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Abstract

Game design is an art form that deals with inherently interactive ar-
tifacts. Game designers craft games (assembled from rule systems and
content), but they really seek to manipulate play: the interaction between
games and players. When developing new games that are similar to past
games, a designer may rely on previous experience with related designs
and relatively easy access to players familiar with conventional design
choices. When exploratorily venturing into uncharted territory, uncover-
ing games that afford novel modes of play, there is a need for practical
and technological interventions that improve a designer’s access to feed-
back from the unfamiliar design scenario. In the interdisciplinary space
between game design, design studies, computational creativity, and sym-
bolic artificial intelligence (AI), my program of mechanizing exploratory
game design aims to amplify human creativity in game design; enable new
game designs through deep, play-time design automation; and demon-
strate novel tools that respect the concerns of design problems.

This dissertation advances a practice of modeling design spaces as logic
programs in the answer set programming (ASP) paradigm. Answer set
programs can concisely encode the key conditions of artifact appropriate-
ness, and, paired with state of the art algorithms for combinatorial search
and optimization, they yield efficient and expressively sculptable artifact
generators. I present three major applications of ASP-encoded design
spaces to exploratory game design: a powerful machine playtesting tool
for analyzing designer-specified games, a novel game prototype employing
machine-generated rulesets bound by iteratively discovered constraints,
and a suite of level design automation tools that offer unprecedented con-
trol over the aesthetic and pedagogical properties of puzzles for a widely
deployed educational game. This practice is further developed in a series
of introductory programming and advanced modeling tutorials. By for-
mally modeling design spaces as concise and authorable logic programs
(and without the need for original algorithm design and maintenance),
designer-programmers are broadly empowered to quickly build and evolve
the in-house automation required by their own exploratory game design
projects. These claims are backed by a spreading adoption of this practice
by others and deployed applications to at-scale game design projects.

Taken as a whole, this dissertation offers new insight into the nature of
game design in relation to other design disciplines, a new design research
practice for understanding how design thinking can and should be mecha-
nized, a novel model of transformational creativity suitable for discussing
both humans and machines, and a set of new applications for symbolic AI
that simultaneously broaden the applicability and tax the limits of this
automated reasoning infrastructure.
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Chapter 1

Introduction

The ability to create games is an ability to create human culture. Driven
by curiosity about what is or what might be possible, exploratory game
design continually seeks to extend our ability to author and engineer new
kinds of games. The challenge I take on in this dissertation is that of ac-
celerating exploratory design practices with the machine-supported rea-
soning of artificial intelligence.

Games have a property not clearly shared by many other cultural
forms such as music, poetry, and sculpture; they are unavoidably interac-
tive. The spaces of play afforded by a game, that by which we judge its
impact on an audience, are the emergent result of entangled interaction
between artifact and environment, between game and player. The appro-
priateness of a game is in its play, not in the structure of the game itself.
Further, it is not enough for the rule system at the heart of a game to
simply allow or be compatible with interesting play; it is the designer’s
responsibility to drive the emergence of desirable gameplay, a negotiation
between a fixed game design and the variable whims of different players.

Designers craft rule systems with imperfect knowledge of their game-
play implications. What design knowledge they have is the product of
creating, playing, observing, deconstructing, and reconstructing similar
games. When staying within the confines of familiar game genres and im-
plementation techniques, one designer may productively learn from the
artifacts and experiences of another. However, when venturing into new
design territory, the abundance of relevant examples to learn from van-
ishes. An exploratory designer must take on the responsibility of building
up his or her own constellation of related prototypes before gaining the
experience necessary to author games in this new space with intent and
confidence.

Where transferring knowledge from pre-existing designs to an active
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design project is a challenge of abstraction and analogical reasoning be-
tween familiar endpoints, the creation of new designs on the frontier is a
challenge of concretion, the synthesis of sketches strictly outside of famil-
iar territory. When the primitives under investigation are conditionally
executing rules that update the abstract state of dynamic systems (as
opposed to, say, strokes of pigment on canvas or musical notes on a staff),
synthesis is clearly rooted in abstract symbol manipulation. Proposing a
rule to allow a new kind of interaction, altering initial configurations to
refine a challenge, or discovering plausible inputs (evidence of potential
player strategies) that drive gameplay along interesting trajectories all
exercise a designer’s symbolic reasoning abilities, onerously at times.

Through artificial intelligence techniques, machines afford mechaniza-
tion of symbolic reasoning. Given a theorem, one can set a machine to
construct a proof of its truth or a counterexample evidencing its invalid-
ity. Given a body of knowledge, one can ask a machine if a new statement
is entailed by it. Further, given a set of observations, one can ask for the
simplest novel explanation given a body of background knowledge. But
what are the theorems of game design? What does game design knowl-
edge look like? What are the observations in need of explanation? A
mechanization of game design will shed light on these questions.

Game design is an activity that can clearly consume the best of human
creativity, so marrying the concerns of game design to the affordances of
machines is not a challenge to be taken lightly, nor is it one that will leave
either game design or human creativity undisturbed. I do not intend to
reduce game design to machinic procedures; instead I hope to demonstrate
automated processes that reflect the previously unarticulated essence of
several of the core elements of creativity in game design.

The mechanization of exploratory game design entails the introduc-
tion of machines into the game design process in a way that
meaningfully reduces a designer’s symbolic reasoning burdens
and extends his or her creative reach. This dissertation explores
the following questions: How can we mechanize exploratory game design?
What does such a mechanization imply for creativity in game design?
And what does this say about machines when they begin to carry out
significant design automation activities?

1.1 Goals

The goals of this dissertation are three-fold, revolving around the ampli-
fication of human game design creativity, the creation of new kinds of
games that require significant design automation during their play, and
the demonstration of software aides that respect the nature of design
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problems as opposed to engineering problems.

1.1.1 Amplify creativity of human game designers

By revealing what creativity in game design is after, we can begin to iden-
tify bottlenecks and pair these bottlenecks with the abundant resources
of modern-day computing. When technically literate designers can use
technology to make creative leaps with reduced risk and cost, they are
empowered to explore territory their un-augmented1 counterparts can-
not afford to attempt. The examples created by these forward-looking
explorers (in the form of playable game prototypes, reusable clusters of
game mechanics, and reference gameplay traces highlighting the impact
of concrete design choices) will allow other designers to interpolate an un-
derstanding of the new territory, enabling the informed and intentioned
design of new cultural artifacts.

This dissertation advances exploratory design practice that allows for
new forms of feedback to be had even for games that are just emerging
from the conceptual development stage.

1.1.2 Support deep, play-time design automation

Mapping the processes of game design to automated procedures allows a
new class of games to be created: games that involve significant design
effort by the game system itself during gameplay.

In table-top role playing games, the game master (sometimes called the
dungeon master or referee) may design original content (maps, enemies,
quests, etc.) on the fly and in response to the emergent trajectory of
gameplay so far, and they may also negotiate with players to form new
rules and exceptions to existing rules that directly steer gameplay along
interesting lines that a strictly rigid world configuration and rule system
would not allow. This kind of gameplay requires a designer integrated
into the structure of the game.

By employing significant play-time design automation, we can create
videogames with the finely sculpted and player-adapted gameplay experi-
ences that were previously only reachable with the integration of a dedi-
cated, human designer into each and every gameplay instance. Depending
on the nature of automation techniques employed, these new games have a
potential to be radically more relevant and precisely tuned to an audience
than the capabilities of any human game master. In this dissertation, I

1I refer to Engelbart’s sense of augmentation [68]: “increasing the capability of
a man to approach a complex problem situation, to gain comprehension to suit his
particular needs, and to derive solutions to problems.”
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develop methods that can be used to produce play-time design automa-
tion systems and demonstrate them in an application to a widely deployed
game.

1.1.3 Demonstrate tools that respect design problems

The available tools for game construction primarily support the construc-
tion of software artifacts by addressing the problems of software engineer-
ing. Integrated development environments may bundle testing toolkits,
debuggers, and even formal verification machinery. However, these tools
are mostly centered around the problem of helping an engineer bring their
working software solution into compliance with a vetted, pre-defined spec-
ification.

A kind of ill-definedness is in the nature of all design problems, negat-
ing the direct use of specification-oriented tools. A new breed of tools
for designers that respect design problems as design problems will treat
problem specifications as untrusted and as fluid as the details of candi-
date solutions. These tools will emphasize discovering new requirements
over repairing an artifact with respect to known requirements. By demon-
strating tools that respect design problems, I will illuminate new uses of
automation in the service of extending a game designer’s creative reach
and highlight new goals for future design-assisting tools.

1.2 Research Context

While the research described in this dissertation was carried out in the
context of an academic computer science department, the set of fields my
research draws from and contributes to reaches across traditional disci-
plinary boundaries. In particular, my work is relevant to game design,
a field with significant development outside of academia; design studies,
the scholarship of design processes across all domains of design; computa-
tional creativity, a synthesis of computation and the philosophy of human
creativity; and symbolic artificial intelligence, the interface between com-
putation and general symbolic reasoning.

1.2.1 Game Design

Game designers seek to design play, but they must settle for indirect
control. The recorded knowledge of human game design efforts is split
between postmortem analyses of existing games and the philosophies and
practices for creating new games. Postmortems capture knowledge of
which design choices worked or failed in creating an intended play expe-
rience, while design practices (such as prototyping and playtesting) and
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philosophies (e.g. playcentrism, minimalism, proceduralism, etc.) are in-
tended as guides to be followed when making design choices in future game
projects. Anything that helps clarify a designer’s path from the low level
structural choices in a game (which may be invisible to players) towards
realizing the high level gameplay experience they intend is a contribution
to our shared knowledge of game design.

My research offers a preview of new kinds of tools for assisting game
designers in configuring both a game’s rules as well as its content, in-
frastructure for building new kinds of player-adapting games, and an ex-
planation of the creative processes of game design (that goes beyond the
simplistic model of optimizing a player’s expected fun value).

1.2.2 Design Studies

Design studies seeks to understand the underlying structures of design
processes as exemplified by the application of design across all domains,
from intangible software systems and microscopic electronic systems through
industrial product design and on to architectural and larger-scale urban
design. The literature of design studies identifies distinct and universal
phenomena of study, appropriate methods and philosophical values that
are not reducible to either the sciences or the humanities. The third
discipline, as design is sometimes called, deals with the development of
technical solutions to necessarily ill-defined problems. Design research, a
forward-looking branch of design studies, seeks to advance the processes
of design and transform the space of artifacts that result from these pro-
cesses.

My research builds on the vocabulary (such as ill-definedness, appo-
sitional reasoning, and design spaces) and universal strategies of design
studies (such as iterative refinement, active learning in reflective prac-
tice, and leading with candidate solutions) to develop a broadly-informed
understanding of game design. In my own design research practice, I
ground these cross-domain notions in computational models that support
the design of interactive artifacts.

1.2.3 Computational Creativity

The field of computational creativity overlaps with artificial intelligence,
the philosophy of human creativity, and the practical domains of several
cultural media. Computational creativity seeks to understand and explain
how machines can be creative, to explicate human creativity in computa-
tional terms, and to demonstrate computational models of artifact gen-
eration in various realms traditionally dominated by human creativity:

1.2. RESEARCH CONTEXT 5



music, poetry, painting, jokes, mathematics, science, and so on (certainly
including game design).

Towards any of these goals, it is interesting to see demonstrations of
machines that either augment or replace human creative efforts. In this
dissertation, I offer this spectacle in the domain of game design, and I
explain it in terms of a novel model of creativity. Defined at the knowledge
level, this model speaks to the perception of sustained, transformational
creativity in rational agents, regardless of whether they are human or
machine.

1.2.4 Symbolic AI

The technical content of this dissertation is founded in formal logic, the
currency of symbolic artificial intelligence (AI) techniques. Symbolic AI
starts from the physical symbol system hypothesis (originally due to Allen
Newell and Herbert Simon, two names that occur frequently in this disser-
tation): a physical symbol system has the necessary and sufficient means
for general intelligent action. The machinery of symbol manipulation,
they claim, is a workable stand-in for intelligence.

We need not accept this hypothesis at face value (indeed, this dis-
sertation does not require it) to make abundant use of the ecosystem of
formalisms and software tools that have clustered around symbolic AI. My
use of logical predicates, connectives, quantifiers, entailment and proof are
utilitarian. When I employ a symbolic knowledge representation it is not
to represent the essence of the real world, but to explain my problems in
sufficient detail to ensure its computed feedback is relevant to me. And,
when I employ an exhaustive search process where humans seem to use
only a spotty guess-and-check method, I do this to exploit an imbalance
between human and machine costs of search, not to suggest the human’s
search, if perfected, should be exhaustive.

Though humans and machines may manipulate different symbols to
reason in different ways, it is useful to imagine that they both reason.
When I develop a game design automation system atop formal logic for
pragmatic reasons, it is always possible to go back and inspect, through
the lens of the physical symbol system hypothesis, what that system is
saying about intelligence in design, artificial or otherwise.

1.3 Contributions

The core contributions of this dissertation are technical methods for car-
rying out several exploratory game design processes with a machine. Sec-
ondarily, situating these methods within a larger context of design and
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creativity, I point a way towards a program of research that will yield a
broader mechanization of creative, exploratory design.

1.3.1 Mechanizing Design Spaces

My primary contribution is the development of techniques, based on sym-
bolic AI, for modeling and refining the structural design spaces that arise
during exploratory game design. Design space models are declarative
specifications of a set of artifacts that are distinctly appropriate or rele-
vant to a working design scenario. The intent to model a design space as
a whole (including the rationale for judging appropriateness) is an impor-
tant departure from the traditions of computer-aided design (CAD) that
are focused on modeling individual artifacts, often divorced from design
rationale.

Capturing design spaces, which otherwise only exist as informal ex-
pectations and preferences in a designer’s mind, as machine-manipulable
structures allows the mechanical synthesis of new artifacts and the analy-
sis of hand-created artifacts with respect to conditions of interest. Applied
to specific spaces of game structure, it is possible to automatically sample
both data-like content (e.g. puzzles and maps) and code-like rule sets (e.g.
event handlers and victory conditions) with properties such as solvability,
fairness, and conformance to genre conventions. Applied to spaces of play
for a given game, it is possible to carry out a kind of machine playtesting
that allows a designer to anticipate emergent player behavior and under-
stand the elements of a game’s structure that makes that kind of play
possible and relevant. Finally, applied to spaces of play traces collected
from human players, it is possible to explore the intersection between ex-
pected and observed play, finding patterns of empirical interest and then
turning these patterns into new constraints on the design spaces for game
structure and game play.

I propose and argue for answer set programming (ASP) as a practical
reference model for the capture of design spaces. Answer set program-
ming is a declarative programming paradigm focused on complex (NP-
hard) combinatorial search and optimization problems with a symbolic
logic representation. ASP-encoded design spaces support automation of
complex synthesis and analysis tasks without the need to develop and
maintain domain-specific search and inference infrastructure. To cash
out this proposal, I describe several example design automation systems,
noting both high-level modeling strategies and low-level programming id-
ioms. Although many of the individual affordances of ASP can also be
found in isolated symbolic AI tools (such as deductive databases and
Boolean satisfiability or numerical constraint solvers), my comprehensive
programming practice makes extensive use of the integrated nature of
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ASP tools to gain rapid (and often visual) feedback on design problems.
Applying the concepts and representational techniques from the ASP-

based reference model, I contribute several larger systems that automate
symbolic reasoning in a variety of practical, exploratory game design prob-
lems. These applied systems forge a link between the abstraction of design
spaces and the concrete processes of game design (including playtesting
with human players and puzzle design for an educational game).

Having a formal and realistically authorable representation for de-
sign spaces that is shared between human and machine makes important
progress towards my research goals. Offloading large chunks of the sym-
bolic reasoning effort that is needed to synthesize new designs and di-
agnose flaws in current designs, designers are empowered to make larger
creative leaps knowing that inspiring examples and counterexamples in
the new territory can be had at a significant discount over lone contem-
plation. When the constraints on what makes an artifact relevant to a
given play experience can be formally articulated, the same systems that
assist a designer in offline exploration can be embedded into the game in
the form of play-time design automation. Finally, tools that accept design
space descriptions as input represent an important new class of tools that
are informed by the nature of design problems.

1.3.2 Situating Mechanized Design

My secondary contribution situates the mechanization of exploratory game
design within the larger context of design thinking and computational
creativity. Starting from the vocabulary of design thinking, I relate the
practice of problem shaping and the mode of design cognition called “ap-
positional reasoning” to the affordances of existing symbolic AI tools.
This link motivates the requirements of a formal representation for de-
sign spaces and suggests a role for mechanized design spaces outside of
game design. Again, I use examples from ASP as the reference model
for design spaces; however any number of alternative tools may satisfy
the same requirements to be useful as a means to automate appositional
reasoning.

With an understanding of how various aspects of design can be mecha-
nized with the tools available today, I ask what a complete mechanization
of creativity in exploratory game design would require of future tools. To
transfer the goals and methods of game design out of an intrinsically hu-
man realm, I develop an explanation of creativity in game design that is
cast at the knowledge level. The knowledge level is a systems description
level, introduced by Newell, which defines a sense of rationality for agents
independent of their symbol-level description. Rationalizing creativity in
game design at the knowledge level opens the door to alternative mecha-
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nizations of creativity at the level of physical symbol systems. Identify-
ing the designer’s goal as the satisfaction of curiosity about game design
knowledge, this explanation suggests the need for future computational
tools that could realize rational pursuit of this goal. Immediately, this
points out several new classes of software tools that would be of use to
creative game designers (e.g. design-pattern-aware decompilers). Further,
it suggests an overall architecture for software systems that attempt to
sustain transformational creativity in game design: that of discovery sys-
tems (a class of systems organized around knowledge discovery through
open ended experimentation, previously only applied in science and math-
ematics).

I build the link between automation available today and a potential
future of broader automation (one that would shed light on how creative
human designers operate) through two diverse methods. The first is the
use of the top-down theoretical explanations mentioned above, and the
second is a kind of constructive, bottom-up method akin to creating sci-
ence fiction. Through computational caricature, a design research practice
I describe and motivate, others and I have developed working compu-
tational systems that provide grounded, executable arguments for how
various aspects of creative game design might be automated in general
without having to have solved every technical problem general automa-
tion would require.

By tentatively situating my design mechanization methods within the
context of design thinking and computational creativity, I provide the the-
oretical background and research methods that others can follow to make
further impact on the goals of this dissertation. With a general explana-
tion of the goals of creative game design in hand, I highlight new ways
in which automation might amplify human creativity (namely by remov-
ing bottlenecks in the discovery process). The desire for play-time design
automation makes concrete the need for the machine-readable forms of
design knowledge that a discovery system in game design would consume
and produce–that is, the need for automation of creativity in game design
is motivated by the practical need to produce the formalized knowledge
required by future adaptive and self-configuring games. Finally, design
thinking and computational creativity provide a motivation for design-
respecting tools while computational caricature provides a method for
prototyping in the development of these tools.

1.4 Approach

In making the above contributions, I have adopted five crosscutting strate-
gies to scope my work and guide my exploration.
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1.4.1 Design Spaces

My first research strategy is the emphasis on abstract design spaces over
the concrete artifacts contained within them. I operate under the assump-
tion that designers are trying to refine their understanding of the space
of appropriate artifacts, not simply trying to design a single example. By
focusing on a construct that spans many artifacts, knowledge from one
artifact need not be explicitly transferred to the design of another arti-
fact: we can speak of constraints on the design spaces that contain both
of these artifacts (and myriad other artifacts with similar configurations).
This focus avoids the trap of design automation mechanisms that are
locked to the artifact level, forever manipulating individuals without the
capacity to learn general design principles in a domain.

