the structure of the solutions to compute these

relationships without data, which has been shown to corre-
late with users’ perception of difficulty in the domain of an
educational algebra game [1].

Our system must have a sequencing policy for creating a full
progression, allowing the designer to control pacing and or-
dering. A simple approach would be to traverse the graph
of partially-ordered problems in an order consistent with a
topological sorting of the graph. This would ensure problems
would be introduced before any of their (more complex) de-
scendants. This approach has several drawbacks. It does not
allow for control over the rate at which complexity increases
or control over the balance between when new concepts (1-
grams) are introduced versus combinations of concepts (2-
grams and 3-grams). Moreover, this method would attempt
to show every problem. Games cover a deliberately chosen
subset of the entire (combinatorily large) space of possible
problems, but this method lacks an intelligent way to decide
which subset to use. As discussed, rather than trying to fully
order a set of problems, we instead will use a large set of gen-
erated levels as a library from which to select an appropriate
progression.

Systematically Tracking and Introducing n-grams
To create progressions, we propose tracking players by es-
timating their mastery of concepts (i.e., knowledge compo-
nents) identified by the n-grams found in level solutions and
pairing this with a mastery-learning-based sequencing policy
to teach content. That is, the system’s goal is to systemat-
ically introduce each of the possible solution features. The
model should assign, for each concept we want to introduce,
a measure of whether the student has had success over prob-
lems involving that concept. This, along with a method of
quantifying the expected difficulty of future problems, gives
us a basis for choosing the next problem to present. With
our diverse set of labeled problems, the system will be able
to carve nearly any possible path through this space, allow-
ing the model to choose the most appropriate content at each
stage. This ordering may be done offline to create a static pro-
gression, or online to create an adaptive game that responds
to player performance. As it was not the focus of this work,
we chose a simple method for modeling players in this system
that does not reflect the state-of-the-art in student modeling.
This framework allows for the insertion of more sophisticated
models, such as Bayesian Knowledge Tracing [12].

In our system, the model tracks, for each component, whether
the user successfully completed a problem containing that
component. Note that we usually do not want to track all
the concepts. As n increases, the number of n-grams tends
to increase, sometimes very quickly. Therefore, it generally
makes sense only to track all n-grams up to a small n.

The model is updated every time the player completes a prob-
lem. If the player is successful, then we mark as successful
all of the n-grams contained within the problem that was just
given. If the player fails, then it is less clear what to do. If
we have no knowledge of how or why the player failed that
might allow us to update the model, then the strictest option is
to mark all components contained within the problem as un-
successful. If we have more knowledge of where the player

failed in the trace, we can update this more accurately. If we
know that the player failed on a specific 1-gram, then we mark
as unsuccessful all n-grams containing that basic concept.

Choosing the Next Problem
Given a set of problems, the domain of concepts, and a player
model, the framework must generate a sequence of problems
for the player. We want this choice to respect the partial or-
dering determined from the n-grams, but allow the designer
and player model to control the pacing of content. The spe-
cific task is: given the current model state and a set of prob-
lems, we must choose the most appropriate next problem.
Our progression generator builds progression one level at a
time, choosing the next based on history of previous prob-
lems and data from player performance. We use a dynamic
cost model, which allows us to control the pacing and respect
the ordering. The cost of a particular problem p is a weighted
sum of the n-grams in the trace of p. These weights have 2
components: one based on what the model knows about the
player, and one designer-specified weight.

First, at each point in the progression, for a given n-gram
x, the player model assigns a cost k(x). This cost should
be high for unencountered n-grams and low for ones already
mastered, which will ensure more complex problems have a
higher cost than simpler ones with respect to the player’s his-
tory. This is used to respect the partial ordering of problems.
The cost of a problem can intuitively be considered inversely
proportional to the chance of the modeled player succesfully
completing the problem using only their currently mastered
knowledge.

The second component is designed to allow the designer con-
trol over pacing and relative order of basic concepts. The
system treats concepts indistinguishably as opaque solution
features. On the other hand, as expert designers, we know
(possibly from data gathered during user tests) that particular
concepts are more challenging than others or should other-
wise appear later in the progression. For example, we may
like to have some control over the ordering in which the sys-
tem introduces 1-grams, or have the system give a higher cost
to 1-grams than 2-grams, to prefer increasing complexity over
adding new concepts. To this end, the second component of
our cost function is a designer specified weight w(x), which
can be used to influence the relative order of otherwise inde-
pendent n-grams.