1.4.2 Computational Caricature

The pervasive use of computational caricature is my second strategy. To
amplify designer creativity, for example, I need not develop a functional
reference implementation for all of human creativity. Instead, my ap-
proach is to select key elements of game design that are poorly defined
(when practiced by human designers) and to develop intentionally exag-
gerated and over-simplified computational systems that are designed to
make my claims regarding the formalized essence of that element imme-
diately recognizable.

1.4.3 Target Audience: Procedurally Literate Designer-
Programmers

My third strategy is to target my computational caricatures for interpre-
tation by a procedurally literate audience of designer-programmers. While
there are many productive game designers who are not procedurally lit-
erate (i.e. they rely on others in a design team to craft the computa-
tional systems that support the designs they describe), I believe designer-
programmers are the ones who have the most to gain from a mechaniza-
tion of game design, and they, being intimately familiar with both the
concerns of design and the affordances of programmed machines, are the
ones who can provide the richest feedback for this research. Developing
tools for novice designers may increase the size of the game creating pop-
ulation (eventually yielding more designer-programmers), but I estimate
that further empowering the designer-programmers who are already able
to probe the frontiers of game design is the best way to expand our shared
creative reach.
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1.4.4 Automating Logical Reasoning

My fourth strategy is a restriction on the strengths of computation that
I intend to exploit. While modern-day computation offers mass commu-
nication and storage facilities as well as bulk number crunching abilities
that far outstrip those of human users, I opt to primarily build on auto-
mated logical reasoning (symbol manipulation). In posing logical reason-
ing problems that are worth working on, humans have an advantage; in
solving these problems, machines have the advantage (particularly when
the problem boils down to tedious combinatorial search). Nonetheless,
these problems are founded on an important common language: that of
symbolic logic. Explaining essential elements of design thinking in terms
of logical reasoning permits formalized problem specifications that either
humans or computers may solve, allowing fluid reassignment of effort to
bypass the bottlenecks that arise in particular design projects.

1.4.5 Artifacts as Communication

My final strategy is to use concrete artifacts (specific rule sets, detailed
elements of game content, or replay-capable gameplay traces) as the pri-
mary form of communication from automated design tools back to human
designers. That is, designers will speak in candidate design space models
and listen for artifacts in response. When using existing formal verifica-
tion tools, a designer hopes to learn that, yes, there is a proof (often by
uninteresting exhaustion) that a complex set of carefully specified prop-
erties hold simultaneously for a single design in question. When using
design tools designed with my artifacts-as-communication strategy, a de-
signer hopes to learn that, no, their loosely and speculatively defined
concept of interest (often regarding potential failure modes) is not empty.
They hope to see several detailed traces evidencing how that interesting
concept can be instantiated. Further, offering several detailed artifacts in
response to a tentative question allows a kind of I’ll-know-it-when-I-see-it
exploration that is compatible with a designer’s often informal curiosities.

1.5 Outline of Dissertation

Concluding my introduction, I now give an outline of the chapters to
follow.

Chapters 2 through 6 cover background material, highlighting the key
ideas and philosophies from each of the four disciplines I mentioned above.
These chapters are organized as an opinionated reconstruction of the most
relevant aspects of the related fields as opposed to a neutral review. In
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Chapter 7, I synthesize the goals of this dissertation as concerns at the
intersection of triples of these disciplines.

Chapter 8 unpacks appositional reasoning, a central process in design
thinking, and reveals requirements on knowledge representation schemes
that could satisfyingly serve an automation of this mode of cognition.
Linking these requirements to previously demonstrated affordances of an-
swer set programming, I describe how to map the concerns of design,
in the vocabulary of design studies, onto machine-supported (abductive)
logical reasoning.

Chapter 9 introduces computational caricature, the design research
practice I have adopted in exploring the role of artificial intelligence in
the game design process. In addition to directly reviewing one of my
systems through the lens of caricature, I describe systems created by
others that similarly function as caricatures of artificial intelligence in the
design process.

Chapter 10 adopts the perspective of the designer-programmer apply-
ing answer set programming to design automation problems. This chapter
introduces the syntax of logic programming, outlines an iterative process
for defining and refining design space models as answer set programs,
and provides line-by-line programming tutorial examples. It also presents
mini-caricatures (rational reconstructions) of design automation systems
created by others.

Chapters 12 through 15 present four applied design automation sys-
tems developed according to the practice presented previously: Ludo-
core (a queryable formal model of gameplay), Biped (a game sketching
tool with equal support for human and machine playtesting), Variations
Forever (a game prototype involving dynamic ruleset generation), and a
suite of design automation tools for Refraction (a complex, pre-existing
game that was not designed with the use of my tools in mind).

Chapter 16 describes rational curiosity, my working model of creativ-
ity that is defined in knowledge level terms, and applies it to describing
creativity in game design. Although the theory of rational curiosity makes
broader claims about human and machine creativity, I primarily focus on
the game design impact of this theory.

Chapter 17 evaluates my impact on the goals of the dissertation out-
lined above, also examining the impact my developments have had on the
next generation of students who will go on to develop their own design
automation systems.

Finally, Chapter 18 briefly outlines a program of future work and offers
my conclusions.
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Chapter 2

Interdisciplinary Context
& Motivations

From the perspective of game design alone, a program to mechanize ex-
ploratory game design first appears as a curiosity: a “wouldn’t it be nice
if–” project to be taken on someday in the far future. Zooming out to
consider inquiry beyond game design, a broader motive and a number of
promising means to pursue this program emerge.

In the next four chapters, I present an opinionated reconstruction of
the interdisciplinary context of my research. I sketch out the philosophies
and practices that I draw from and apply, motivate my choice of research
methods, and setup how my work contributes to the disparate goals of
several fields. My intention here is to map out four disciplines (game
design in Chapter 3, design studies in Chapter 4, computational creativity
in Chapter 5, and symbolic AI in Chapter 6) in enough detail to highlight
important cross-links that promote new lines of thinking that would go
unexplored from the perspective of any field in isolation. This involves
looking at game design through the lens of general design, linking the
study of human and machine creativity to design automation through
the processes of artifact generation, and using the techniques of symbolic
AI as the foundation for technical systems that address games, design,
and creativity. Chapter 7 synthesizes the goals of this dissertation in the
interdisciplinary space between these fields.
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Chapter 3

Game Design

Game design, boiled down to a single statement,1 is the art and craft of
building playable systems so that the emerging player interaction with
these systems meets with the designer’s intent. This might be approx-
imated as the configuration of rules and content so that the designer’s
intended audience will experience enjoyment, but this is just one perspec-
tive on a complex and subtle topic: the creation of material culture.

In this chapter, I review game design roughly from the perspective of
the lead designer on a videogame, someone who is responsible for crafting
the core interactive systems and supporting details of a game that will be
realized in software. This perspective downplays opportunities to relate
game design to literature and visual art, and it largely ignores the tradi-
tions of tabletop game design. However, I claim this perspective is useful
for developing a mechanization of game design that advances the goals of
this dissertation.

In the rest of this chapter, I review game design as it is taught in
textbooks and discussed at industry conferences and other community fo-
rums. Then I review a call for more structure and formal understanding
of the game design process by some, but importantly not all, of the game
design community. Next, I survey published games and academic research
that employs procedural content generation (the mechanized creation of
game content either at design-time or play-time) and then review vari-
ous attempts at a general formalization and automation of game design
(ranging from generalizations of procedural content generation to opera-

1My intent is not to provide a final definition for game design; instead, I want
to highlight the importance of a designer’s intent. When overzealous application of
playcentric design philosophies break into player-centric design, the role of the game
designer as an artist is unduly diminished. User-centered design of pleasure machines
is something distinct from game design.
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tionalizations of design philosophies). Finally, I offer some perspective on
game design as a design discipline, able to influence and be influenced by
the practices of design in other domains.

3.1 Best Practices

Designers and developers of early videogames cobbled together develop-
ment practices and creative inspiration from their experience at hand:
playing sports and tabletop games, manipulating physical puzzles, and
programming computers to run mathematical simulations. Today, the
novice designer can readily access an accumulation of videogame-centric
wisdom in the form of influential textbooks such as Game Design Work-
shop [73], Rules of Play [176], and The Art of Game Design [179]. Com-
munity websites like Gamasutra2 archive project-by-project postmortems
that record the successes and failures of well-known games. Finally, the
latest speculations and emerging philosophies of game design spread at
industry conferences like the annual Game Developers Conference.3

Amongst a wide array of best practices, three broad categories are
relevant for discussion in the context of mechanizing exploratory game
design: early-stage prototyping, playtesting across all stages of game de-
sign, and late-stage balancing.

3.1.1 Prototyping

The practice of prototyping seeks a way to get feedback on a game design
without the effort to design and implement a complete game. Different
types of prototypes hit different points on a tradeoff between quality of
feedback and the effort required to get that feedback. Seeking insight
that will refine and evolve their working game concept, designers usually
start with relatively cheap, low-commitment prototypes that afford broad
exploration and then shift to more expensive and better representative
methods as the design project converges.

Paper prototyping [189] is a common technique for testing risky game
concepts with very little construction effort. Paper prototypes are, in
essence, partial tabletop games that are played with materials recycled
from other games (playing cards, dice, miniature figures, etc.) and sundry
items from home or office (graph paper, whiteboards, coins, paperclips,
etc.). In contrast with complete tabletop games, the rules of play for
paper prototypes may or may not ever be written down and are subject
to change at the designer’s whim. When playing a paper prototype, the

2http://www.gamasutra.com/features/postmortem/
3http://www.gdconf.com/
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designer may step in to amend die rolls, introduce exceptions to rules, or
rearrange the game world in an effort to guide gameplay along trajectories
that explore phenomena of interest to the designer.

Where paper prototyping gives a designer agility (in terms of being
able to quickly jump between alternate designs without major construc-
tion efforts), it burdens them with mental storage and computation dur-
ing play. The designer, acting as a game master (or GM, in the sense of
tabletop role-playing games), must track the state of any game elements
that are not fully represented by physical objects or symbols on paper as
well as compute updates to on and off-paper state according to consis-
tent rules (all the while contemplating whether to introduce alternative
rules). When the pace at which a gameplay prototype can react to player
choices is bounded by a single human’s computation ability, certain de-
sign questions, such as those relating to pacing and twitch reactions, are
unanswerable with paper prototypes. Nonetheless, insight regarding even
complex, real-time videogames can be gained through paper prototyping
[73, chap. 7].

In computational prototypes (also called digital prototypes [73, chap. 9]),
fragments or approximations of a candidate game design are realized as
computer programs. By automating much of the manual bookkeeping
associated with paper prototyping and enforcing rules in a rigid man-
ner, computational prototypes allow for observation of play that is not
directly mediated by the designer (and thus subject to the designer’s bias
and play-time manipulations). The cost of this automation, however, is
both the effort required to develop and maintain the necessary systems
and the effort required to cast previously informal and negotiable rule sys-
tems in formal terms. In exchange for engineering work, computational
prototypes offer far more representative feedback from a design scenario.
Many computational prototypes incrementally approach the final game in
complexity and fidelity. Along the way, computational prototypes make
use of placeholder content and “programmer art” as a way of fleshing out
a playable rule system without involving a much larger creative team.

In reality, there is a continuous and evolving spectrum of methods
between paper and computational prototypes. For example, Fullerton
[73, p. 9]) suggests using a spreadsheet to inexpensively automate only
the most tedious numerical bookkeeping of an otherwise paper prototype,
retaining agility for other design elements (such as map design and non-
player character behavior). Joris Dormans’ game feedback diagrams (or
“Machinations”) [58, chap. 4] are executable pictures of the key resource
flows in a game design. Simple diagrams allow a designer to reflect on
feedback structures (potentially relating them to general feedback design
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patterns4) or run basic simulations, and more complex diagrams can im-
plement playable mini-games.5

Towards the goal of expanding a designer’s creative reach and demon-
strating tools that respect design problems, part of my research explores
the development of new prototyping methods. New kinds of prototypes
have the potential to offer designers new points on the feedback–effort
tradeoff, allowing them access to richer feedback on a fixed budget or re-
ducing the cost of answering specific design questions. The Biped system
presented later in this dissertation in Chapter 13 offers one such new point
between traditional paper and computational prototypes: it allows auto-
mated testing (which is rare for any kind of game prototype) for designs
expressed with relatively little engineering effort. Meanwhile, the general
strategy of prototyping, building partial systems that elicit feedback (also
called “backtalk”) from a design scenario, will be reviewed more broadly
from the perspective of design studies in Chapter 4.

3.1.2 Playtesting

The practice of playtesting aims to bring game prototypes into contact
with players in a way that results in insights not derivable from inspection
of the prototype on its own. In particular, playtesting can illuminate the
ways in which interactions between structures in a game bring about
different spaces of play.

The result of playtesting is not simply an evaluation or judgment of
how well a game plays (as one might summarize with a score or marks
on a survey); instead it results in a collection of evidence that a designer
may interpret in many different ways. Regardless of whether the player
involved in a playtest reports experiencing “fun,” the designer might gain
insight from the set of choices the player objectively made or did not make,
any neutral expectations the player verbalizes or suggests through in-game
actions, or the propensity for the player to transfer skills and strategies
from related games. Observing these details in depth and in context
permits credit and blame assignment of a player’s overall experience to the
particular subsystems encountered. For example, a player might report
that the combat mechanic in a prototype was “boring and repetitive,” but
the designer can notice that the player continually ignored a certain action
(perhaps a powerful combination attack) which sets this game apart from
others in the same genre—but the player likely had no knowledge of this
action because it was introduced in a tutorial sequence that the player had

4http://www.jorisdormans.nl/machinations/wiki/index.php?title=Pattern_

Library
5http://www.jorisdormans.nl/machinations/wiki/index.php?title=Case_

Study:_SimWar
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quickly skipped through. In this example, playtesting reveals a potential
problem with tutorial design by way of charged comments made on a
seemingly unrelated mechanic.

As with prototyping, there is a tradeoff in playtesting between the
accuracy of feedback and the cost required to elicit it. Game Design
Workshop [73, chap. 9] highlights three stops on this spectrum: self-
testing, testing with confidants, and testing with the target audience.

Self-testing, where the designer plays his or her own game, occupies the
most lightweight end of the spectrum. Self-testing best affords working
through the fundamentals of a game where sweeping changes are made
to the design and the result would need to be refined more before others
could understand it. In self-testing, it is easy to apply new gameplay
constraints or game goals on the fly—a designer might think “I’ll try to
play this level without ever jumping” without formulating a compelling
reason why that condition should be tested before simply attempting it.
In this way, self-testing can be applied to rule systems that are not quite
games yet (perhaps lacking clear outcomes). Even at later stages in the
design process, self-testing is valuable for providing feedback immediately
after a change is made.

Self-tests are biased by a designer’s hopes and desires for a game and
their knowledge of the game’s internal workings. The least costly way
around these biases is to perform playtesting with confidants (friends,
family, and coworkers who may or may not be game designers them-
selves). Confidants can be trusted to see past many incomplete elements
of a gameplay prototype (e.g. they can excuse your programmer art or
lack of tutorial materials). Likewise, they are able to focus their feedback
on the elements that have changed since the last version they tested.
Although confidants are unlikely to be biased by knowledge of implemen-
tation details, the pre-existing personal relationship between designer and
tester will still bias feedback.

Truly unbiased tests of a game design must involve members of the
game’s target audience. This kind of playtest provides an accurate sim-
ulation of play by the future first-time consumers of the game product.
This form of testing is usually reserved for late-stage refinement and polish
because of the costs involved in bringing playtesters into an environment
that is realistic enough for feedback to be trusted and sufficiently well in-
strumented that the required feedback can be gained without disrupting
the player in an approximation of their natural habitat. The very best
kind of playtester is called a “Kleenex tester” [174, p. 446] in the sense
that they are thrown away after a single use. The use of Kleenex testers
ensures that players have no bias from experience with previous iterations
of the game’s design (though these players’ experience with similar games
in the same genre or even games in the same franchise is a valuable part
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of what makes them representative of the target audience).
The textbook’s categories leave no room for non-human (machine)

playtesting, however I imagine automated playtesting to fall somewhere
between self-testing and testing with confidants on the scale of accuracy
and effort. Machine playtesting allows a kind of simulated playtesting
with hypothetical audiences that could never be brought in for testing in
person. For example, testing with strategically perfect machine players
might lead to insights that traditional human testing could never reveal
(because, for example, certain subtle strategies may never appear within
the brief runs of human playtesting sessions). The hypothetical audience
under test in machine playtesting is one of the designer’s own crafting,
so biases will abound. Nonetheless, the fact that machines think in very
different ways than humans do makes them an interesting source of second
opinions that (non-android) confidants cannot fully replace.

3.1.3 Balancing

Balancing is a practice usually reserved for the later stages of typical
game design processes [73, chap. 10]. It often involves adjusting numerical
parameters (e.g. the relative strength or cost of two actions) so as to tune
the length and difficulty of typical gameplay sessions. Beyond numerical
tweaking, balance can include adding or removing exceptions to general
rules (such as giving certain characters special abilities or weaknesses) or
other structural changes.

For most videogame projects, balancing must be completed before a
game is shipped as a commercial product. This is unfortunate because
having large interacting communities playing a game for long durations
is perhaps the best way to get feedback on balancing choices. Newer
development and deployment technology is making post-deployment bal-
ancing a possibility (it is typical for balancing updates to be distributed
as software patches that are automatically applied). Even when eased by
technological means, post-deployment balancing work can trigger player
backlash when the familiar rules of a game change without notice nor
means of reversion.

In the traditions of tabletop roleplaying games, it is the expected role
of the GM to carry out significant customization and balancing of the
game on the fly, altering default rules and the configuration of the game
in light of the current play experience. In a potential future of player-
adapting games that make heavy use of play-time design automation,
I suspect that players will benefit from being explicitly informed that
the game is being adapted to them. Even when players know to expect
autonomous changes to the game, they should know whether the changes
are applied only to them or to the player community as a whole—many
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player-created online resources for games are centered around publishing
and sharing the exactly those canonical values of many of the parameters
that post-deployment balancing would aim to adjust. For example, an
article on the Terraria wiki6 includes a table noting that the maximum
horizontal velocity of player characters who are either well fed or wearing
an Anklet of the Wind (but not both) is exactly 12.50 blocks per second.

Although this dissertation does not advance any new practices specific
to balancing, the concerns of balancing that arise in the design of specific
puzzles and maps (e.g. for approximate difficulty and strategic fairness)
will inspire constraints that we would like to model with with formal
design space models. Similarly, the technology I develop for machine
playtesting is applicable to some balancing concerns, but my focus is on
the earlier stages of the game design process.

3.2 Folk Psychology in Game Design

Beyond concrete practices for how to build prototypes and carry out
playtests, the shared wisdom of game design is flavored by the inclusion
of folk psychology in the form of commonly held beliefs and convictions
(when applied to game design) about players’ mental processes. I refer
to elements of knowledge that are relevant to (and often productive for)
design without scientific validation in the specific context of game design.
It is not my intent to cast doubt on the application of folk psychology;
instead I note that these ideas are informative and productive of insight
in game design projects despite their non-empirical nature.

A prime example of this is widespread (e.g. in Jenova Chen’s MFA
thesis “Flow in Games” [28] and Jesper Juul’s Half Real [102]) reference to
Mihály Cśıkszentmihályi’s theory of flow [50], a concept originally derived
from the psychological study of art students [49]. Stated simply, flow
is a mental state in which an individual’s skill level is well matched to
the challenge presented by a scenario. Flow is associated with intrinsic
reward, a distorted sense of time, and action–awareness merging—often
desirable effects for a game to have on players. Flow is a property of
individual players in specific situations in play, not a property of the game
itself. Thus, designing games for flow requires either very indirect shaping
of play through the adjustment of the game itself (precise balancing) or
the inclusion of additional play-time logic that will, in effect, rebalance
the game to bring about flow for the current player.

Much of game design’s folk psychology is not derived from scientific
processes. Instead, much is developed through an expert designer’s re-

6http://wiki.terrariaonline.com/Player_stats
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flection7. A well-known example of reflection-inspired8 folk psychology in
game design is Raph Koster’s “theory of fun” [114]. Koster claims games
are machines for teaching and that players have fun when they successfully
learn in the game. A good game, he says, is “one that teaches everything
it has to offer before the player stops playing” [114, p. 46]. This designerly
theory of fun is very productive of questions that drive the design of level
progression in games (particularly in my own experience; see Chapter 15
in which educational goals drive puzzle design concerns): What are we
teaching in the second level of the game? In which level will we later check
that they can combine that knowledge with the new knowledge presented
in level three?

Where many game design automation systems (such as some reviewed
later in this chapter) try to optimize a proxy measure for “fun” in an over-
all way, I claim it is more interesting to build systems that respect the
same strategies and understandings that a human game designer might be
using when they design a game and its content. That is, I trust designers
to have an accurate enough (or at least incrementally improving) under-
standing of their own audiences that I will not reach to the literature of
psychology to justify the metrics and constraints used in automating the
design appropriate rule systems and game content.

3.3 Call for Structure

As game design is nominally about the production of games, it is not
a standard practice to collect and share structured knowledge of game
design and design processes. Some of this happens organically (infor-
mal knowledge is commonly shared at conferences and less commonly,
but slightly more formally, in articles and books), however many game
designers wish it happened more and, further, that it be adopted as a
practice by all designers.

In the introduction to his 400 Project9, a project to catalog a large
number of unexpressed, informal rules of game design, Hal Barwood writes
the following:

Game design is an uncertain and murky endeavor. In this it
resembles art, architecture, writing, moviemaking, engineer-

7The fringe status of reflection as a method of inquiry in science makes interesting
contrast with the elevated status of “reflective practice” in professional design. See
Chapter 4 for a discussion of reflective practice in a design studies context.

8Koster’s theory of fun is indirectly inspired by psychological and cognitive science
research. However, when we read his book, it is the clarity of the game-related examples
and the resonance with the anecdotes he offers that persuades us, not the rigor of his
research methods or source literature.

9http://www.finitearts.com/Pages/400page.html
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ing, medicine, and law. All of these fields do their best to
reason through their problems, but all have found it neces-
sary to develop practical rules of thumb as well. Hmm—could
game developers benefit from a similar approach?

The rules collected so far, while indeed quite informal, do suggest that
there is a wealth of design knowledge that can be shared. To catalog more
rules, the project demands designers reflect on their own practice and, in
effect, to become design researchers.

Barwood is not alone, nor is his bias towards informal knowledge uni-
versal. In “Formal Abstract Design Tools” [31], a call for a unified formal
language for discussing games, Doug Church claims: “Not enough is done
to build on past discoveries, share concepts behind successes, and apply
lessons learned from one domain or genre to another.” Church hopes by
encoding discoveries in a common language that developers could share
design knowledge as easily as they do the software libraries that make re-
alistic graphics and physical simulations possible in modern videogames.
Since the original article, Barwood’s plea has been answered, in small
part, by formal notation systems such as those of Koster [113] and Cook
[41]. For the most part, however, Church’s FADTs remain to be invented.

In “The Case for Game Design Patterns” [115], Bernd Kreimeier builds
on the cry of Barwood and Church to further “establish a formal means of
describing, sharing and expanding knowledge about game design” in the
form of libraries of design patterns. This push has met with better success,
as in the book Patterns in Game Design [12], the first (2012) International
Workshop on Design Patterns in Games10, and Ken Hullett’s dissertation
[95] which deeply investigates structured design patterns. Design patterns
offer a powerful vocabulary for talking about design choices (particularly
how and why to make certain choices), but there are as yet no standard
game design tools that accept design patterns as input. Thus far, these
patterns are descriptive (allowing reflection on existing designs), and they
cannot be used prescriptively (as formulae for producing new designs) in
an automated way.

In academic circles, the effort to build shared knowledge around game
design has been adopted by some in the field of game studies. For exam-
ple, The Game Ontology Project11 [231], is simultaneously advancing a
structured language for capturing game design knowledge and gathering a
body of knowledge in that language. Similarly, there is effort to flesh out
more precise terminology than that of common game design discussion
such as “game mechanics.” For example, “operational logics” describe
the way in which meaning can be authored with the primitives available

10http://dpg.fdg2012.org/
11http://www.gameontology.com/
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at the code/platform level [137].
The call for structure has not been universal. In the scathing article12

“Against a Formal Language for Game Design,” an anonymous industry
veteran offers insightful counterpoint. The author succinctly summarizes
the utopian aims of the above calls for structure in game design:

The benefits [of formalization], its proponents claim, will be
that game design will finally be rendered a field of study within
which theories can be hypothesized, tested, and either proved
or disproved. With these established knowledge systems in
hand, then, we will be able to discuss, study, and teach game
design more easily and reliably than we are currently capable
of doing.

This seems a fair characterization, but consider the author’s critical
aims. He states his claim: “A formal language for game design will not
lead to generating better game design; nor will it create consensus on
topics in the field; nor will it make communication of game design con-
cepts easier. In fact, a formal language will make it more difficult to
spread knowledge in the field of game design.” Citing a broad basis in
philosophy and literary theory, he claims the establishment of univer-
sal truths of game design (particularly with regards to the appeal of a
game for different audiences) is both undesirable and impossible. “The
‘truths’,” he continues, “expressed in a formal language of game design,
in other words, would only be valid for a particular audience in relation
to a specific conjunction of terms.” Later, “the only people who could
use a formal language to talk to each other,” he pontificates, “would be
the elite group who had invested sufficient time and money to learn the
language.”

To avoid a fall into any one of the multitude of dead-ends highlighted
by this polemical essay requires that the end product of any proposed
general structure for game design be considered. For the purposes of ad-
vancing the practice of game design, we should prefer formalisms that are
productive, even if that productivity comes at the cost of scientific rigor
or formal elegance. Workable formalizations of game design, it seems,
should approach the messiness and situation-dependence of game design
head-on. Abandoning the search for universal truths in game design, we
can instead seek representations that efficiently express the local truths
in specific design scenarios (“a specific conjunction of terms”). For such
knowledge engineering to be worthwhile, the “time and money” invested
must pay dividends in expanded creative reach and insight. When formal
communication will only take place between a designer and his or her

12http://www.micrysweb.com/office/formallanguage.html
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automation tools, the scope of topics to be formalized and the number
of parties who need to intelligibly communicate is immediately reduced
to a realistic scope. The situation-specific focus is the foundation of my
artifacts-as-communication strategy.

Thus, while there is plentiful insight to be gained from browsing,
for example, the Game Ontology Project wiki, I claim where structured
knowledge is needed most is at the project-specific scale. In exploratory
design, we may quickly uncover new territory for which the patterns fit to
more common games break down. On this fringe, we want the support of
external tools to help us organize and apply freshly uncovered knowledge
of interesting and reusable structures.

3.4 Procedural Content Generation

One area where rigid rules for design and prescriptive formulae for design
choices has gained acceptance is in procedural content generation (PCG).
The label “procedural content generation” is a term borrowed from com-
puter graphics; however, the generation of game content via stored pro-
cedures long predates this nomenclature. Canonical early examples of
PCG in games are the generated dungeons of Rogue (Toy, Wichman, and
Arnold 1980) and the generated of star systems in Elite (Acornsoft 1984).
Today, many game titles feature generated content as a primary selling
point such as Spore (Maxis 2008), Minecraft (Mojang 2011), and Diablo
III (Blizzard 2012).

When compared with the alternative of creating game content via
traditional means (manually, using data-oriented authoring tools), the
unreliably-delivered promise of PCG is access to more content than could
feasibly be hand-authored or the same quantity of content content with
less effort. Blindly chasing this promise can lead to problems. Larger
spaces of content are much harder to validate than hand-created collec-
tions, leading to practices like that used in Spore [40] where the output
of the generative procedures that shipped with the game was limited to
what was generated from a relatively small set of random seed values
verified to generate appropriate content in in-house tests before shipping.
Further, the effort to create a generator that produces content competi-
tive with hand-authored content is high and may even exceed the effort
to simply hand-author the required amount of content. This is not to
say that generators cannot meet or beat the quality of hand-authored
content. Of Diorama, a particularly sophisticated map generator for
the real-time strategy game Warzone 2100 (Pumpkin Studios 1999), one
player writes:13 “Looks to make as good or better maps than 90% of the

13http://forums.wz2100.net/viewtopic.php?f=3&t=3011#p29075
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mappers efforts over the last 10 years. Congrats. :)”

3.4.1 PCG Meets Game Design

Used as a generative subsystem in larger games, PCG clearly has uses for
improving replay value and supporting player-adaptation in traditional
game design. However, in examining the motivations and methods of
PCG (particularly those overlapping with AI), PCG sublimates into the
broader reflective practice of game design.

From Rogue (Toy and Wichman 1980) to Canabalt (Adam Atomic
2009), games using PCG for replay value aim to reap the benefits of
potential cost reductions and increased ranges of content. When players
play through a game several times, an abundance of controlled variation
in game content challenges them to master the general principles behind
a game’s systems instead of simply memorizing a single solution script.
Where PCG cannot be applied in a game (perhaps the content is too
subtle to be reliably generated), a common strategy for building gameplay
value through content is to make the first (and perhaps only) playthrough
of a game as exciting as possible through intense hand-authoring (using
linear story-arcs, fixed cut scenes, or dramatic twists that yield the bulk
of their impact during the first time they are experienced).

Using PCG for adaptation implies augmenting a generator with some
means of maintaining relevance to a particular player’s history. The ef-
fectiveness of PCG-based adaptation hinges on both controllability of the
generator (i.e. its ability to reliably produce relevant content) and an un-
derstanding of the mechanisms of relevance. For example, in the abstract
space shooter Warning Forever (Hikware 2003), the generator for the next
boss ship to encounter is driven by knowledge of which weapon type last
destroyed the player’s ship and the order in which the player destroyed
the components of the previously generated boss.

Adaptation, applied to its logical extreme, promises all of the benefits
of a human game master and more. However, short of solving artifi-
cial general intelligence, adaptation introduces the potential for a game
to fail in undiagnosable ways. When players get stuck in an adapting
game, they may not be able to consult wikis, walkthroughs and other
shared repositories of player knowledge that would help them get un-
stuck. Thus, adaptation should be considered when a specific aspect of
the (game) mastered experience is desired and when the cost to potential
player culture-building is acceptable.

Considering PCG as a first-class design element instead of a support-
ing technology is a key tenet of PCG-based game design [201], a concept
defined by parallels to AI-based game design [65]. Instead of using “smoke
and mirrors” to create the illusion of intelligence in game characters (ex-
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ploiting the Eliza effect [226]) or attempting to create “black box” re-
placements for dedicated human level designers [40], these philosophies
and methods suggest examining the affordances of particular systems and
using them to deeply influence game design choices. Instead of trying to
hide the functional quirks and ways in which a nominally supporting sub-
system fails to support the desired illusion, these details can be exploited
to unlock the potential for entirely new kinds of game mechanics. When
supporting systems are developed in an attempt to solve well-defined or
game-independent problems (e.g. attempting to make a fully-generic level
generator), massive opportunities are missed to expand the space of reach-
able game designs with the surplus affordances of existing systems (such
as by giving the level generator a means to communicate with a music
generator, which many games might not have). Further, overly generic
content generation attempts fail to expand the usefulness of PCG systems
by bringing them into contact with the context-dependent concerns of
specific game projects (e.g. allowing generated levels to support a game’s
fixed storyline instead of distracting from it). PCG-based game design
moves beyond an engineering technique to a full-fledged game design re-
search practice. Inside a Star Filled Sky (Jason Rohrer 2011) and Endless
Web14 are highly novel game designs that are simultaneously supported
by and thematically oriented around unbounded spaces of game content.

In an invited talk [112] on the AI of Darkspore (Maxis 2011), Dan
Kline offered his perspective on the strategy of replacing randomness (a
low-sophistication component of many PCG and AI systems) with in-
tentional AI direction15 (in the sense of a film director). The design of
Darkspore demanded significant replay value from a relatively small space
of hand-authored missions (levels) as well as the automatic adaptation
of these missions to player choices (such as how they customized their
character). The introduction of AI into mission generation (an initially
PCG-like goal) quickly broadened into a general strategy touching many
other areas of the game. AI direction offers a way to steer both content
and mechanics (such as simulated die rolls in combat resolution) into ter-
ritory that is more interesting and relevant than would result from “fair”
randomness. Kline captures a suggested progression of development with
this pithy sequence: “0, 1, Rand(), AI”—the introduction of a new
gameplay-relevant feature (perhaps a large boss character at the end of
every mission) should proceed from being not present at all, hard-wired

14http://endlessweb.soe.ucsc.edu/
15Though I use Kline as the spokesman for AI direction, the idea precedes him and

Darkspore. For example, Left 4 Dead (Valve 2008) included an “AI Director” as a
much hyped feature. Much earlier, Pac-Man (Namco 1980) made heavy use of similar
ideas to orchestrate ghost behavior. Rubber-banding and dynamic difficulty adjustment
(DDA) are very similar ideas with long histories in game design.
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to always be present, then present in an interestingly unpredictable man-
ner, and finally present in exactly those conditions the designer deems
appropriate to the player’s ongoing experience (via conditions managed
by an AI system).

3.4.2 Typical Architectures for Content Generators

The space of content generation procedures available for use in games
continually evolves as new kinds of content are tackled and more efficient
and more controllable procedures are discovered for the generation of
familiar kinds of content. The broad categories describing the architecture
adopted by each of these procedures, however, is much more stable.

Procedures such as the diamond-square algorithm [144] for terrain
generation or Elite’s star system generator are said to be constructive
[220]: they are (potentially) randomized procedures that directly con-
struct a single content artifact without explicitly considering alternative
designs or backtracking on unfortunate choices. Composite generators are
said to have an overall constructive (or pipelined) architecture if they con-
tain several sub-procedures organized in a feed-forward manner where the
output artifact of one system becomes the input specification for another
without forming any cycles. In Chapter 15, I compare a declaratively-
specified generator that I created with answer set programming to an
imperatively-specified generator consisting of seven pipelined stages.

Inventing a custom algorithm that will generate exactly the space of
artifacts that a designer has in mind becomes increasingly difficult as new
requirements are discovered. A way around this is to factor the content
generation problem into two parts: developing a simpler-to-validate con-
structive process that overestimates the range of the generative space and
pairing it with a filtering process that tests the validity of candidates
proposed by the generator. In this generate-and-test architecture, it is
possible to select for criteria (such as solvability of puzzles or a lack of
easily detected design flaws) that would be unreasonable to forbid through
clever constructive procedure design alone.

A rich example of this architecture is the Launchpad platformer level
generator [203]. Launchpad uses a generative procedure (itself a com-
posite of smaller constructive generators) to propose undecorated level
designs. A series of critics evaluate candidate levels for adherence to
a target trajectory and over or under-use of specific design components.
Levels emerging from the generate-and-test system are piped through two
final passes that decorate the level with coins (thus yielding a constructive
architecture for the outermost system).

Ideally, new constraints can be added to generate-and-test systems
by simply layering on more testing phases. However, efficiency concerns
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often require major redesigns of these systems to push elements of the
test process deeper and deeper into the generate process (a phenomenon
noted as early as 1969 [190]). Preferably, the candidate generation process
should adapt itself to feedback produced by the testing process automat-
ically and on the fly. This is the strategy adopted in uses of evolutionary
computation in content generators. While sometimes misleadingly clas-
sified as generate-and-test systems [220], evolutionary systems make the
proposal of new candidate artifacts causally dependent on the result of
testing previous artifacts, often by producing syntactic mutations and
combinations of artifacts that have tested well in the past.

In a racetrack generation application, Julian Togelius et al. [217] de-
fined the drivable areas of a track by connecting a set of control points
by a thick spline. Because different control point locations lead to dif-
ferent player driving experiences, an optimization procedure is used to
select a track that scores highly when evaluated by an algorithm trained
to simulate the driving style of a particular player. Initially, the algorithm
starts with a population of 100 sets of randomly placed control points.
The simulated player drives each track, and the 20 best (according to
the authors’ cascading elitism strategy) are retained. Copies and muta-
tions (via random perturbation) of these candidate tracks are generated
to create the population of 100 tracks for use in the next iteration of the
algorithm. Thus, evolutionary generators have components that are rec-
ognizable as filling either a generator or a testing role, however the overall
architecture’s use of test-contingent generation would seem to place it in
an important category of its own.

In each of the architectures above, the generative space (the set of
artifacts that a procedure might generate) is implicitly captured in the
design of an algorithm. Understanding why a particular artifact would
or would not be generated by an algorithm requires walking through the
steps taken by the algorithm. Another architecture for content genera-
tors (one which currently lacks a standard name) attempts to make the
definition of a system’s generative space explicit. I have called this cate-
gory “declarative, solver-based” [195] as it pairs a declarative definition of
the generation problem with domain-independent solving algorithms (the
choice of which does not affect the generative space beyond running time
and statistical biases). In declarative, solver-based generative systems,
it is a designer’s job to specify what they want to be generated instead
of how it should be generated. As with generate-and-test systems, this
allows the generation of content for which a designer cannot imagine con-
structive algorithms, however it does require more critical thinking about
what exactly is desired from that content. One of the primary contribu-
tions of this dissertation is a technique for building declarative, solver-
based generators that capture various design spaces of interest in various
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exploratory game design scenarios. See Chapter 10 for more detail.

3.5 Attempts at Formalization and Automa-
tion

Thus far, work that attempts to formalize or automate aspects of game
design is still very preliminary, and, generally, the more technical the
approach, the less connected it is with the textbook, best practices of
game design.

3.5.1 MDA

Robin Hunicke, Marc LeBlanc, and Robert Zubeck offer the MDA (for
mechanics, dynamics, and aesthetics) framework as a formal approach to
game design and game research [96]. The framework defines mechanics to
be the rules at the level of data representation and algorithms. Dynamics
refer to how a game functions as a system including the run-time behavior
of mechanics acting on player inputs over time. Aesthetics captures ideas
like “fun” and other desirable emotional responses evoked in the player
in reaction to gameplay.

MDA is a “lens” or “view” on game design—something that helps a
designer understand their responsibility and opportunities in design as
opposed to a final definition of the nature of game design. The intent
of the MDA framework is to encourage new designers to formulate and
track personal goals for the aesthetics of the game while mechanics are
being adjusted. In an iterative design process, the framework suggests
continually moving between the three levels of abstraction in response to
experience gained.