Thus, given a library of problems P , choosing the next prob-
lem pnext consists of finding the problem with the closest cost
to some target value T . This is shown in Equation 1. Intu-
itively, a minimum cost problem would be the easiest for the
player to successfully complete, but it would not stretch their
knowledge into new areas at all.

pnext = argmin
p∈P

∣∣∣∣∣∣T −
∑

x∈ngrams(p)

w(x)k(x)

∣∣∣∣∣∣ (1)

The target value and weighting functions can be based on
the player model. For example, an adaptive progression may
change the target value based on how well it perceives the
player to be performing. Note that (for any positive weight

function) this cost function respects the partial ordering be-
cause for any levels L1 ≺ L2, L1 has a strict subset of the
n-grams of L2 and therefore less cost.

In order for this sequencing policy to be effective, it requires
a large library of levels from which to choose. The levels
should be diverse, covering the space of all interesting solu-
tion features. Furthermore, in order to enable effective control
of pacing, this space should be dense enough that the progres-
sion can advance without large conceptual jumps. That is, for
any level in the space, we want there to be a potential next
level that adds few new n-grams. We accomplished this by
ensuring that our level generation procedure attempted to cre-
ate levels for every possible solution graph up to a particular
size.

Level Selection in Refraction
During live gameplay, the library of levels embedded into
the game is repeatedly consulted to determine (using the
described cost function) which level to give to the player
next. The graphlet-specific weights (w(x) in the cost func-
tion) were largely left at a default value (1.0). It might seem
strange to assign the feature of using a single bender the
same weight as forming a chain of three benders in a row.
However, graphlets have similar properties of containment
as n-grams: for example, every level that posses the triple-
bender-chain graphlet will also contain the double-bender-
chain graphlet. Since our cost function respects the subset-
based partial ordering (defined identically for graphlets as for
n-grams), we can be certain that levels that combine inde-
pendent concepts or explore embedded repetitions of those
concepts have higher cost than the levels on which they build
(causing them to occur later in generated progressions). We
only adjusted the weight for four of the features, usually as-
sociated with graphlets of size 1. This very sparse advice
allowed the progression system to know that, all else being
equal, it is easier to introduce benders than splitters or that it
is easier to introduce two-splitters than three-splitters.

Our player model tracked, for each graphlet, the number
of levels the player successfully completed containing that
graphlet, minus the number of unsuccessful attempts (but
never less than 0). For each each graphlet x, call this value
c(x). We assigned cost k(x) = 1/(1+c(x)), so that graphlets
would move towards zero cost as they were successfully en-
countered.

One additional constraint we imposed on level selection in
Refraction is that new levels were required, if possible, to in-
clude at least one graphlet that had c(x) = 0 (i.e., had either
never been seen or had recent unsuccessful attempts). This
guaranteed that the progression always chose something with
an unmastered challenge: it would otherwise be possible (al-
beit unlikely) that the level with the closest cost to the target
value is actually easier than the most-recently beaten level.
Furthermore, in the interest of presenting the player with a se-
ries of interesting challenges, we ensure that no level is ever
selected twice.

As the construction of auxiliary graphs, selection of graphlet
features from them, and assignment of weights is an open-

ended design task, we iterated on our choices for part of the
system several times. The time to re-label a library of levels
and re-build a version of the game using the new labels was
under 30 seconds, allowing us to rapidly explore many differ-
ent trajectories through our diverse library without re-running
the level generator.

EVALUATION
With our evaluation, we hope to demonstrate that this frame-
work is capable of producing a game of comparable engage-
ment to an expert-designed version. Specifically, we hope
players would play for comparable amounts of time. In or-
der to accomplish this, we generated an entire progression
for an existing successful game, Refraction, and performed
a between-participants experiment against the original ver-
sion of the game. The original’s puzzles were hand-crafted
by game desigers. We believe that the original version of
the game serves as a fair comparison against which to test the
generated version. The game found a large amount of success
(being played over a million times since its release) and relies
heavily on the quality of the puzzles. Therefore, even though
it is prone to bias, we argue the puzzle design in the original
version can be considered to be of high enough quality that it
serves as a reasonable target for our automated system.