To better understand the intangible levels (dynamics and aesthetics),
the progenitors of this framework suggest building models (mathemati-
cal, graphical, etc.) that capture the intended functionality of the game at
that level. Dormans’ feedback diagrams mentioned in § 3.1.1 and Koster’s
and Daniel Cook’s notations mentioned in § 3.3 are examples of graphical
models with some support for mathematical modeling. My Ludocore
system (described in Chapter 12) is an example of one way to produce
a model of game dynamics that both humans and machines can reason
over to gain insight in a design scenario. Ludocore models, in addi-
tion to containing details pertaining to game mechanics, may also include
rich models of expected player choice, giving these models leverage for
understanding dynamics.
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3.5.2 A Factoring of the Concerns in Game Design

In “Towards Automated Game Design” [154], Mark Nelson and Michael
Mateas suggest a description of game design as a problem solving activity.
In place of reducing game design to a single problem (per the strategy
of some systems described later in this section), they offer a factoring
of the concerns of game design into four largely orthogonal categories:
abstract mechanics, concrete presentation, thematic content, and control
mapping. These categories strongly influenced the design of my Biped
system (described in Chapter 13), which was created in collaboration
these authors [198].

In this factoring, abstract mechanics specify how game state evolves
over time with player interaction, including goal conditions for a game.
For example, the abstract mechanics might specify that your character
should move through a network of rooms to collect all treasures and return
them to the starting location. Alternatively, they might simply express
“avoid being hit for five seconds,” where the means of avoidance and the
conditions for being hit are addressed in response to the other concerns
below. In the sport of Tennis, abstract mechanics might refer to rules
that say to increment the score when the ball bounces into certain zones,
not describing how to calculate the ball’s momentum or construct the
court. Steenberg’s concept of the “pivot state” [209] of a game is primarily
concerned with abstract mechanics.

Concrete representations provide an audio-visual representation of the
abstract state of the game. For example, the choice between depicting
time remaining as a clock or a bar graph is a problem to be solved in this
concern. This concern also addresses mechanics that directly support rep-
resentations, e.g. how an abstract resource-gathering mechanic is realized
in terms of a top-down 2D grid space (where tile adjacency might be im-
portant) or a first-person 3D space representation (where direct lines of
sight are important).

The thematic content of a game is the body of real-world references
made by the game content (e.g. visual art, story, or familiar behaviors
mimicked in the game). For example, depicting an element of player state
with the label “health” references the real-world concept of the health of
an organism, something to be preserved (perhaps via an in-game verb
that references the concept of “healing”). Thematic references set up
expectations that are not coded anywhere else in a game’s formal design
choices, and they depend on a player’s familiarity with the referent to
have their desired impact.

Control mappings express the relationship between physical input de-
vices (mice, keyboards, joysticks, etc.) and the state exposed by the ab-
stract mechanics and concrete representation. For example, in most plat-
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former games, pressing a dedicated physical button triggers the abstract
jumping action that is realized concretely by adding an impulse to the
player character’s vertical velocity state and perhaps playing a sound.

Towards automated game design, the authors describe a system that
uses AI-based automated reasoning to configure the thematic content
of generated mini-games. To ensure the games would “make sense,” a
common-sense knowledgebase (the combination of ConceptNet [127] and
WordNet [145]) was checked to make sure the objects referenced by mini-
games conceptually supported the required actions. Given “pheasant”
and “shoot” as input concepts, the system could reason that a “dodg-
ing” game template was applicable for instantiation with a “bullet” and
“duck” sprite.

This factoring primarily speaks to concerns from the M and A in the
MDA framework; it adds incremental formality to a slice of larger game
design. The design of abstract mechanics is just one avenue of exploratory
game design, whether undertaken for its own sake or to seek incremental
novelty within the confines of established genre conventions. Thus, while
this dissertation focuses most heavily on the abstract mechanics of a game
and how those mechanics are enacted game content, the reader should
keep in mind that this effort covers only a slice of a slice of the broader
concerns of game design.

3.5.3 Ludi

In Cameron Browne’s dissertation “Automated Generation and Evalua-
tion of Recombination Games” [22], Browne proposes the idea of auto-
matic recombination of ludemes (“fundamental units of play, often equiv-
alent to a rule” [21]) as the basis for a filtering and playtest-based opti-
mization process. His system, Ludi, makes use of general game playing
(GGP) agents (discussed later in § 6.4) to test generated games. These
automated players sample the space of play supported by the rules. In
place of a statistically uniform sampling of play (which would likely be un-
interesting), the use of strategic agents is an attempt to generate behavior
closer to the realities of human play. The automated players use game-
independent heuristics to search ahead by several moves, each trying to
play the game as well as possible.

Later (in Chapter 14), I describe a project in which I automate search
through a space of rulesets. However, instead of adopting Browne’s hy-
pothesis “that there exist fundamental (and measurable) indicators of
quality” that can be computed, I opt to bring a human designer into the
loop, adding and removing constraints on patterns of interest and general
failure modes as they are incrementally discovered.

Though Browne is careful not to claim that ruleset optimization is an
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accurate model of game design (rather, he says “game design is something
of an art”), others are not so careful. Vincent Hom and Joe Marks [94]
also apply a genetic algorithm to optimize over a space of rulesets using
GGP for automated playtesting. They effectively define “automated game
design” to mean the automatic balancing (for challenge and enjoyment)
of games specifically at the rule-level (as opposed to the level of tweaking
numerical parameters).

3.5.4 A Generic Framework

In perhaps the most formalized (thus directly reusable) and least prac-
tice connected (thus less productive of insight) attempt of which I am
aware, Nathan Sorenson and Philippe Pasquier offer “a generic frame-
work for automated video game level creation” [205]. Noting the common
requirement of custom algorithm development in PCG systems and the
ineffectiveness of standard genetic algorithms (GAs) to handle constraint-
solving tasks, they describe a generic content system built around a single,
carefully selected GA.

The Feasible-Infeasible Two-Population genetic algorithm (FI-2Pop)
[110] is a variation on the standard GA setup to maintain separate pop-
ulations of constraint-abiding and constraint-violating individuals. Infea-
sible individuals are judged, instead of by the normal fitness function, by
the number or severity of constraints they violate. The hope is that the
algorithm can use the mutations and crossovers with individuals in the
infeasible population to “tunnel” across regions of the search space that
variations taken only from the feasible population could not (at least not
efficiently).

Where the use of a GA usually requires the design of problem-specific
data structures and operations, this generic framework applies a fixed
representation in terms of “design elements” (sets of typed record struc-
tures such as “Platform(x,width,height)”) with game independent mutation
and crossover operations (defined over sets of typed records). The fitness
function used to evaluate feasible candidates is also game-independent,
however it does make use of game-specific annotations (a scalar noting
the challenge presented by each design element in isolation). Constraints,
such as that there be at least a certain number of some kind of element
or that there is no spatial overlap between elements of a pair of types,
are expressed declaratively as part of the input to the generation system.
Some constraints, such as that a generated level is “traversable,” are de-
pendent on the structure of elements in a way that narrows the scope of
the framework (though both platformer and 2D adventure game examples
are demonstrated).

Thus, this framework offers the ability to produce generators for new
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kinds of content by specifying only non-procedural details. Applying this
framework to a new type of content requires a declarative grammar of de-
sign elements, global constraints expressed in a language of six (mostly)
generic templates, numerical challenge annotations, and one more aux-
iliary parameter used by the fitness function to evaluate the “fun” of a
candidate by a flow-inspired computation over challenge values [204].

The practice of creating declaratively modeled design spaces that I
develop in Chapter 10 effectively generalizes Sorenson and Pasquier’s
framework. With the constructs of answer set programming, a designer
can declaratively define domain-specific constraints (e.g. variations on
“traversable”) at will as well as define alternative optimization criteria
that may or may not be recognizable as proxy measures for “fun.” Al-
though designers must learn a more complex language than the above
framework’s constraint expressions, the designer is still shielded from the
design details of the underlying generative procedure. Where Sorenson
and Pasquier adopted a general-purpose combinatorial optimization pro-
cedure from the traditions of computational intelligence (CI), I chose to
recycle infrastructure from symbolic AI. From the perspective of a de-
signer utilizing either framework, however, this difference in choice be-
tween philosophies is largely unimportant.

Stepping back, Sorenson and Pasquier’s “generic framework” is a tech-
nical solution for the specific problem of level generation. Towards mech-
anized solutions for other concerns of game design, a broader perspective
must be taken on what could play the role of a design element, where
constraints come from and when they there are applied, and what, if any,
criteria warrant the inclusion of optimization as part of a problem defi-
nition. Such a treatment of game design in general terms is not part of
standard practices in game design, at least not yet.

3.6 Game Design as a Design Discipline

It seems that most work that has engaged videogame design from a for-
mal approach has treated it either as an idiosyncratic craft practice (with
traditional techniques and domain-specific vocabularies) or as an engi-
neering practice (reduced, in part, to rigorous analysis of alternatives by
science-derived or science-inspired methods). The key philosophical turn
taken in this dissertation is to consider game design from the unique and
general perspective of design thinking [48], a perspective that is distinct
from the traditions of the sciences and the humanities. The next section
lays out the foundations of design as a general discipline in order to link
the situation in game design with knowledge coming from other design
domains such as architectural, industrial, and electronic design.
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The promise for game design to learn from the current state of the art
in design research recently began to be explored by others (concurrently
with this dissertation). In “Some Notes on the Nature of Game Design”
[118], Jussi Kuittinen and Jussi Holopainen’s aim “is not to create yet
another prescriptive framework for game design,” referring to textbooks
like Game Design Workshop (which prescribes the “playcentric” brand
of game design methodology), “but rather to connect the game design
studies to general design studies in a stimulating way.” Drawing a number
of the same parallels I highlight in the next chapter, they also uncover
a number of biases and blind spots of the almost-exclusively playcentric
philosophy common in the literature of game design.

This is not to suggest that the only fruitful interaction between game
design and design studies is a kind of learning from one’s elders. Game
design possesses a number of unique properties and crystalizes other prop-
erties (namely interactivity) that are only present in other domains in
a shadowy way. The practices that currently seem tied to games (e.g.
playtesting or the creation of player models) may yet provide broad in-
sight for our general understanding of design. However this will only
happen if we recognize game design as a design discipline, able to inform
and be informed by the lessons learned in other design domains.
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Chapter 4

Design Studies

“Design studies” is not the name of a field, per se, but it is the name
of an influential journal of research that studies the design process. The
work published in Design Studies resides within the umbrella of design re-
search. However, “design research” (amongst other interpretations [121])
can refer to research undertaken within design processes (i.e. within a
particular design project) or through design (i.e. borrowing the practice
of prototyping for use in, say, a scientific setting). Thus, I use “design
studies” to refer to the work that is about design generally—the study of
design processes.

Design Studies was the first academic journal of design (established
in 1979), and it has published a number of the seminal articles that I cite
later in this section. I have adopted the journal’s statement of aims and
scope1 as the reference definition of work that I classify as design studies:

Design Studies is the only journal to approach the understand-
ing of design processes from comparisons across all domains
of application, including engineering and product design, ar-
chitectural and urban design, computer artefacts and systems
design. It therefore provides a unique forum for the analysis,
development and discussion of fundamental aspects of design
activity, from cognition and methodology to values and phi-
losophy. The journal publishes new research and scholarship
concerned with the process of designing, and in principles,
procedures and techniques relevant to the pedagogy of design.

In this chapter, I survey historically influential and personally relevant
results of design studies. This survey is intended to situate my attempt to

1http://www.journals.elsevier.com/design-studies/
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explain and automate the game design process in the context of broader
attempts to explain and automate design in general. The acknowledge-
ment that design, as a discipline, has structure and general phenomena of
study is a strong motivator for many of the methods applied and theories
advanced later in this dissertation.

4.1 The Relationship between Science and
Design

Design studies has a relation to design similar to that which science stud-
ies (such as in the influential work of Thomas Kuhn [117]) has to science.
That is, both are interdisciplinary research areas that seek to situate
a particular kind of professional expertise in a broad social, historical,
and philosophical context. Further, the bodies of expertise they study
are overlapping: scientists design theories and experimental apparatuses
while designers formulate hypotheses and carry out and analyze experi-
ments. The relationship between science and design, between scientists
and designers, is rich and multifarious; “scientific design,” the “science of
design,” and “design science” are each interesting and distinct categories
of study [47, chap. 7]. Touching on each of these areas, my research
consistently approaches the science–design complex from the design end.

Perhaps the most obvious way science and design come into contact
is scientific design: design using the knowledge of science (e.g. materials
science or behavioral science). Scientific design, approximately synony-
mous with engineering, uses the data, models, and instruments of science
while not necessarily using any processes that have been motivated by
or tested through science. Church’s formal abstract (game) design tools
(from § 3.3) may someday allow a kind of scientific game design in the
future. In the mean time, scientific design in games (temporarily ignor-
ing software engineering) most often appears in the form of A/B testing
or the import of science-derived models from other fields (such as the
importation of flow from psychology or the use of statistical modeling
in matchmaking and economic modeling in virtual world management).
Currently, game designers are a long distance off from trusting their tools
and theories to the same level that, say, civil engineers trust finite element
analysis and the theory of stresses and strains that underlies that model.

The science of design is the scientific study of design and designers.
Although it is not the only valid way of studying design, the science of
design is in fact responsible for a significant fraction of what is known in
design studies. Thus, it is natural to ask about the status of a science
of game design. The scientific end of the field of game studies (anchored
in psychology and sociology, e.g. Sherry Turkle’s work on player identity
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[224]) seems to focus on the post-deployment aspects of games: the rela-
tion between game, player, and player culture. A fitting science of game
design, however, would speak to the relation between game, designer, and
designer culture (perhaps seeking explanation for how 400 Project-style
rules of thumb arise).

Finally, design science, a term closely associated with R. Buckminster
Fuller [72], is the systemization of the goals and methods of design with
science-equivalent rigor. The design method [86] would be design’s answer
to the scientific method, an attempt to drive out intuitive or craft-oriented
processes lacking motivation beyond pragmatism or tradition. Despite re-
curring attempts to systematize design in general, design studies records
no dominating framework. Further, in light of ideas such as “wicked
problems” (discussed shortly in § 4.3), we should no longer expect the ex-
istence of such a systemization. Nonetheless, the failed program of design
science contributed immensely to the discussion of design’s methods and
motivations. Kreimeier’s call for game design patterns (which is meeting
growing responses) is evidence of an emerging game design protoscience
(in a neutral sense [119] and as distinguished from pseudoscience).

4.2 Methods of Design Studies

How does one go about the work of design studies? In Design Thinking:
Understanding how Designers Think and Work, veteran design studies
researcher Nigel Cross [48] surveys five methods for researching the nature
of design ability that have made impacts throughout the history of design
studies.

• Interviews with designers: asking successful designers to reflect on
how they operate

• Observations and case studies: retrospective or embedded analysis
of processes used on particular projects in professional environments

• Experimental studies: running think-aloud experiments, often on
artificial design projects, in a laboratory environment

• Simulation: capturing a design method an executable process and
reflecting on the differences between results of simulated design and
what is known of human design methods

• Reflection and theorizing : (non-empirical research methods) pre-
dicting something about design from an external theory (e.g. linking
optimization in design to optimization in mathematics); applying
general design theory in a specific design field (invoking the concept
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of solution-focusing to explain the use of early stage sketching in
architecture projects, perhaps); or the development of theory based
on personal reflection, akin to interview methods, but applied to
one’s self

These methods are primarily derived from the scientific end of design
studies (the science of design). However, as design is an interdisciplinary
field, it is also possible to engage design on non-scientific terms, without
the use of regularized methodologies. In fact, design studies can be en-
gaged in design terms: as a body of knowledge to be synthesized so that
this knowledge is of best use to the designers who would be informed by
it. This approach, curiously called “designing designing” (in John Chris
Jones’ article in the very first issue of Design Studies [99]) or the “design
of design” (in the sense of Fred Brooks [20]), is perhaps the best descriptor
of the design research methods used in this dissertation. The design of de-
sign shares some goals with Fuller’s design science (in the construction of
a body of knowledge that is useful for designers in any domain), however
it relaxes the requirement of rigor in exchange for instrumentalism: a well
designed model of design is one that is productive, regardless of whether it
was derived from observation of past design processes. Traditional design
practices can be redesigned and replaced with new practices.

Looking at the design studies methods I apply in the context of game
design, my research is indeed informed by interviews, particularly Nelson’s
interviews of designers in relation to their potential interactions with fu-
ture design automation tools [156]. In my development of a set of design
automation tools for the educational puzzle game Refraction (see Chap-
ter 15), I offer results from being embedded in a design team working on
a larger, ongoing project. Further, it is possible to interpret my use of
computational caricature of automation in the design process as simula-
tions; my intent is that these systems function as something other than
neutral and accurate simulations (see Chapter 9). The bulk of my work,
from the scientific perspective, can be seen as reflection and theorizing.
However, it is better to understand the work as a series of prototypes in
the design of design: partial mechanizations of game design created to
elicit feedback on the true nature of game design.

4.3 Vocabulary of Design

Examining game design through the lens of design studies immediately
highlights instantiations of a number of concepts that already have widely
accepted names. The vocabulary of design is rich and ready to speak new
insights about the nature of game design.
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In 1973, Horst Rittel and Melvin Webber introduced the concept of
“wicked” problems in the context of social policy planning [171]. They
contrasted wicked problems, which have no definitive formulation and
no ultimate test of solutions, with the “tame” problems in mathematics,
playing Chess, and puzzle solving. While not all design problems are
wicked problems in the exact sense Rittel and Webber defined, the specific
property of “ill-definedness” (directly derived from wickedness) is widely
considered to be an essential element of proper design problems. Game
design, as a whole, is a wicked problem [136] in the full depth of Rittel
and Webber’s definition. Fortunately, many of the concrete problems
that arise in particular game design projects (such as level design for a
particular game) may simply be ill-defined.

Two primary strategies have arisen for addressing ill-definedness. The
first is forcing definedness via a “primary generator” that limits the scope
of the problem in a way that suggests solutions. This terminology is
due to Jane Darke [52] as part of the very first original research article
published in Design Studies. A primary generator often takes the form
of an oversimplifying problem statement (e.g. “it seems like our goal here
is to minimize fuel usage”) for which a solution method is obvious (e.g.
“let’s rank our components by fuel usage and try to cut the worst offenders
first”). Even when the solutions suggested by the primary generator are
found unsatisfying (likely by pointing out a critical piece of the problem
that was abstracted away), the terms set by the generator will often shape
the vocabulary of future problem statements and potential solutions. The
declaratively modeled design spaces described later in this dissertation
(see Chapter 10) function as generators (whose purpose is first to address
ill-definedness and secondarily to mechanically generate artifacts for final
use).

The alternative (and complimentary) strategy is to proceed in the
face of ill-definedness with a leading candidate solution in hopes of elicit-
ing feedback that clarifies the problem and the mechanism by which the
candidate solutions affect the goals of the design scenario (as they are
currently understood). This strategy is a key motivation for the theory
of creativity that I propose in Chapter 16. The generation of design arti-
facts and the gain of design knowledge are mutually dependent processes.
Thus, the idea that knowledge should be gained to improve the quality of
future artifacts is as valid as the idea that artifacts should be created to
improve the quality of knowledge gained.2

Reflective practice, a concept introduced by Donald Schön [182], is

2If this sounds circular, that is because it is. Designers learn to make to learn
to make to learn to—that either learning or making is the end goal is not nearly as
interesting as the cyclic interaction between the two that constitutes the bulk of design
work.
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“the capacity to reflect on action so as to engage in a process of continuous
learning” and “one of the defining characteristics of professional practice”
(including, of course, the practice of design). Thus, the practice of design
is never completely separable from the process of active learning—learning
is as much a responsibility of the professional designer as is constructing
the solutions they are nominally employed to create.

On “problem framing,” Schön continues: “In order to formulate a
design problem to be solved, the designer must frame a problematic design
situation: set its boundaries, select particular things and relations for
attention, and impose on the situation a coherence that guides subsequent
moves” [183]. By enabling rapid development and refinement of design
space models that function as Darke’s primary generators, a machine’s
reasoning ability (usually thought to be of best use in solving problems)
can be brought to bear on framing problems.

Making the distinction between solving the problem as currently un-
derstood and solving the design problem as a whole, Schön (with business
theorist Chris Argyris [4]) distinguish between single-loop and double-loop
learning. Although they originally spoke of organizations and institutions,
in the context of design studies, these ideas are mapped onto designers
and design teams. In single-loop learning, repeated attempts are made
to solve the problem, accepting the problem as fixed (failures are blamed
on the candidate solutions). In double loop learning, failure of candidate
solutions may prompt a redefinition of the problem and the rejection of
original goals. AI offers many methods for automating single-loop learn-
ing. Thus, although single-loop methods will fail to address problems
as design problems, automation of single-loop learning may allow design-
ers to more readily focus on the second loop, that of gaining knowledge
that results in productive redefinitions of design problems. Towards one
of my goals (demonstrating tools that respect design problems), I will
consciously distinguish between the learning undertaken by design au-
tomation systems and that of the designers who employ them.

My final bit of Schön-derived vocabulary is the concept of “situational
backtalk” (the key property which prototypes are designed to elicit),
which follows from a model of design as a “reflective conversation with
the situation” [182, p. 79]:

In a good process of design, this conversation with the situ-
ation is reflective. In answer to the situation’s back-talk, the
designer reflects-in-action on the construction of the problem,
the strategies of actions, or the models of the phenomena,
which have been implicit in his moves.

Several of the computational systems presented in this dissertation
directly aim at opening up wider channels for situational backtalk, but
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they do so under the more familiar (and equivalent) terminology of design
feedback.

In The Sciences of the Artificial [190], Herbert Simon (co-founder of
the field of artificial intelligence as well as a major contributor to de-
sign research) conceives of an artifact as “a meeting point—an ‘interface’
in today’s terms—between and ‘inner’ environment and an outer environ-
ment.” “If the inner environment is appropriate to the outer environment,
or vice versa,” he writes, “the artifact will serve its intended purposes.”
Designing appropriate artifacts requires understanding the relevant mech-
anisms of the inner and outer environments that come into contact via the
interface. Thus, formal models of design spaces (of appropriate artifacts)
will likely commit to models of these mechanisms.

Simon’s comments on design make reference to concepts prevalent in
both AI and operations research: constraints, optimization, and means-
ends analysis (planning). The Rational Model of design (misleadingly
associated with and never actually advanced by Simon) defines the de-
signer’s job as optimizing a candidate artifact under known constraints,
following a plan-driven process through discrete stages. As this model
assumes the design problem is well-defined and well-understood, it was
never adopted in design studies as a valid explanation of human design
activity.

In place of performing optimization in a strict mathematical sense,
Simon suggests that agents satisfice (conceptually, “satisfy” with “suf-
fice” or “sacrifice”) to find decisions that are “good enough” without
continuing the search for better alternatives. Thus, even when an exact
formulation of the value of an artifact is available, optimization is not
necessarily an appropriate decision-making strategy. Focusing exclusively
on satisfaction of constraints or optimization also misses chances for in-
put from reflective practice. Satisficing, however, allows the conditions of
“good enough” to depend on a designer’s estimate of the effort required to
find a significantly improved solution or knowledge of the relative impor-
tance of satisfying different constraints. The concept of satisficing is alive
and actively studied, and it has been observed in the specific processes of
many design fields [47, chap. 1].

In Designerly Ways of Knowing [47], Cross identifies design thinking
with distinct modes of cognition that are often contrasted with science.
Extending this contrast with the humanities, Cross reviews the “three
cultures” view of human knowledge [47, p. 18]:

The phenomenon of study in each culture is
• in the sciences: the natural world
• in the humanities: the human experience
• in design: the artificial world [in Simon’s sense]
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The appropriate methods of each culture are
• in the sciences: controlled experiment, classification, analy-
sis
• in the humanities: analogy, metaphor, evaluation
• in design: modelling, pattern-formation, synthesis

The values of each culture are
• in the sciences: objectivity, rationality, neutrality, and a
concern for ‘truth’
• in the humanities: subjectivity, imagination, commitment,
and a concern for ‘justice’
• in design: practicality, ingenuity, empathy, and a concern
for ‘appropriateness’

Cross summarizes the current understanding of design ability (at least
as of 2006) in “resolving ill-defined problems, adopting solution-focused
cognitive strategies, employing abductive or appositional thinking, and
using non-verbal modelling media.” Of these terms, non-verbal media is
the only element I do not address further in this dissertation.3 Cross’
intent is to refer to how sketches on paper or 3D physical models (e.g.
made of clay or cardboard) engage human abilities for non-verbal percep-
tion (visual, auditory, etc.). Doodles, sketches, and scrap-paper musings
are a valuable part of many game designers’ personal reflective practices4

(capturing character concepts, level designs, user interface plans, etc.).

Abductive and appositional thinking (loosely, the ability to synthesize
artifacts which are appropriate to a design scenario) are covered in depth
in Chapter 8. This chapter untangles the complex relationship between
abductive reasoning in logic (which can be readily automated) and the
related sense of abduction that is tied to appositional reasoning in design.

4.3.1 Glossary

For later reference, here are concise definitions for some of the key terms
emerging from design studies:

• abductive/appositional thinking : reasoning (logical or otherwise) to
the design of an apt or appropriate artifact or explanation

3The adoption of solution-focused cognitive strategies, for example, is embedded in
the process of building declarative design space models. After building a very rough
design space model, a designer can iteratively care away specific pieces of the design
space that contain easily recognizable flaws. In this way, a designer makes progress on
capturing a space of interest without having to first (or potentially ever) articulate an
overall explanation for their interest.

4http://gamestorm.tumblr.com/
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• appropriateness: the property of being fit or well adapted for an
intended purpose

• artifact : the (often human defined) interface/boundary between in-
ner and outer environments

• artificial world : the domain of man-made artifacts (vs. the natural
world or the human experience)

• ill-definedness: lacking a clear definition and implicitly any non-
design means of accessing one

• primary generator : a problem definition which immediately sug-
gests a space of solutions

• problem framing/construction: erecting a problem definition (in the
sense of framing and construction of a house); primary generators
frame a problem in a way that seems immediately solvable where as
alternate framings might suggest the need to gather more informa-
tion before proceeding

• reflective practice: learning while doing, particularly in a way that
transforms the doing

• satisficing : accepting a solution that is “good enough” (despite the
possibility that better solutions, even a well-defined optimum, could
be eventually found)

• single/double loop learning : distinction between learning within the
confines of a problem and learning about the nature of the problem

• situational backtalk : feedback gained from design practice or the
interaction between candidate solution and environment

• solution leading/focusing : offering a solution to gain better under-
standing of a design problem

• wicked problems: problems with no definitive formulation or test of
solutions (including the impossibility of ever having such a formu-
lation or test)

4.4 The Automated Architect

Before I close this survey of design studies, I should review an important
(and surprisingly early) attempt to study the way in which designers en-
gage with alternative realizations of design automation tools. In 1967,

4.4. THE AUTOMATED ARCHITECT 45



Cross reported on a series of experiments he called the “simulation of
computer aided design” (CAD) [46]. These experiments were designed to
explore the potential for machine assistance in architectural design with-
out any particular limitations on the intelligence that might be required
on the machine’s part.5

In each experiment, a designer was tasked with a small architec-
tural design project. Given a design brief (an informal statement of the
project’s goals and known constraints), the designer was asked to produce
a concept sketch. The designer was given access to both conventional
drawing tools as well as an “expert computer” that could be consulted
via messages (in the form of text and sketches) delivered via closed-circuit
television. A small team of building experts (with, for example, knowl-
edge of building materials and constraints from the construction process)
played the role of the “computer” from a nearby location. In order to
explore the natural topics and protocols of conversation between designer
and computer, no language or content restrictions were enforced.

In the majority of sessions, the designers reported that the computer
accelerated their pace of work and reduced uncertainty in the final de-
sign (i.e. increased confidence). However, they also reported that the
work was “hard” and “stressful,” with the computer spotting issues with
nearly every sketch they proposed. In scenarios where the role of designer
and computer were reversed—it was the computer’s job to produce the
sketch and the designer’s job to critique, amend, and refine—the designers
reported no stress and even described the activity as fun.

In the forward scenario (the first), the computer was used to automate
analysis, and the designer’s creative synthesis was subject to criticisms
from the distant machine (which was not aware of the design scenario
beyond what was communicated to it via the designer). This scenario is
roughly analogous to the present situation in formal methods for software
engineering (e.g. model checking [6]) in which candidate designs of soft-
ware systems are submitted for exhaustive analysis for known classes of
bugs and compliance to a formal specification.

In the reverse scenario (where the human architect advises the auto-
mated architect) the computer was used for synthesis (subject to inter-
nally stored constraints), and the computer could proceed largely inde-
pendently of corrective inputs from the designer. This is similar to the
situation in Gillian Smith’s Tanagra platformer level design tool [202] in
which the tool was capable of synthesizing complete levels consistent with
constraints expressed by a human designer, with a bias towards giving the
computer initiative in design. Cross’ reverse scenario is importantly dis-

5In today’s terms, Cross was open to the idea that automated architecture might
be an AI-complete problem. Nonetheless, he wanted to see how it would be played out
in hopes that included readily automatable subproblems.
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tinct from the setup of in interactive evolutionary computation (such as
in PicBreeder [185] and Electric Sheep [59]) in which human input is only
used as an evaluative feedback mechanism. Cross’ reverse scenarios exer-
cised a designer’s ability to synthesize as well as analyze (submitting back
amended drawings and newly articulated constraints).

This project to (in Cross’ terms) “explore what CAD for architecture
might be like” has an interesting historical context that serves to make it
relevant to the present situation in game design. Just a few years after
Sutherland’s seminal Sketchpad [212] system for interactive structural
drawing (the progenitor of modern CAD systems), this project sought to
understand human and machine collaboration for the more abstract end
of architecture, the part that is encoded in technical drawings only later
in the design process. A mere decade after the founding of the field of
AI, this project sought to understand the nature of communication with
intelligent machines not bound by the limits of what was computable in
its present day. In today’s vocabulary, Cross’ experiment seems to be
an exploratory study in human-computer interaction designed around a
“Wizard of Oz” experiment; however this kind of experiment would not
be (re)invented in HCI until the 1980s [107].

The program of mechanizing game design entails exploration of what
CAD for game design might be like. Although we lack the perspective
to know which pre-existing system (if any) functions like Sketchpad
in the context of game design, efforts in automation of individual facets
of the design (such as those described in § 3.5) strongly demonstrate a
possibility for wider automation that extends into the more abstract con-
cerns of game design. The limitations of present-day computation can be
partially sidestepped by building on representations that abstract away
underlying algorithms (as part of the design space modeling practice de-
veloped in Chapter 106). Finally, the artifacts-as-communication strategy,
along with the focus on design spaces, provides a template for interaction
between designer and machine that more closely matches Cross’ reverse
scenario and provides an alternative path to the analysis-heavy route cur-
rently being pursued in formal methods for software engineering.

6For example, during the writing of this dissertation, new back-end software system
was released that allowed many of my previously created content generation systems
to take advantage of multi-core machines without any modifications. Expressed as
declarative definitions instead of custom algorithm designs, some of the engineering
effort of others could simply be inherited.
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Chapter 5

Computational Creativity

Like game design and design studies, computational creativity is a multi-
disciplinary affair that can be approached from several directions (philo-
sophically, artistically, scientifically, designerly, and so on). The goals of
computational creativity (CC) are multiple: to understand how machines
can be creative, to understand human creativity in computational terms,
and to develop computational models of artifact generation in various do-
mains traditionally dominated by human creative effort. A mechanization
of exploratory game design will indirectly speak to the first two aims, but
it is best appreciated as an instance of the third.

The prehistory of computational creativity is entangled with that of
artificial intelligence. In the same article that introduces the imitation
game (now widely known as the Turing Test) and asks “Can a machine
think?” [223], Alan Turing revives what is perhaps the first articulated
opinion on computational creativity. In 1842, Ada Lovelace [131] states
the following (which is widely interpreted as speaking to all machines) of
Charles Babbage’s Analytical Engine:

The Analytical Engine has no pretensions to originate any-
thing. It can do whatever we know how to order it to perform.

Her intent, it seems, is to suggest that if we ever saw a machine orig-
inate something (an idea, an artifact, etc.) we should immediately shift
our credit or blame to the person who ordered it to do so. In the context
of constructive artifact generators (where the space of output artifacts is
defined by a strict, imperative recipe for construction without need for
exploration or reflection), this perspective would seem appropriate. How-
ever, even outside of exotic architectures for generative systems, where
the steps to be performed either depend on what is uncovered in search
(e.g. in evolutionary systems) or are nowhere specified in the “order” (e.g.
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in declarative, solver-based systems), we can quite easily create machines
that (even in Turing’s time) “take us by surprise.”1 The most exciting
systems in computational creativity, I claim, are the ones that allow us to
order the origination of something via steps that we either do not know
how to perform or do not know how to articulate.

In the rest of this chapter, I review some of the vocabulary of compu-
tational creativity literature, sketch the ways in which game design (with
which CC has only had sparse contact) offers new perspectives on CC, and
outline the way this dissertation engages with creativity (computational
and otherwise).

5.1 Vocabulary of Creativity

The vocabulary of computational creativity has no strict boundary with
that of general creativity as philosophers, psychologists, sociologists, and
others approach it. Thus, I focus my review on those terms most needed
in my program of mechanizing exploratory game design.

5.1.1 “Creativity”

“Creativity” has no simple, universally accepted definition, and the same
goes for “computational creativity.” Computational creativity research
proceeds without a unifying definition for creativity in the same way that
artificial intelligence research proceeds without a unifying definition for
intelligence. It is the regular cycle of exploration for attempts at defining
creativity to prompt new perspectives on domain-specific instances of cre-
ativity. The techniques and viewpoints abstracted from those instances
then inform future attempts at general theories. Progress is made by de-
veloping more broadly informed ideas at all scales and through contact
with new and diverse domains.

5.1.2 Novelty, Value, and Surprise

Offered as necessary and sufficient conditions for creativity, three general
concepts underlie Margaret Boden’s [14] influential definition2 of creativ-
ity: “Creativity is the ability to generate ideas or concepts that are novel,
valuable, and surprising.”

1Turing is paraphrasing Lovelace in this quote. He continues: Machines take me by
surprise with great frequency. This is largely because I do not do sufficient calculation
to decide what to expect them to do, or rather because, although I do a calculation, I
do it in a hurried, slipshod fashion, taking risks. [223]

2This is Boden’s working definition of creativity for the purposes of her book, not
a final definition that attempts to put the question of “What is creativity?” to rest.

50 CHAPTER 5. COMPUTATIONAL CREATIVITY



Novelty demands that the idea or concept (from now on, the artifact)
is not simply a copy or a trivial modification of a previous artifact. An
artifact can be mildly novel if it differs from others in an easily describable
way (perhaps in a difference of a numerical parameter), or it can be wildly
novel if it so different as to be incomparable to familiar artifacts (i.e. not
representable in familiar vocabularies). In Boden’s terms, artifacts that
appear novel to an individual may be only P-creative (for psychological
or personal creativity) whereas artifacts that are novel for an entire so-
ciety may be H-creative (for historical creativity). Without reference to
individuals or societies, Graeme Ritchie [170] judges the novelty of a cre-
ative system’s output with respect to the contents of the inspiring set,
“the set of all items used to guide the programmer in the construction of
her program.” The Robot Scientist (a room-sized robot that automates
an impressive range of activity in functional genomics research) [111] and
HR (a mathematical discovery system designed for use in number theory
that has since been applied more broadly) [36] are two H-creative com-
putational systems that yield results appreciably beyond their inspiring
sets. For the purposes of this dissertation, I am most interested in pro-
ducing systems that allow designers to navigate H-creative territory in
game design.

Value demands that generated artifacts be good for something: they
must have monetary value, aesthetic value, utilitarian fitness for a purpose
(function), etc. Harold Cohen’s AARON system [32] produced paintings
that are widely exhibited in galleries and major museums. Scott Draves’
Electric Sheep [59] is a well known animated visual art generator that
functions as a distributed interactive genetic algorithm across hundreds
of thousands of machines and people. Stepping away from high art to
personalized consumer products, thevibe3 is a recent system (and revenue-
bearing business, producing monetary value) that turns waveforms from
user-selected sound files into a 3D-printed, protective case for the user’s
mobile phone. In this dissertation, I intend to produce value for the game
designer (who may value time saved in playtesting or content creation,
insight derived from seeing demonstrations of flaws, or the assurance of a
machine-checked second opinion on the absence of shortcuts in a puzzle).

Surprise is the requirement that novelty and value arise unexpect-
edly (whether informally or in a statistically rigorous sense of expecta-
tion). When hard work, perhaps in an exhaustive analysis of combina-
tions, yields artifacts with novelty and value, the judgment of creativity
is blocked by a lack of surprise. Surprise results when novelty is found
in what is thought to be a small or well-understood space or when value
is located in a large space thought to be mostly filled with uninterest-

3http://www.shapeways.com/creator/thevibe
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ing junk. When exhaustive analysis is hidden away and automated (as
with the design space models developed in Chapter 10), insight-producing
surprise becomes more reachable.

5.1.3 Process vs. Product vs. Producer

In the early seventeenth century, Johannes Kepler discovered three novel,
valuable, and surprisingly simple mathematical laws describing the mo-
tion of the planets around the Sun. History records this as a creative
emergence, but are the laws creative? Was Kepler’s analysis technique
creative? Was Kepler creative? In 1981, Langley reported that the Ba-
con system, a computational model of qualitative equation discovery,
recreated one of Kepler’s laws when given access to the same data set
that Kepler used [120]. Is Bacon creative?

No consensus has been reached on whether creativity lies in the process
used, the end product, or in the (often human) producer. Nonetheless,
particular models of creativity will be defined in terms of particular ele-
ments. For example, Ritchie’s set-theoretic formulation of the potential
creativity of software programs (processes) is defined strictly in terms of
properties of the artifacts (products) it produces [170]. By contrast, the
model of creativity that I advance in Chapter 16 speaks to the creativity
of producers (by examination of their process).

The technical practice of developing design space models described in
Chapter 10 focuses on automatically producing artifacts in a way that
shields a designer from the underlying generative process. The intent
is that the artifacts generated (game structures such as rule sets and
level designs or gameplay traces) are novel and valuable, but I make no
claims as to whether the hidden process implements a creative agent or
not. In the terminology of double-loop learning, creativity in the inner
loop (say, the creation of a level design subject to rigid constraints) is
neither required nor important, so long as insight that drives the outer
loop is produced. After all, my goal is to expand a human game designer’s
creativity.