We deployed both versions of Refraction and performed a
between-participants experiment to measure engagement. We
posted the game on a popular Flash game website, New-
grounds2, as well as though MochiMedia3, which distributes
through the main MochiGames4 website and dozens of other
affiliated game websites. The game was released under the
title Infinite Refraction. We gathered data from 2,377 players
in this experiment. 1,221 randomly selected players played
the version driven by our framework and 1,156 players played
a version that included the exact, expert-designed level pro-
gression from the original Refraction.

When deciding what to measure, we are interested in actual
player behavior rather than player opinions, so we measure
player performance directly. We performed our test “in the
wild,” without notifying players that they were part of an
experiment. We did not collect any personally identifiable
information from players. Because we did not ask players
directly, we must rely on proxy metrics to estimate engage-
ment. One of the primary metrics previous “in the wild” ex-
periments have used to estimate engagement is total play time
[2, 3, 27], which we use here. Because the platforms for this
experiment were websites with thousands of free games that
players could be choosing to play instead of Refraction, get-
ting players to spend a significant amount of time on a game
suggests that the game is at least somewhat engaging.

We first performed a series of statistical tests on the distribu-
tion of time played in each condition. Our data was not nor-
mally distributed, so we relied on a nonparametric test, the
Wilcoxon-Kruskal-Wallis test. Despite having over one thou-
sand players in each condition, the test showed no significant

2www.newgrounds.com
3www.mochimedia.com
4www.mochigames.com

0

20

40

60

80

100

0 5 10 15 20 25 30 35

%
 o

f
p

la
ye

rs
 r

e
m

ai
n

in
g

time (minutes)

Time Played for Infinite Refraction

automatic progression expert progression

Figure 3. Comparison of our automatically-generated progression with
the expert-generated progression from Refraction. The x-axis is time
in minutes and the y-axis is the percentage of players who played for
at least that much time. The median values are very similar: approx-
imately 3 minutes. Although our framework’s progression performs
slightly worse, it is certainly comparable to the expert progression. These
results suggest that our framework was able to create an experience that
engages players approximately as long as one crafted by hand with de-
sign expertise. In contrast to the original design process, which included
many hours of crafting and organizing puzzles by hand, our frame-
work requires the designer to specify the rules of the game, a process
for solving the game that our framework deconstructs into base concep-
tual units, and a few designer-tuned weights that control the order and
speed of introduction of these units.

difference between the two populations on time played, with
a median of 184 seconds for the automatically-generated pro-
gression and 199 seconds for the expert-crafted progression.
In an effort to quantify this small difference we observed, we
looked at other engagement metrics, paricularly the number
of puzzles completed in both groups. We found a small but
significant difference, r = 0.13, p < 0.001, with players
playing the automatically generated progression completing a
median of 8 puzzles versus 10 puzzles completed for the orig-
inal, expert-designed progression. Since the puzzles are not
the same between conditions, they are not directly compara-
ble, so we feel that this is not the best measure of engagement.
The median time is 8% lower for the automatically generated
progression than the human-authored one. Figure 3 visual-
izes this data in greater detail. We can see from this graph
that the automatically generated progression is able to retain
players at rates qualitatively and quantitatively similiar to the
original game. Though we can draw no definite conclusions
from this lack of difference, the results do suggest that the
game automatically produced by our framework was capable
of engaging players for a comparble length of time to a hand-
crated, expert-designed version.

While our experiment has a condition that represents a rea-
sonable upper bound on progression quality (the human-
authored progression), one major limitation in our ex-
periement is the lack of a condition to represent a lower bound
on progression quality. With our current results, we cannot be
sure the progression had any effect on player engagement at
all. In a followup experiment, a 3rd condition with a com-
pletely random progression should be added to the experi-
ment. If, in this hypotehtical experiement, the random condi-
tion was not significantly worse than the human-designed or
automatically-generated progressions, it would suggest that
perhaps progressions have little effect on that set of players.
On the other hand, if random progressions were significantly

Figure 4. Visualization of the first 61 levels in the two progressions in our
experiment, the human-authored (blue) and automatically genreated
(orange). Nodes represent levels and edges are drawn between consec-
utive levels. Levels are represented as feature vectors of concepts and
projected into two dimensions using Multidimensional Scaling. Nodes
that are close together represent puzzles that are conceptually similar
according to our solution features.

worse than the other two conditions, it would suggest that
progressions do have some effect on player engagement, and
furthermore, that our automatic techniques were capturing at
least some aspects of engaging progression design.

Difference Between Progressions
Figure 4 shows a visualization of the first 61 puzzles of each
progression in our experiment, created using a tool by Butler
et al. [9]. To compute the visulization, levels are represented
as a feature vector of concepts (one for each n-gram) and
projected into two dimensions using Multidimensional Scal-
ing [23]. Thus the visualization shows how different levels
are from each other in the conceptual space determined by
our solution features. We must assume that this distance (i.e.,
Euclidean norm) in the feature space captures at least some
information about the coneptual difference between two puz-
zles that players would percieve. Because these features are
based on how a puzzle must be solved, there is enough mean-
ing to at least note some qualititative differences between the
two progressions.

One major difference is that our automatically generated pro-
gression takes much smaller steps in this conceptual space
than the human-authored one. Another difference we can
see is that the automatically generated progression has sev-
eral puzzles clustered together. This is because, at that point
in the progression, our system had run out of new concepts to
introduce. Our cost model then tends to choose very similar
levels over and over. This exposes a limitation in our tech-
nique; by contrast, the human progression often makes large
conceptual jumps and never stays in the same spot for an ex-
tended period of time. If we wished to more closely mimic
the human progression, we could try to slow the rate at which
concepts are introduced or add features to the cost model that
penalized choosing concecutive levels that were too close in
the conceptual space.

Discussion
This work presents a key building block towards data-driven
automatic optimization of game progressions. It allows us
to automatically create a progression that is comparable to
an expert progression with minimal manual tuning. Because
it exposes key high-level control knobs (e.g., rate at which
concepts are introduced, when to favor introducing new con-
cepts over combinations), data-driven optimization could fur-
ther refine these parameters, which we hope to explore in a
future study.

Due to the time and and difficulty in implimenting this system
for a particular game, we expect that applying this technique
to a particular game is often more laborious that manual pro-
gression design. It is theoretically possible that the automated
method saves hundreds of hours of effort by avoiding having
to manually craft puzzles. On the other hand, designers likely
have to create and test many different levels to gain enough
understanding to choose good features, and the cost of creat-
ing a level generator is often non-trivial. Unlike the previous
trace-based framework that only needs a solution procedure,
this method requires enough insight into the mechanics to cre-
ate a reasonable labeling function that can extract features.
For us, when the end-goal is data-driven optimization of game
progressions, the benefits are apparent. Other promising ap-
plications may include all-in-one game creation tools such as
PuzzleScript5, especially those with a constrained language
for expressing rules and mechanics. In such tools, the ex-
tent of possible rules and mechanics is (somewhat) known
for most or all games created within the tool. Therefore, the
labeling function and other parts required for system could be
included in the tool and take much less effort to apply to any
particular game. However, if the goal is merely to produce a
good game with a reasonable level progression, it is unclear
that this system would be beneficial, even for domains well-
suited to this approach.

We believe this approach could be applied to games whose
content centers around a progression of concrete skills or pro-
cedural knowledge, such as puzzle games and educational
games. It currently requires a game designer to provide a
breakdown of the individual skill components of each puzzle,
and thus games for which this breakdown cannot be reason-
ably produced will not work well with this system. Games
that primarly rely on apsects other than the level progression
for engagement will also likely not benefit from this system.

CONCLUSION
We presented a framework that automates level progression
design by analyzing features of solutions. This framework
borrowed ideas from intelligent tutors to enable a model of
design where content and progression are fully generated. We
applied these ideas to create an implementation for the educa-
tional game Refraction. Our study with 2,377 players showed
that the median player was engaged for 92% as long as in an
expert-designed progression, demonstrating that our frame-
work is capable of producing content that can engage players
for a comparative length of time as content designed by hand.