5.1.4 Combinational, Exploratory, and Transforma-
tional Creativity

Boden [14] names three classes of creative activity on the basis of how
these activities engage pre-existing conceptual spaces:4 combinational,

4Boden’s concept of a “conceptual space” is nowhere rigidly defined. The ambiguity
in what counts as inside or outside of a conceptual space serves to soften and make
subjective the boundaries between combinational, exploratory, and transformational
creativity.
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exploratory, and transformational creativity.

Combinational creativity involves the unexpected combination of two
familiar ideas into a novel and valuable result. The essence of combina-
tional creativity is that the result is reached in a single step. Humorous
two-word phrases can be found with combinations of tokens from a mag-
netic poetry set, and poignant observations can be captured in a political
cartoon by the juxtaposition of object and label. Combinational creativ-
ity can occur at many levels of detail. In game design examples, adding
wings to a Koopa Troopa, in the Mario universe, yields the Koopa Para-
troopa (a relatively small change), and replacing the fantasy theme in
Warcraft with a science fiction theme results in StarCraft (a sweeping
change). Small-scale combinations need to be embedded in a larger con-
text to gain value and large-scale combinations need to be supported by
coherent details at a smaller scale. Although the formation of combina-
tions for well-defined conceptual spaces is relatively easy to automate, the
challenge in judging novelty and value in candidate results for this form
of creativity is in no way lessened.

In Boden’s class of exploratory creativity, several steps must be taken
within a conceptual space to yield a result. Boden’s classic example in-
volves exploring all of the places in a countryside while staying on well-
marked roads. Many locations may be well away from heavily traveled
routes, but any route taken can always be traced on a roadmap. In a
more formal setting, exploratory creativity might involve exploring any
combinations of a set of predefined elements (exploring the powerset) or
any pattern of productions in a formal grammar. The novelty and value
of any result is the product of several interacting choices that together
define an idea or artifact. Linking back to design studies, exploratory cre-
ativity is best identified with single-loop learning: exploration in which
the bounds of the problem are accepted as fixed. In game design, most
low-level design tasks (e.g. assembling a level design from a library of
pre-defined tiles) are within the purview of exploratory creativity.

It bears mentioning that the sense of exploratory game design that
I seek to mechanize is distinct from Boden’s sense of exploration within
a given conceptual space. I am interested in helping designers explore
in order to gain previously inaccessible knowledge whereas Boden’s term
would have them explore in order to catalog the contents of a previously
delimited territory. The sense of exploratory game design I am most
interested in best maps to Boden’s final class.

Transformational creativity is an activity (easily identified with the
outer loop of double-loop learning) that overturns previously accepted
limitations on style and stated goals of exploration. In the driving sce-
nario, transformational creativity might involve getting out of the car to
follow a trail on foot or boarding a plane to leave the countryside alto-
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gether. The results of transformational creativity are simply inexpressible
in the language of previously established conceptual spaces. Transforma-
tional creativity is neither magical nor impossible, but it does require the
ability to reason across different spaces and to forge the rules of a new
space. In game design, transformational creativity can take the form of
the introduction of new mechanics that are not already represented in
an established game genre. New mechanics (composed of rules) allow
completely new trajectories for gameplay and must be supported by new
kinds of content. Transformational creativity is difficult to achieve, let
alone sustain, because, with each transformation, large swaths of past
experience that would drive informed decision-making are made obsolete.
Sustaining transformational creativity requires a means to quickly master
each new conceptual space encountered.

Transformational creativity is the most prized form of creativity; how-
ever, the human creative reach can be expanded by acceleration at any
of these levels. The technical methods advanced in this dissertation pri-
marily focus on using machines to carry out kinds of (perhaps P-creative)
exploratory creativity where feedback from automated exploration will
fuel designers to carry out (ideally H-creative) transformational creativ-
ity by their own processes. That is, from the perspective of Boden’s three
classes, the essential idea of this dissertation is to produce formal models
of the otherwise informal conceptual spaces.

5.1.5 Closed Loops

Computational creativity overlaps with procedural content generation in
the desire to create systems that autonomously generate artifacts for use
in games. However, of the various architectures used in PCG systems,
the ones that resonate with our understanding of human psychological
processes have a preferred status in CC. Thus, while constructive (feed-
forward or pipelined) processes may reveal interesting structures and re-
quirements for particular game content domains, these software processes
are never taken as a model for the psychological processes underlying
general creativity.

The “generate and test” terminology, common in PCG, is also perva-
sive in CC (e.g. in Yu-Tung Liu’s “dual generate-and-test” model of social
creativity [128]5). As a result, many of the systems demonstrated in a CC
context often employ a generate-and-test architecture at the code level.
In the context of scientific creativity (specifically predatory ecology), the

5Liu’s model was advanced in a Design Studies article and derives from the ideas in
Simon’s Sciences of the Artificial [190], nicely linking computational creativity back
to design studies.
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Lagramge6 equational discovery system [61], employed a grammar-based
generator to propose biologically plausible equations of species population
over time and a model-fitting module to determine the error of the best
numerical fit between the candidate equations and reference data. In an
artistic context, the visual art subsystems of Tableau Machine [200], an
interactive installation piece to which I made large design contributions,
employed a generator based on shape grammars to amass a library of
pictures with known structural motifs and a separate pixel-based analysis
to judge emergent properties of the overall composition.

When referencing “generate and test” in relation to human creative
processes, however, the idea of batch generation and filtering processes
is usually not the intended target. Instead, in describing “the central
feedback loop of creativity,” Gary McGraw and Douglas Hofstadter [141]
refer to “an iterative process of guesswork and evaluation.” While this
process does involve some generation and testing, the idea targeted has
more to do with a closed loop of action and perception. This loop is bet-
ter identified with Schön’s reflective practice or the outer loop of double-
loop learning than the pervasive generate-and-test software architecture.
While the contingent generation feature of evolutionary generation sys-
tems does form a closed loop, this loop (like the inner loop of double-loop
learning) works within a fixed problem definition. The ability to change
the problem requires a certain amount of fluidity or “slippage” (in Hof-
stadter’s terms [92]) not afforded by the genetic representations of most
evolutionary systems.

Transformational or not, closed loops are a common motif in formal
models of creativity. Loops may occur within single agents, as the case of
Kathryn Merrick and Mary Lou Maher’s curious sheep [142] simulation
or AM (the automated mathematician), Doug Lenat’s seminal discov-
ery system [124]. Loops may also occur within societies of communicat-
ing agents, as in Rob Saunder’s Digital Clockwork Muse [178] or David
H. Feldman’s DIFI model (delineating interactions between domains of
knowledge, individual creators, and f ields of adopters) [70].

6Lagramge is the awkwardly spelled successor to Dzeroski and Todorovski’s earlier
equational discovery system, Lagrange. This contrivance allowed gram as a substring
in the newer system’s name, highlighting its use of grammars in the proposal equa-
tions guided by a background theory. Seriously: http://www-ai.ijs.si/~ljupco/ed/

lagrange.html. Following long-established AI traditions, many of my own systems are
named according to shallow puns and set in smallcaps without regard for fitting an
appropriate acronym.
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5.2 Computational Creativity Meets Game
Design

So far, CC has most heavily focused on creative domains with relatively
self-contained artifacts like static pictures and symbolic equations for
which a numerical valuation seems feasible if not fair (e.g. in the case
of equations). While these artifacts can be reinterpreted in different con-
texts to yield different judgments of creativity, they are relatively easy to
represent in a format that makes their most salient properties apparent.
Game design, by comparison, is about crafting spaces of play; games are
devices that afford some kinds of interaction but not others. The creativ-
ity of a game design has much more to do with what players can do with
it than what novelty and value can be found in its representation as a
collection of rules and content. Although game design touches on some
traditional domains of CC (e.g. games often employ visual art and music),
the core of game design involves a unique constellation of concerns that
makes exploring CC in game design a worthwhile project in advancing
our general understanding of creativity. Below, I discuss three issues that
are brought into clear focus by an examination of game design.

Many forms of art involve artifacts that cannot be judged in a sin-
gle instant. For example, music necessarily unfolds in time, making and
breaking several expectations before the piece ends. Similarly, sculpture
unfolds spatially, yielding different snapshot images from different view-
points and continua in between. Gameplay has a unique branching-time
sense of unfolding: a play experience is judged not only by how it hap-
pened to unfold in this instance, but also by how alternative choices (per-
haps those to be attempted in replay) are considered to have fared. A
game that reliably produces a positive emotional experience for its players
may still represent an utter failure for a designer if the designer knows
of systematically ignored possibilities for preferred alternative trajecto-
ries of play that branch off of those regularly observed. A soft sense of
branching-time is present for other art forms (e.g. we can imagine what
happens to characters in a fixed narrative if things had gone differently),
however games make these alternatives into symbolically reified and phys-
ically realizable trajectories via replay.

Examined from another perspective, interactivity is a property that
often goes underexplored in CC research. Games are not the only inter-
active art form nor are they the only form to involve the construction of
interactive machines. Consider architecture: Le Corbusier is often quoted
as saying “the house is a machine for living in” [122, p. 107]. The func-
tion of a building depends on its use by its inhabitants. A building can
be used, misused, and reused for new purposes in the same way a game
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can be played, cheated, and metagamed. Architecture is another domain
that is dominated by indirect design: the goal is to produce an artifact
with which others (who may themselves be creative agents with their own
expressive goals) can assemble a desirable experience.

Play within rigid rules is not unheard of within the study of creativity—
there is surely a continuum including both the Oulipian constrained writ-
ing exercises and the grammar-driven generators inside the poetry and
narrative systems of CC. However, a computational account of the design
of these rule systems, with an eye towards the play they afford, seems
completely unexplored (outside of those efforts to formalize game design,
such as those mentioned in § 3.5).

These game-anchored concerns do not make game design dominate
creativity in other forms of art, but they do highlight explicit areas that
future, universal explanations of creativity must address.

5.3 Mechanization and Computational Cre-
ativity

The discussion above has addressed only a fraction of the big ideas in
computational creativity, but these are enough to articulate the goals of
this dissertation in standard terms. By anchoring this dissertation in
CC, I hope to motivate the particular research practices I adopt as well
as motivate the evaluation I perform. A theme of each of the following
items is that a program to mechanize exploratory game design (to turn it
into a practice where machinery can replace some human labor normally
required to prepare new territories for development) is different from a
program of generally automating game design (replacing human creativity
by machine creativity).

With respect to novelty, recall it is my goal to extend our creative
reach in game design. Part of this is enabling the creation of new kinds
of games that would not have existed otherwise. An evaluation of design
assistance tools that shows the design of one new game (or any number)
would be inconclusive, as we would expect human creativity to eventually
reach any particular design eventually (perhaps by expensively delaying
development of the critical play-time design automation system until it
became absolutely required). Instead, what is important to examine is
the extra burden incurred by designing games outside of familiar territory.
Is innovation less risky than before mechanization? Can transformations
to a conceptual space be evaluated more directly than before via some
new instrument?

As exploratory game design explores unfamiliar territory in game de-
sign, the most valuable artifacts to generate are those that refine a de-
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signer’s understanding, making the new territory familiar. This sense of
value is quite distinct from that used in designing games to evoke a par-
ticular aesthetic response in play. Seeking value for the designer, can we
mechanically identify gaps between a game as-imagined, as-constructed,
and as-played? Is the kind of backtalk elicited by evidence of these gaps
productive for refinements of understanding and suggestive of follow-up
exploration?

Examining an exploratory game designer’s closed-loop creative pro-
cess, there are clearly cycles of action and perception—textbook docu-
mentation of the game design typically describes an iterative process.
However, textbook definitions do not speak to the low-level actions of
game design: how to form a modification to an existing rule, how to
choose the next move in a self-test while keeping a particular play style in
mind, or how to place items and objectives in a level design to bring about
a particular kind of challenge. A mechanization of game design involves
machine-level descriptions of these critical but understudied subprocesses.
Are there other subprocesses that go unnoticed without a mechanization
of their surroundings? In mechanizing one process of exploratory game
design, is another revealed to be a bottleneck in a designer’s discovery pro-
cess? Once identified, can this bottleneck be eliminated? Which loops in
game design are readily mechanized with the technology available today,
and which are blocked on significant improvements in artificial intelli-
gence?

Even though my goals are aimed decidedly short of automating game
design in general, it is instructive to examine the challenges general game
design automation might face. Whether by bottom-up generalizations of
procedural content generation or by top-down operationalization of best
practices in game design, the broader automation of game design is on
the agenda for many. Of a variety of systems designed with the aim of
automating some form of creativity, Bruce Buchanan writes the following
in his 2000 presidential address [25] for the then American Association
for Artificial Intelligence (AAAI):

(1) They do not accumulate experience, and, thus, cannot rea-
son about it; (2) they work within fixed frameworks, including
fixed assumptions, methods, and criteria for success; and (3)
they lack the means to transfer concepts and methods from
one program to another.

Responding to Buchanan’s call for accumulation, reflection, and trans-
fer, my goal of demonstrating tools that respect design problems exactly
aims at preparing the robust toolset that future game design automation
systems will require. Without needing to solve all of creativity first, I can
still make systems that (1) systematically generate informative feedback
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from which designers can learn and reason over; (2) devise representa-
tions for design automation systems that are focused on rapidly exploring
an open-ended variety of working assumptions; and (3) develop domain-
independent design practices backed by symbolic AI tools that do trans-
fer from one domain to another. It is still the designer’s responsibility to
reflect-in-action; however, powerful tools that are well aligned with the
goals of design will empower them to be more creative.
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Chapter 6

Symbolic AI

The goals of artificial intelligence parallel those of computational creativ-
ity. AI seeks to understand how machines can be intelligent, understand
human intelligence in computational terms, and demonstrate models of
intelligent behavior in the contexts traditionally dominated by human in-
tellect. With upwards of half a century of earnest academic and industrial
research, there is now a wide array of freely available machinery ready to
be reused in the service of developing new AI applications.

Symbolic AI is an approach to AI founded on symbolic logic, or, more
broadly, the reflection of human cognitive processes into rules for the syn-
tactic manipulation of symbols. Synonymous with classical AI, symbolic
AI emerged during a time before many of the distinct areas of study in
modern day computer science separated and stabilized. As a result, many
ideas from early explorations with the symbolic AI approach are now to
be found in the foundations of several fields that retain no obvious links
to symbolic logic.

Simon, Newell, and McCarthy are three names closely associated with
symbolic AI. Herbert Simon (1916–2001) (whose impact on the nascent
field of design studies I have already reviewed) was consumed with the sim-
ulation and systemization of human individual and organizational decision-
making. His terminology including “satisficing” and “bounded rational-
ity” found broad adoption in economics, psychology and sociology. Si-
mon’s student, Allen Newell (1927–1992) (whose “knowledge level” con-
cept plays an important role in Chapter 16), pioneered the program of
implementing the symbol manipulation rules of symbolic logic as a soft-
ware program (Newell and Simon 1956), making possible many of the
mechanisms underlying databases (e.g. query planning) and program-
ming languages (e.g. type checking). Developing a broader vocabulary
of symbolic models of human intelligence, Newell’s GOMS model (for
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Goals, Operators, Methods, and Selection rules) effectively founded the
field of human computer interaction (HCI) (Card, Moran, and Newell
1983). Finally, John McCarthy (1927–2011), designer of early Chess-
playing programs and originator of the term “artificial intelligence,” was
concerned with how to express high-level ideas in a machine understand-
able form. Inspired by Alonzo Church’s lambda calculus (a formal sys-
tem in mathematical logic for describing computation), McCarthy’s Lisp
is perhaps the first declarative programming language, and it introduced
both the foundational concepts of functional programming systems (e.g.
garbage collection) and a macro system that promoted the development
of domain-specific programming languages. McCarthy also campaigned
for representation formalisms that are “elaboration tolerant.” Elabora-
tion tolerance is “the ability to accept changes to a person’s or computer
program’s representation of facts about a subject without having to start
all over” or do “surgery” on the formula [140]. Ideally, clarifications to a
formal model can be accomplished with the addition of new facts rather
than re-engineering previous definitions.

These individuals’ contributions suggest that developing symbolic mod-
els of otherwise informal human behaviors, using machines to operational-
ize these models, and engineering declarative programming languages are
powerful research methods that can have radical and rippling impact on
fields seemingly unrelated to symbolic AI. The same methods are applied
in this dissertation, where I hope to have a transformative effect on game
design.

In the rest of this chapter, I review logic programming, summarize
some canonical problems in symbolic AI and common elements of their
mechanized solutions, and situate symbolic AI’s most significant inter-
action with games in the past: general game playing. Finally, I briefly
review Newell’s knowledge level, a way of talking about humans and ma-
chines without making reference to their symbol-level system implemen-
tation details.

6.1 Logic Programming

Logic programming is a programming language paradigm (a peer to, for
example, functional programming and object-oriented programming) that
is based on first-order logic (also known as predicate calculus). As such,
my review of the basic elements of logic programming also serves as a
review of the relevant parts of formal logic needed to understand the
technical content presented later in this dissertation.

Formal logic attempts to set up an equivalence between the truth of
statements made in a natural language (such as English) and the mechan-
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ical provability of statements in a formal notation. For consistency with
the bulk of programming-oriented discussion presented later, I adopt a
programmer-oriented notation in this section in place of the mathematics-
derived notation often used in textbooks of formal logic.1 Consider these
simple statements:

Socrates is a man.
All men are mortal.
Therefore, Socrates is mortal.

In a Prolog-like syntax (which is shared by a large number of logic pro-
gramming languages), the first statement becomes what is called a fact :
man(socrates). In this statement, socrates is a symbol, a syntactic token
that we intend to reference a real-world object (Socrates, the Greek), and
man is a predicate, a property that objects may or may not have (hu-
manness, in this case). Without any other reference to man or socrates,
man(socrates) has as much meaning as prop47(obj3)—it is true that some
object has some property. Conventionally, numbers and general character
strings also make suitable object identifiers, along with compound terms
made from symbols with parameters (e.g. nth_disciple(‘Socrates of Athens’,1)

is a verbose replacement for plato). The name of a predicate, however,
must always be a symbolic atom.

The second statement speaks about a property of many objects. It
maps to a rule: mortal(Obj) :- man(Obj). (implicitly quantified over all
objects that might take the place of Obj—note the use of a capital letter
at the start of the variable name). The rule says that we can prove the
mortal property of an object if we can first prove the same object has the
man property. It should be not surprising that, if a logic program contains
the fact from above along with this rule, the meaning of the program is
the same as if we had simply written the additional fact mortal(socrates).

Rules enable proofs, and proofs allow us to speak of the truth of propo-
sitions (made from objects and predicates). When a rule involves the not

operator, the sense of truth for the following proposition becomes inverted.
The introduction of negation into a logic program allows for an interest-
ing and very useful form of underdetermination. Consider this program
providing rules for determining the truth of two propositions (effectively
predicates without parameters) p and q:

p :- not q.
q :- not p.

1This is an intentional choice made to reduce the body of knowledge required by
future users of logic programming. Just as Lisp can be concisely introduced in its
own terms without invoking the lambda calculus, it is possible to build a workable
foundation for logic programming without leaving the ASCII table (without ∀, ∃, ¬,
∧, ∨, and →).
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NOT

NOT

pq

Figure 6.1: This Boolean circuit is metastable: it may nondeterministi-
cally settle into either one of two states (p is true and q is false or vice
versa).