5http://www.puzzlescript.net/

In the future, we plan to further explore integrating technolo-
gies of intelligent tutoring systems in this framework. Our
implementations used a simple player model, but we plan
to explore using technology from cognitive tutors and other
models to drive the progression. While our system can or-
der problems based on the combination of concepts, it cannot
distinguish individual concepts (the 1-grams) and must re-
sort to designer-specified weights or arbitrary decisions. Al-
though the parameter settings we tried for Refraction were
inspired by the original progression, we do not have a deep
understanding of why they were effective. We hope that au-
tomatic methods for learning these settings will increase the
designer’s ability to optimize a game for engagement. While
previous work showed that ordering problems using n-grams
correlated with user perception of difficulty, further studies
should be performed to understand this relationship. We spec-
ulate that difficulties keeping the user engaged in ITS [20, 7]
may be alleviated by deeper exploration of complexity, and
the solution-trace methods described in this paper may help
to accomplish this through automatic control and tracking of
concept combinations.

ACKNOWLEDGEMENTS
This work was supported by the Office of Naval Research
grant N00014-12-C-0158, the Bill and Melinda Gates Foun-
dation grant OPP1031488, the Hewlett Foundation grant
2012-8161, Adobe, and Microsoft.

REFERENCES
1. Andersen, E., Gulwani, S., and Popovic, Z. A

trace-based framework for analyzing and synthesizing
educational progressions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2013), 773–782.

2. Andersen, E., Liu, Y.-E., Snider, R., Szeto, R., and
Popović, Z. Placing a value on aesthetics in online
casual games. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM (2011),
1275–1278.

3. Andersen, E., O’Rourke, E., Liu, Y.-E., Snider, R.,
Lowdermilk, J., Truong, D., Cooper, S., and Popovic, Z.
The impact of tutorials on games of varying complexity.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012), 59–68.

4. Anthropy, A., and Clark, N. A Game Design Vocabulary.
Addison-Wesley, 2014.

5. Bauckhage, C., Kersting, K., Sifa, R., Thurau, C.,
Drachen, A., and Canossa, A. How players lose interest
in playing a game: An empirical study based on
distributions of total playing times. In Computational
Intelligence and Games (CIG), 2012 IEEE Conference
on, IEEE (2012), 139–146.

6. Beck, J., Stern, M., and Woolf, B. P. Using the student
model to control problem difficulty. Courses and
Lectures-International Centre for Mechanical Sciences
(1997), 277–288.

7. Bell, C., and McNamara, D. Integrating iSTART into a
high school curriculum. In Proceedings of the 29th
Annual Meeting of the Cognitive Science Society,
Cognitive Science Society (Austin, TX, USA, 2007).

8. Block, J. H., Airasian, P. W., Bloom, B. S., and Carroll,
J. B. Mastery learning: Theory and practice. Holt,
Rinehart and Winston New York, 1971.

9. Butler, E., and Banerjee, R. Visualizing progressions for
education and game design. 2014.

10. Butler, E., Smith, A. M., Liu, Y.-E., and Popovic, Z. A
mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th annual ACM
symposium on User interface software and technology,
ACM (2013), 377–386.

11. Cook, D. The chemistry of game design. Gamasutra
(2007).

12. Corbett, A. T., and Anderson, J. R. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
modeling and user-adapted interaction 4, 4 (1994),
253–278.

13. Csikszentmihalyi, M. Flow: The Psychology of Optimal
Experience. Harper & Row Publishers, Inc., New York,
NY, USA, 1990.

14. Desmarais, M. C., and d Baker, R. S. A review of recent
advances in learner and skill modeling in intelligent
learning environments. User Modeling and
User-Adapted Interaction 22, 1-2 (2012), 9–38.

15. Desmarais, M. C., Meshkinfam, P., and Gagnon, M.
Learned student models with item to item knowledge
structures. User Modeling and User-Adapted Interaction
16, 5 (2006), 403–434.

16. Doignon, J.-P., and Falmagne, J.-C. Spaces for the
assessment of knowledge. International journal of
man-machine studies 23, 2 (1985), 175–196.

17. Easterday, M. W., Aleven, V., Scheines, R., and Carver,
S. M. Using tutors to improve educational games. In
Artificial Intelligence in Education, Springer (2011),
63–71.

18. Harpstead, E., Myers, B. A., and Aleven, V. In search of
learning: facilitating data analysis in educational games.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2013), 79–88.

19. Isbister, K., Flanagan, M., and Hash, C. Designing
games for learning: insights from conversations with
designers. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM (2010),
2041–2044.

20. Jackson, G. T., Dempsey, K. B., and McNamara, D. S.
Short and long term benefits of enjoyment and learning
within a serious game. In Artificial Intelligence in
Education, Springer (2011), 139–146.

21. Jennings-Teats, M., Smith, G., and Wardrip-Fruin, N.
Polymorph: A model for dynamic level generation. In
Sixth Artificial Intelligence and Interactive Digital
Entertainment Conference (2010).

22. Koedinger, K., Corbett, A., et al. Cognitive tutors:
Technology bringing learning science to the classroom.
The Cambridge handbook of the learning sciences
(2006), 61–78.

23. Kruskal, J. B., and Wish, M. Multidimensional scaling.
Sage, 1978.

24. Liapis, A., Yannakakis, G. N., and Togelius, J. Sentient
sketchbook: Computer-aided game level authoring. In
Procedings of the 8th International Conference on the
Foundations of Digital Games (2013), 213–220.

25. Linehan, C., Kirman, B., Lawson, S., and Chan, G.
Practical, appropriate, empirically-validated guidelines
for designing educational games. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (2011), 1979–1988.

26. Liu, C.-L. A simulation-based experience in learning
structures of bayesian networks to represent how
students learn composite concepts. International
Journal of Artificial Intelligence in Education 18, 3
(2008), 237–285.

27. Lomas, D., Patel, K., Forlizzi, J. L., and Koedinger,
K. R. Optimizing challenge in an educational game
using large-scale design experiments. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2013), 89–98.

28. Pržulj, N., Corneil, D. G., and Jurisica, I. Modeling
interactome: scale-free or geometric? Bioinformatics 20,
18 (2004), 3508–3515.

29. Schulze, K., Shapiro, J., Shelby, R., Treacy, D., and
Wintersgill, M. The andes physics tutoring system:
Lessons learned. International Journal of Artificial
Intelligence in Education 15 (2005), 147–204.

30. Smith, A., Butler, E., and Popović, Z. Quantifying over
play: Constraining undesirable solutions in puzzle
design. In Procedings of the 8th International
Conference on the Foundations of Digital Games (2013).

31. Smith, G., Treanor, M., Whitehead, J., and Mateas, M.
Rhythm-based level generation for 2d platformers. In In
procedings of the 4th International Conference on the
Foundations of Digital Games (2009).

32. Smith, G., Whitehead, J., Mateas, M., Treanor, M.,
March, J., and Cha, M. Launchpad: A rhythm-based
level generator for 2-d platformers. Computational
Intelligence and AI in Games, IEEE Transactions on 3, 1
(2011), 1–16.

33. Stern, M. K., and Woolf, B. P. Curriculum sequencing in
a web-based tutor. In Intelligent Tutoring Systems,
Springer (1998), 574–583.

34. Vygotsky, L. S. Mind in Society: The Development of
Higher Psychological Processes. Harvard University
Press, November 1980 / 1930.

35. Yannakakis, G. N., and Togelius, J. Experience-driven
procedural content generation. Affective Computing,
IEEE Transactions on 2, 3 (2011), 147–161.

	Introduction
	Related Work
	Human Computer Interaction
	Intelligent Tutoring Systems
	Games

	Application
	System Overview
	Extracting Solution Features
	Procedural Traces and n-grams
	Solution Features in Refraction

	Automatically Generating Levels
	Creating a Progression
	Systematically Tracking and Introducing n-grams
	Choosing the Next Problem

	Level Selection in Refraction

	Evaluation
	Difference Between Progressions
	Discussion

	Conclusion
	Acknowledgements
	REFERENCES