This program has two stable models (assignments of truth value for
each proposition). In the first, p is true and q is not. In the second, q

is true and p is not. This program is equivalent to the Boolean circuit
in Figure 6.1 where logical negation becomes an inverter gate, proposi-
tions become named wires, and the process of logical inference becomes
the process of value propagation along wires and through gates. In an
extended analogy between logic programs and boolean circuits, a propo-
sition is provable if it corresponds to a wire that can be determined to
have a true value by propagating given values from other parts of the
circuit. If the circuit is metastable (i.e. there are multiple states it might
settle into), the circuit’s stable states exactly correspond to the program’s
stable models.

There are three broad classes of logical reasoning: deduction, induc-
tion, and abduction. Each is associated with a type of logic programming
system that mechanizes that form of reasoning.

6.1.1 Deductive Logic Programming

In deductive logic programming (the most common form), a programmer
provides a body of facts and rules and asks whether a certain proposition,
called the goal, is true. Starting from the fact and rule from the mortality
scenario above, we can ask “Is Socrates mortal?” with the Prolog ex-
pression “?- mortal(socrates).” We can think of this as querying the truth
value of a particular proposition, but the mechanism used is more general.
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We can also ask “Who is mortal?” by including a variable in place of
a specific object identifier: “?- mortal(Obj).” Trying this example in most
Prolog engines yields an answer yes with a concrete result of man(socrates).
That is, given a general pattern as a goal, the Prolog engine seeks to find
proofs of particular instantiations of that pattern. More solutions, if there
are any, can be had by forcing the engine to backtrack and search for alter-
native proofs. The result, of course, is not always yes: “?- mortal(plato).”
quickly yields no because we have not mentioned that Plato was a man nor
have we expressed any other sufficient conditions for deriving mortality.

In more general terms, given rules for deriving effects from causes and
facts asserting the presence of particular causes, deductive logic program-
ming systems mechanize the derivation of the implied effects. Given rules
describing the mechanics of a game and facts describing a sequence of
player inputs, mechanized deduction can determine if the player’s input
achieves some goal in the game world.

6.1.2 Inductive Logic Programming

Where deductive logic programming is about deducing the truth of a goal
pattern, inductive logic programming is about inducing the structure of
a new rule from data. Specifically, inductive logic programming engines
(such as Progol [153]) have the job of constructing a rule so that a set
of required deductions can be made once that rule is added to a back-
ground program. Inductive logic programming (ILP) implements a kind
of machine learning that shades into statistical-relational learning (SRL)
as probabilities are introduced [108].

In the mortality scenario, suppose we are not given the rule for deriving
mortality and must induce it from examples. In the training set used as
input, instances (sets of facts that describe different scenarios) are paired
with labels (facts involving the target predicate to be learned). Here is
the program representing our training set:

man(socrates).
mortal(socrates).
man(plato).
mortal(plato).
-mortal(zeus). % zeus is not mortal

Asking our ILP system to induce a rule for the mortal predicate, the
system considers simple rules before considering more complex rules.
The rule “mortal(X).”—that every object is mortal—correctly classifies
Socrates and Plato, but incorrectly predicts the label for Zeus. Adding
a single term (whose structure is taken from the example data), the pro-
gram tries the rule “mortal(X) :- man(X).” As this rule has a tiny cost (one
clause with one body term) and perfect predictive accuracy, the system
outputs this as the solution to the induction problem.
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Realistic ILP applications involve learning much more complex con-
cepts, often inventing several predicates simultaneously [54]. Further,
many ILP systems can induce rules that trade off predictive accuracy
in exchange for simpler structure of the output rules. Where appropri-
ate, additional knowledge can be provided that restricts the space of rule
structures to those that are plausible in the application domain (often
greatly speeding up search as well) [152].

Returning to general terms, given a set of facts describing observed
causes and effects, inductive logic programming mechanizes the proposal
of general rules that would explain the observed effects from the recorded
causes. Applied in game design, given a complete dump of a game’s state
over time along with facts describing the player’s input, we might con-
jecture that the game causes the player to tend towards play by simple
(but unobservable) rules. Applying ILP, we can mechanize the proposal
of data-consistent models of player decision-making (often simply called
“player models” [193]). In an inductive player modeling application, pro-
viding an appropriate inductive bias over the space of predictive rules to
be considered is a difficult design problem (but an approachable one).

6.1.3 Abductive Logic Programming

When the mechanism linking causes to effects is known (specified by
rules), and specific effects are observed, abductive logic programming
(ALP) mechanizes the proposal of specific unobserved causes that, if as-
sumed, would explain the observations.

Knowing that all men are mortal, and learning that someone named
Xenophon is also mortal, we might reason that this is because Xenophon is
a man. If we know of another means of becoming mortal, perhaps being a
god who sufficiently angers other gods to the point of having immortality
revoked, then an alternative explanation is also possible. However this
second explanation (that Xenophon is a fallen god) seems less likely to be
the case.

In a murder mystery scenario, abductive reasoning is the mode of
thinking that allows us to derive the means, motive, and opportunity
for a murder from the evidence provided. The “deduction” associated
with the famed fictional detective Sherlock Holmes is, in fact, abduction.
When you have eliminated the impossible, whatever remains, however
improbable, may be the truth.

Eliminating the impossible is done by the mechanism of integrity con-
straints in ALP. One integrity constraint might tell us that a person can
only be in one place at a time (or, written in terms of a violation: it is
impossible for someone to be in two different places at the same time).
In this way, if we gather evidence placing someone at one location at the
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time of a murder, we know not to abduce the explanation that they were
also at the scene of the crime at the very same time.

Like inductive reasoning, abductive reasoning is unsound : it can pro-
duce results that are not true. Of those results that are consistent with
observations, Occam’s razor tells us that the simplest explanation should
be considered the most likely. As such, ALP systems (such as Prolog-
ica [167]) make sure to only invent explanatory facts that have a causal
relationship to the observations. Further, many systems expose a weight-
ing system that allows a numerical cost to be associated with potential
explanations. Optimizing this cost metric yields preferred explanations.

When the structure of potential predictive rules can be captured with
a simple set of facts, it is trivial to reuse ALP systems to implement
ILP systems. All that is needed is to pose the question “what is the
structure, if interpreted as a predictive rule, that would correctly classify
all of the training examples (and not violate any integrity constraints)?”
(where the weighting system is used to capture the complexity cost of the
predictive rule and the cost of mispredictions). Further, when the space
of explanatory facts and the cost metric is well defined, it is possible to
reuse deductive logic programming systems to implement ALP systems
with a goal like “?- optimal_explanation(Explanation,Cost).” This reduction
to deductive logic programming is utilized in nearly all ILP systems. For
example, Aleph [207] is a framework for producing heavily customized
ILP systems on top of Prolog.

6.1.4 Prolog

Although Prolog is not the only deductive logic programming language
(Curry [89] is an interesting Haskell-like alternative to Prolog), it is, by
far, the most widely known. As such, it is unfortunately common for
statements made about Prolog to be interpreted as if they were true of
all logic programming languages (deductive or otherwise).

Prolog engines (such as SWI-Prolog [228] or tuProlog [56]) have, at
their core, search algorithms. These algorithms, often based on SLDNF,2

implement a depth-first search process through the space of possible
proofs. Starting with the goal term, Prolog engines chain backwards
through rule definitions to reach facts that support them. When a goal
term cannot be matched with any fact or rule that might be used to prove
it, the search process backtracks. Because of the depth-first nature of the
search process and the likely presence of recursion in the rules provided
by the programmer, it is quite easy to get Prolog engines trapped in infi-

2SLDNF stands for Selective Linear Definite clause resolution with Negation as
Failure [3], but don’t let that scare you away. In effect, it means your code is run
top-to-bottom, left-to-right, chasing down unfamiliar terms as they are encountered.
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nite loops. Even when the rules of a program appear to have the correct
logical reading, whether the program diverges or not greatly depends on
the order of rules in a program and the order of terms within a rule.

The possibility for program divergence, while undesirable from a logi-
cal standpoint, is a symptom of a useful property of Prolog: it is a Turing-
complete programming language. Judging whether an arbitrary Prolog
program will diverge is undecideable (this is just the Halting Problem
in poor disguise). In practice, Prolog programmers memorize a collec-
tion of safe patterns that can be applied to write (hopefully) convergent
programs [210].

6.1.5 Constraint Logic Programming

Though any imaginable program can be expressed in vanilla Prolog (by
virtue of its Turing-completeness), constraint logic programming extends
Prolog with specialized constraint solving algorithms (such as the simplex
algorithm [51] for solving linear programming problems). Constraint logic
programming (CLP) allows programmers to express the subset of their
problem that involves, for example, numerical constraints with a more
natural notation and gain performance benefits from the use of problem-
specific solvers within the overall depth-first proof construction search.

The CLP(Q,R) library [93], allows the Prolog programmer to write
natural-looking constraints over expressions of real-valued numerical vari-
ables. The algebraic expression “ A + 5 < cos(X)” is treated as a single
proposition from the logical perspective (the less-than relation either holds
or it does not). During search, this constraint term is posted to or dropped
from the constraint solver every time the proposition is assumed true or
the choice is backtracked. The constraint solver can block proof con-
struction if a set of mutually inconsistent constraints is ever posted to it.
Finally, before the solution is displayed, the solver can be asked to gen-
erate concrete numbers that can be plugged in for the A and X variables
that witness the satisfaction of the constraint.

It is possible to think of constraint solving in abductive terms: explain-
ing what values should be assigned to these variables so that all of the
constraint expressions yield true and the objective function is maximized
(the desired observation). However, thinking of variables-to-be-assigned
is actually a far more general perspective that can equally well describe
the non-numerical parts of CLP.
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6.1.6 Answer Set Programming

Answer set programming (ASP) is a programming language paradigm3

that overlaps each of the categories mentioned above. Although answer
set programs can be read as first-order logic statements and are usually
expressed in a syntax (called AnsProlog [7]) that bears a strong resem-
blance to Prolog, ASP is based on fundamentally different foundations
than the Prolog-derived traditions of logic programming. Where Prolog
is proof-theoretic in nature—it is oriented around building proofs of goals
(often via backwards-chaining)—ASP is decidedly model-theoretic in its
foundation—it is concerned with enumerating the stable models of a logic
program. When applied to developing descriptions of design spaces (as in
Chapter 10), having the meaning of programs tied to models (which are
directly interpretable as artifact descriptions) instead of proofs (which
might be interpreted only as ordered justification of why an implicitly
specified artifact is appropriate) provides a better mental model for pro-
grammers to adopt.

ASP systems, called answer set solvers, do not search over the programmer-
provided rules directly. The program is first syntactically expanded (i.e.
compiled) into a set of (mostly) Boolean formulae in a process called
instantiation or grounding. Each proposition in the grounded problem
becomes a Boolean variable: something to be assigned true or false in a
particular model. Rules become constraints over these variables, forcing
the conclusion of a rule to be true if each of its premises is true. The
problem emerging from the grounding phase resembles a SAT (Boolean
satisfiability) problem. The problem of enumerating the program’s answer
sets (satisfying assignments to the Boolean variables) is solved by a high-
performance combinatorial search algorithm for finite, but large search
spaces. The nature of the underlying search algorithm, as in constraint
logic programming, is hidden from the programmer and can be swapped
out without altering the semantics of user-crafted answer set programs.

As a result of its alternative foundations, ASP is not subject to many of
Prolog’s noted failings. The semantics for conforming search algorithms
ensure that the search phase of ASP always terminates in finite time
and that, if there is a solution (an answer set), it will be found before
termination. Further, the results of an answer set program are insensitive
to the ordering of rules in a program or the ordering of terms within a

3Whether “answer set programming” is a programming language, a programming
paradigm, or even “programming” at all is a topic of scholarly debate [26]. For me,
however, the situation is simple: AnsProlog is a programming language (at least at the
same level of fuzziness as Prolog); ASP is a paradigm; and, yes, it is “programming”
(a craft practice for making machines do stuff). In my estimation, disagreement on
any of these points only functions to preserve the status quo where ASP is a relatively
obscure academic curiosity, forever in the shadow of crufty old Prolog.
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rule. Although the grounding phase of modern ASP systems is Turing-
complete (a relatively recent change [76]), the grounding phase of ASP is
similarly insensitive to definition ordering.

The key strategy of ASP is to target problems in a specific band of
computational complexity, namely NP-hard combinatorial search and op-
timization problems, and make this family of programs easy to specify (at
the cost of Turing-completeness). This focus, applied both to performance
and usability concerns, on difficult search and optimization problems not
only makes ASP an attractive choice for developing design automation
tools (as the rest of this dissertation argues), but also for providing a
simpler alternative and high-performance foundation for next-generation
ILP systems [43].

6.2 Standard Problems

Combinatorial search and optimization problems arise frequently in the
creation of design assistance tools and play-time design automation sys-
tems. However, these problems are always tied to specific design issues
in specific games. Thus, it is not immediately obvious what, of the large
body of past work in combinatorial search and optimization (which ex-
tends far beyond logic programming), is relevant to learn from or reuse.

Solving a domain specific problem (without inventing an entirely new
algorithm) usually involves identifying which standard problem it most
closely resembles. Thus, knowing a little about the variety of problems
for which we already have high-performance solutions can go a long way
towards accelerating development of solutions for the problems that arise
in the mechanization of exploratory game design.

I provide a non-exhaustive sampling of some common problems. Schedul-
ing involves the assignment of tasks (with durations) to time slots and
resources so that the overall cost or delay of a task set is minimized
and that no resources are overused. Planning involves the invention of
a sequence of actions whose effect on a system is to satisfy some goal.
Theorem-proving seeks a sequence of applications of inference rules that
form a proof of a goal from a set of premises. Constraint satisfaction in-
volves selecting an assignment of values to variables so that all or as many
as possible of a set of constraint expressions is satisfied. Integer program-
ming is a variation on linear programming in the case of integer variables.
Finally, Boolean satisfiability checking asks, given a set of formulae over
Boolean variables representing rules and propositions, whether there is an
assignment of truth values to propositional variables that satisfies every
formula.

I hesitate to list more common problems, as there is little diversity
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of interest in this space of problems. One of the foundational results of
theoretical computer science is that most variations of the above problems
are mutually reducible [104]—an algorithm for one can solve all the rest
at the cost of an encoding that may (only polynomially) inflate the size of
the problem. This phenomenon is not just a theoretical curiosity; it is the
mechanism by which pragmatic designer-programmers can gain access to
search and optimization power tools without committing to a career in
algorithm design.

The search variants of these problems (the ones that answer whether
there is a solution and, if so, what is one such solution) generally have a
complexity in NP-hard (the class that includes SAT) while the optimiza-
tion variants (that seek the smallest, biggest, or otherwise best satisfying
solution) have a complexity in FNP-hard (the class that includes MAX-
SAT). Many algorithms exist to solve the different problems because algo-
rithms designed for particular problems can take advantage of knowledge
of the common structures that commonly arise in that problem. Thus,
while one system, such as SATplan [106], might solve planning problems
by translating them into SAT problems, a faster system, such as FF [91],
might use an algorithm specifically designed to solve planning problems.

The different problems above involve overlapping features such as
propositions, fluents, assignments, constraints and goals. Reducing a do-
main specific problem to one of the standard problems requires express-
ing the concerns of the domain with the structural features supported
by that problem. Many standard problems involve propositions: logi-
cal statements that may or may not be true. Via a grounding process
(also called propositionalization), first-order predicates over the logical
state of a domain scenario can be readily shoehorned into a propositional
framework. Fluents are propositions whose value varies in time. While
planning problems natively involve fluents, their presence can be simu-
lated in non-temporal problem formulations by reifying their value over
time as a predicate that takes a time-point parameter. Assignments are
mappings between domains and ranges, and they are the native struc-
tures of constraint satisfaction problems. If a domain involves assignment
of a variable or value type unsupported by a particular problem, a auxil-
iary predicate (taking a variable-name parameter and a value parameter
and stating that the variable is assigned that value) can be introduced
to model the assignment. Different problems involve different kinds of
constraints (relative ordering of tasks in a schedule, co-occurrence of ac-
tions in a plan, forbidding or requiring the truth of certain propositions
in satisfiability checking, etc.), so picking the problem which most nat-
urally allows the constraints of a domain to be expressed is important
for saving human modeling effort (potentially more important than the
run-time performance gained by making a speed-focused choice). Finally,
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goals are target formulae to prove, explain, or answer (as a query). Goals
and constraints are largely interchangeable: one can constrain that a goal
is achieved or set as a goal that a set of constraints be satisfied.

None of the standard problems will capture exactly the concepts of
interest in particular game design automation problems. However, the
degree to which game-specific problems involve standard features like flu-
ents (perhaps the position of the player character over time) and con-
straints (that there exists a solution to a generated puzzle), the available
software tools for standard problems can be recycled to save the effort of
developing and maintaining entirely new systems.

6.3 Standard Solutions

Without going into the details of any one planning or constraint-solving
algorithm, there are a number of features shared by many advanced algo-
rithms used in combinatorial search and optimization. Without reusable
infrastructure, play-time design automation projects (for richly constrained
problems) would either be encumbered by the need to understand and
apply these features or suffer the run-time performance penalty of not
applying these highly beneficial techniques that are known for their wide
applicability in the combinatorial search community. Even though knowl-
edge of the following features is not required to build design automation
systems with the techniques of Chapter 10, it is instructive to know how
much complexity is hidden under the hood of modern combinatorial search
infrastructure.

6.3.1 Backtracking and Completeness

The template used for many combinatorial search algorithms is the fol-
lowing: make a choice (e.g. assign a variable, select an action, mark a
proposition as true or false, etc.), simplify the resulting problem, and
then invoke the same algorithm on the simplified problem. If the recur-
sive call fails, make a different choice. If there are no more choices to
try, then backtrack on the most recent choice (causing choices at a higher
level to be reconsidered).

This search fundamentally works variable-by-variable, and, upon back-
tracking, entire regions of the search space of potential solutions are dis-
carded as a whole. This is distinct from a generate-and-test setup where
candidate solutions are completely assembled (perhaps making an assign-
ment for every variable) before the constraints or goal conditions of the
problem are checked. Even though not every combinatorial search algo-
rithm uses backtracking, backtracking is an important reference strategy
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to contrast with the more common generate-and-test and contingent4 gen-
eration methods in PCG.

An important property of many backtracking algorithms is completeness—
no feasible solutions are overlooked, and thus, they will eventually enu-
merate all solutions if allowed. Backtracking and completeness are in-
dependent concepts: not all backtracking algorithms are complete (e.g.
depth-first search on a graph with cycles will diverge, missing poten-
tial solutions), and many complete search algorithms do not backtrack
(e.g. breadth-first search). Completeness is an important property for
the artifacts-as-communication strategy. It is informative when an algo-
rithm can report, with certainty, that no artifacts exist with the requested
properties (e.g. to ensure that a puzzle has no shortcut solutions).

6.3.2 Heuristics

Instead of always making the first available choice in a search problem,
most high-performance algorithms will ask a heuristic function to esti-
mate the value of making a particular choice based on the structure of
the remaining problem (e.g. the number of constraints that involve the
variable to be considered next). Heuristics attempt to prioritize search
along promising directions. Admissible heuristics will change the order in
which choice will be explored, but they will not prune away any options
that would eventually need to be explored.

Different heuristics can cause a fixed algorithm to perform dramat-
ically better or worse (in terms of running time) depending on which
structures are present in the problem instance to which they are applied.
Many heuristics encode algorithm-specific search advice, and provide no
potential design insight (aside from the indirect impact of faster prototype
iteration cycles). Thus, I claim design automation tools should shield de-
signers from the need to develop, encode, or choose between heuristics
while exploring new design territory. Although it is often tempting to
encode problem-specific search advice as heuristics (locking the search al-
gorithm into a particular domain), tools should provide hooks that allow
a designer to specify this advice with minimal coupling to the underlying
search algorithm.

4In contingent generation systems, the artifacts emerging from the generation sub-
system depend on the set of artifacts that have previously passed through the testing
subsystem (e.g. how mutation and crossover in genetic algorithms operates on the
population that has passed a selection process based on fitness scores). Backtrack-
ing search, despite making choices that strongly depend on the outcome of previous
choices, does not fit into this category because it builds solutions piece-by-piece and
does not employ any subsystems that directly propose complete artifacts (i.e. they
have no clear “generator” to distinguish from a “tester” even without regard for the
level of contingency).
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6.3.3 Consistency and Propagation

Instead of directly iterating through all potential assignments for a vari-
able (in the heuristic-advised order), many algorithms also explicitly track
the set of values each variable may take given the choices made so far.
When one variable is assigned, it often results in a reduction of the set of
consistent values other variables may take. Thus, propagating constraints
amongst variables can significantly reduce the search space, and such re-
duction is potentially available each time a choice is made by the search
algorithm. Constraint propagation effectively provides an upper bound
on the space of feasible solutions to a problem. As a result, it can provide
early feedback that allows a search algorithm to abandon large branches
of a search space.

Constraint propagation (also called local consistency) can report that
a problem is infeasible (when a set of locally inconsistent constraints is
detected or a variable can be shown to have an empty domain), but it
cannot generally prove that a problem is feasible. There are some prob-
lems for which there are no locally inconsistent constraints, yet the there
is still no satisfying assignment of the variables to be found.5 As a result,
constraint propagation is an incomplete decision procedure for constraint
problems, but it is immensely useful nonetheless.

Constraint propagation can be interleaved with human gameplay to
create new game mechanics. After each move in a puzzle game, the space
of consistent remaining moves can be updated. This space could be vi-
sualized for the player as an optional hint, or it could be used as the
basis for a trigger that notices when the player wanders into infeasible
territory (where they can only make progress by undoing past moves).
Because constraint propagation is weaker than complete search, it often
yields answers quickly, making this technique potentially suitable for on-
line, reactive analysis of live gameplay.

6.3.4 Constraint Learning

Another critical feature of many modern search algorithms that aims to
allow early-escape from infeasible territory is constraint learning. When
the search algorithm encounters a conflict (dead end), instead of simply
backtracking, it analyzes the conflict in an attempt to extract the simplest

5Consider this set of constraints on integers a, b, c ∈ Z: a < b, b < c, and c < a (a
rock–paper–scissors setup). The problem is arc-consistent (i.e. considering each pair
of variables in isolation, for every value one variable may take, there are values in the
other variable’s domain for which the constraint may be satisfied), yet the problem
is infeasible. This trivial problem is not path-consistent (a path-consistency checker,
considering triples of variables, could prove it infeasible), but there are counterexamples
to the completeness of path-consistency algorithms as well.
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underlying cause. When only a small subset of the previous choices are
responsible for violating one of the problem’s constraints, those choices
can be transformed into a new constraint that further prunes the search
space the algorithm must consider. Because this constraint is implied by
previously known constraints, it will only cause pruning of choices that
would have eventually failed anyway; constraint learning does not change
the set of solutions that the algorithm will eventually output, but it does
change the speed at which they are uncovered.

This learning-during-search process is an excellent formalized metaphor
for the learning in the inner loop of double-loop learning. The learner
gains knowledge of new, previously unexpressed constraints that change
how future search will proceed, but at no time is the overall problem
refined in a way that changes what counts as a solution.

6.3.5 Randomness and Restarts

Exacerbated by the inclusion of many of the above advanced techniques
for speeding up search, a common problem with many complete combi-
natorial search algorithms is extremely unpredictable running times. De-
pending on the cleverness of heuristics, constraint propagation, and the
conflict analysis underlying constraint learning, some problem instances
may be completely solved after a few choices while slight variations on the
problem instance will trick the algorithm into plodding through nearly all
possible combinations of choices (a space that is exponential in the num-
ber of assignable variables in the problem).

The heavy-tailed cost distributions associated with deterministic algo-
rithms contribute to their seeming brittle and unreliable (despite theoret-
ical guarantees of termination). The strategy of introducing randomness
and restarts allows an algorithm to trade small increases in best-case run-
ning time for massive decreases in the mean and variance of running times
[85].

The bulk of wasteful search (that explores branches of the search space
containing no solutions) is the result of particularly unfortunate assign-
ments being selected very early in the search process. To avoid spending
time in this unpromising territory, many modern algorithms include logic
that will restart the search (either from the root or from local landmarks)
after a certain number of conflicts (called the cutoff value) are encoun-
tered. However, in a deterministic algorithm without constraint learning
or other side effects of exploration, simply restarting the search would be
pointless, as the algorithm would proceed to get bogged down in exactly
the same area. Accordingly, the general trick is to encourage restarts to
explore alternative choices. Often, an algorithm implements this by occa-
sionally (with some probability) ignoring the advice of the heuristic and
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making a random choice instead. This probability parameter trades be-
tween trust in the domain-independent (but structure-aware) heuristic as
an indicator of where to explore next and trust in the prevalence of con-
flicts as a domain-dependent (but structure-agnostic) signal of solution
likelihood.

If implemented correctly, the introduction of restarts does not affect
the completeness property of an algorithm. The simplest way of retaining
completeness after adding restarts is to automatically expand the cut-
off value after each restart (usually by a constant multiplicative factor,
leading to a geometric progression of cutoff values) so that eventually
the entire space of the finite-by-definition problem can be exhaustively
searched without restarting. More advanced and asymptotically optimal
restart policies (including those that continuously update beliefs about
the running time of the ongoing search process [105]) are also possible.

In Chapter 15, I describe how a geometric restart policy was back-
ported into the implementations of previous game content generators
(originally based on depth-first search), yielding solutions to previously
intractable problems and a mean and variance of running times small
enough to be feasibly measured for comparison to other methods. This
change, applying a small piece of advanced search algorithm design wis-
dom, required alteration of a problem-specific algorithm. In the ASP-
based content generators that I created to replace the original generators,
a wide array of choices for different search heuristics, constraint learning
policies, and restart policies could be explored by simply passing differ-
ent configuration arguments to the domain-independent answer set solver,
leaving the domain-specific problem definition untouched.

6.4 General Game Playing

Historically, the deepest point of contact between symbolic AI and games
has been the development of programs that play strategic games using
AI techniques. Emerging from early explorations with AI Chess playing,
general game playing (GGP) is the symbolic AI problem of playing ar-
bitrary games competitively. Instead of applying human intelligence to
the development of new algorithms for each new game to be played, GGP
agents must be designed to take the rules of an unfamiliar game as input.
Thus, these systems demonstrate that strategic play for arbitrary games
is readily mechanizable. The link between games as artifacts and the
spaces of play they afford (at least in mathematical terms) has a broad
and formal basis in symbolic AI.
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6.4.1 History

In 1958, Newell, Shaw and Simon [157] surveyed the very early stages
of computer game playing. Although early work focused specifically on
Chess as an application area where human players provided an appropri-
ate reference opponent, the foundational principles were always formu-
lated with a broad space of board games in mind. From John von Neu-
mann’s 1928 introduction of the minimax principle as a general theory
of board games, through Claude Shannon’s 1949 instantiation of mini-
max for reasoning in Chess as a plan for how an algorithm could one day
be designed, to Alan Turing’s 1950 hand-simulation of a Chess-playing
algorithm that did not need to evaluate all possible continuations of a
board state, these early efforts were intended to demonstrate that game
playing (an activity involving intelligence and even creativity) could be
meaningfully captured in symbolic terms.

Later, with the development of alpha-beta pruning, quiescence search,
transposition tables, endgame tablebases, and other advanced and often
Chess-specific software and hardware design techniques, machines were
eventually made that could occasionally beat the best human game play-
ers (with the 1996 and 1997 games between IBM’s Deep Blue machine
and reigning world champion Gary Kasparov being a landmark). Human
players in the game of Go, however, still regularly outsmart the best of
Chess-inspired Go-playing machinery. As a result, much game playing
research has shifted focus from Chess to Go, yielding the development
of new methods involving Monte-Carlo tree search that trade worst-case
guarantees for improvements in average-case playing performance [213].

Just as Go-playing programs are informed by the best of the techniques
derived from Chess, GGP agents (such as FluxPlayer [180] and Centurio
[146]) recycle and generalize results from Go-focused developments. Fol-
lowing the general trend in development, it seems that the tricks developed
for particular games eventually find their way into general-purpose tools.
As a result, work that simply intends to use GGP technology, perhaps
in the service of design assistance tools of play-time design automation,
need not be distracted by tracking the latest developments in algorithm
design. The space of games for which, given just a symbolic description,
standard tools can quickly calculate mathematically perfect (or at least
acceptably competitive) play will only increase over time.

6.4.2 Rule Representations

Describing the rules of arbitrary games to a black-box GGP agent is a
technical challenge in itself. Different game playing programs accept dif-
ferent rule representation languages with different levels of expressivity.
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The more a game representation language is restricted, the more assump-
tions the designer of a GGP agent can make about the space of play
(yielding improvements for run-time and strategic performance). At the
same time, loosening restrictions on the representation language allows
for one GGP system to be applied to a much wider space of games, mak-
ing reusable infrastructure available for design automation projects that
cannot afford the development of original, game-specific strategic play
systems.

An example that starts from the heavily restricted end of the spectrum
is the Zillions of Games (ZoG) commercial GGP system.6 The system
ships with encodings of several hundred familiar competitive multiplayer
games such as Chess, Go, and Tic-tac-toe as well as single player games
and puzzles like the 15-Puzzle and Towers of Hanoi. ZRF, the language
capturing the rules of these games, includes constructs for describing the
order of turns, properties and descriptions of game pieces, the initial board
configuration, and winning conditions as geometric relations over board
state. The language is designed for human authoring, and it includes
the ability to reference art assets (such as images to represent pieces)
that will be used when playing games against human opponents and to
include natural language notes (giving an overview of the game’s common
strategies, for example). Because all games in ZRF necessarily involve
cyclic turn-taking over games with completely observable state (i.e. they
are perfect information games), a Chess-inspired (depth-limited alpha-
beta minimax with other common enhancements) algorithm is able to
function as a opponent for any game expressible in ZRF.

Whereas ZoG is a consumer product—an opponent-in-a-box for a va-
riety of familiar games that human players already have traditions of
playing—the AI research community explores the other end of the spec-
trum: they intend to produce competent agents for any game, regardless
of how much attention human players have given that game or games
similar to it in the past. The goal is to advance the state of the art in
strategic search, rather than to create opponents for human players.

The common representation used in machine-vs.-machine GGP com-
petitions is GDL (the Game Description Language) [82]. GDL makes no
Chess-related assumptions—it does not presume the existence of a game
board, pieces, capture rules, or strict alternation between player moves.
In GDL, games are specified by abstract logical rules (akin to Prolog rules)
for determining which statements are true initially, what actions are al-
lowed by each player in a particular game state, and how to compute the
properties of the next game state after player actions are selected [130].
GDL expressions can be used to describe board games with turn-taking

6http://www.zillions-of-games.com/
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by modeling the board and the state of whose turn it is with logical pred-
icates, but it is also possible to model other strategic encounters, such as
card games, that are not defined in terms of the movement of pieces on
a board. The latest variants of GDL can express games with simultane-
ous actions, imperfect information, and spontaneous probabilistic events
[215].

Programs that play GDL games are, in effect, logic programming sys-
tems with hard-coded queries (e.g. which legal action has the highest
estimated value according to this estimation scheme?). GDL constructs
are not so much games as they are state–transition system descriptions:
the rules are a compressed representation of the space of legal board states
and the move-labeled transitions between them. In terms of Nelson’s fac-
toring of the concerns of game design, GDL speaks only to abstract me-
chanics. General game playing is highly relevant to game design automa-
tion; however, it covers just one facet of design interest. In Chapter 12, I
describe my machine playtesting tool, Ludocore, a kind of GGP system
for single-player games specified in a language with the broad expressivity
of formal logic similar to GDL and an intent to be authored by human
game designers similar to ZRF. Later, in Chapter 13, I describe Biped,
a system that allows human play of Ludocore games with a reactive
graphical interface that parallels ZoG’s player interface (something that
does not exist for the GDL ecosystem).

6.4.3 General Game Playing vs. Action Planning

GGP and classical action planning both involve selecting actions that
bring about some goal condition in an environment governed by logical
rules. However, the problems are distinct, with GGP being significantly
more difficult than action planning. In most variations on action planning
problems, performing a particular action in a particular state results in a
unique and easily derivable successor state. As a result, classical planning
algorithms need only decide what to do in the states of the world that
they intentionally bring about. On the other hand, in multi-player games
or games that include an unpredictable natural environment, input from
the other players or nature is needed to deduce which state arises next.
Therefore, in game playing (or non-deterministic planning generally), an
algorithm must consider what to do in any state that its potentially ad-
versarial environment can force it to enter.

This relationship is the same as the one between the complexity classes
NP and AP that describe the problems that can be solved in Polynomial
time by Nondeterministic Turing machines and Alternating Turing ma-
chines respectively. Intuitively, problems in NP can require guessing a
single solution (e.g. a sequence of actions) that can be quickly verified to
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achieve some goal. Problems in AP (equivalent to PSPACE) can require
guessing a general solution policy (e.g. an action to perform in response
to any opponent action) such that a key property of the solution policy
(perhaps that a win for the first player is forced) is verifiable. For a game
with n types of moves played for a maximum k steps (a constant), this
solution policy could take O(nk) space to store in an directly verifiable
form. This is why AP is equivalent to PSPACE and why perfect play
for generalized versions of many games (often played on n-by-n boards)
is PSPACE-complete. For generalized games without a constant depth
bound (e.g. n-by-n Chess [71] or Go [172]), perfect play is EXPTIME-
complete (equivalent to APSPACE).

Unlikely as it sounds, this is good news for the rapid development of
game design automation tools. The problem of simulated play for all
known games breaks down into three major categories, for each of which
there is a concerted and ongoing effort to develop domain-independent
and high-performance combinatorial search and optimization infrastruc-
ture: NP (for deterministic, single-player games), AP/PSPACE (for non-
determinstic or adversarial games with constant depth), and EXPTI-
ME/APSPACE (for adversarial games with non-constant depth). For
problems in NP, SAT-like systems (including most answer set solvers) are
a natural choice for rapidly developing solutions. For problems in AP,
QBF (for unrestricted quantified Boolean formulae, also called QSAT)
solvers such as Quaffle [232] or sKizzo [8] play the same role that a SAT
solver like MiniSAT [206] plays for problems in NP. Interestingly, ad-
vances in QBF solving have determined that treating problems in AP
not as quantified formula to be satisfied but as two-player games to be
won by a specific player yields dramatically more concise encodings and
better solver performance [2]. For games reaching all the way to EXP-
TIME, there are no general-purpose SAT-like tools. However, the very
same game playing systems that enter GGP competitions can be reused
to gain approximate solutions without inventing any new algorithms.

The obsession with perfect strategic play in these formulations of the
game playing problem may seem misguided in light of a human game de-
signer’s interest in producing games for play by human players (who lack
the mental resources to realize perfect play for most games). However,
when a designer is allowed to include extra restrictions (in the form of
additional rules) on the strategies chosen by simulated players, systems
that mechanize perfect play become immediately useful for mechanizing
playtesting against hypothetical players with any biases and handicaps
the designer cares to encode. Imagining that a certain kind of player will
always or never take advantage of particular actions when the opportu-
nity arises, solvers for perfect play directly permit asking “what is the
best/worst thing that could happen to a player who plays according to
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this restriction?” This is exactly the idea of the restricted play framework
proposed by Jaffe et al. in the context of building a game balancing tool
[98].

Assuming that fundamental improvements in algorithms for NP, PSPACE,
and EXPTIME problems will come from experts who are dedicated to
solving these problems in the abstract, formalized game playing, in all of
its variants, is as solved as it is ever going to be. Developing game de-
sign automation systems via reductions to standard problems for which
domain-independent solvers exist is not only a way to avoid project-
specific search algorithm design, it is a way to future-proof7 the design
and implementation of these systems.

6.5 Super-symbolic AI: The Knowledge Level

Almost all of the key results in artificial intelligence are tied to specific
symbolic systems (such as formal logic and frame systems) or specific
sub-symbolic architectures (such as evolutionary algorithms and artificial
neural networks). Nearly all of the broad goals of AI engage with human
intelligence in some way (either as an object of study or a reference point
for comparison); however, the human mind is neither particularly fluent
with formal logic nor is the human brain made from neurons that bear
any deep resemblance to those artificial neurons historically of interest in
AI. To speak about the intelligence of humans and machines in unbiased
terms, a radical alternative mode of discussion is needed that does not
presume or prefer particular details at the symbolic and sub-symbolic
levels.

In the very first presidential address to the then American Association
for Artificial Intelligence (AAAI), Allen Newell set out to define a level of
description and discussion for intelligent systems that was independent of
their symbolic and sub-symbolic architectures [158]. Two key concepts are
co-defined at Newell’s knowledge level : knowledge and rationality. At this
level of description, an intelligent agent (human, machine or otherwise)
is something with a physical body that is capable of actions, a body of
knowledge to which more knowledge can be added, and a set of goals.
These actions, bodies of knowledge, and goals need not be found in any

7Occasionally new facets of combinatorial search algorithms are invented (such as
constraint learning or random restarts) that have sweeping effects on the design of
algorithms for all problems within a complexity class. In these cases, even if one is
an expert in, say, action planning, one may be blindsided by dramatic improvements
uncovered by SAT experts. Not committing to algorithmic details in the design of
search-intensive applications provides insurance against these unexpected exponential
and super-exponential speedups at the cost of a usually polynomial-time encoding
process.
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particular data structures or organs of the agent—they are details we
ascribe to the agent through observation of its overall function in an
environment on the basis of our own knowledge (i.e. it hinges on adopting
an intentional stance [55]).

Defining a “principle of rationality,” Newell writes, “If an agent has
knowledge that one of its actions will lead to one of its goals, then it will
select that action.” Agents will only take actions that are physically pos-
sible and have been selected, but further (optional) extended principles of
rationality may be needed to narrow down the set of selected actions to
just one if such predictive power is desired. “Knowledge,” Newell writes,
is “whatever can be ascribed to an agent so that its behavior can be
computed according to the principle of rationality.” The co-definition of
knowledge and rationality is not accidental—it is a precise definition of
a workable description of an agent at the knowledge level. That is, if an
agent behaves rationally according to the actions, goals, and knowledge
you attribute to it, you have successfully described it at the knowledge
level. The knowledge level cannot, however, tell you whether an agent is
objectively rational or not. Further, the sense of rationality defined at the
knowledge level is largely independent of utility-maximizing economic ra-
tionality (although this is an example of what form an extended principle
of rationality might take).

Given a knowledge level description of an intelligent agent along with
a known symbol level description, we can say that the knowledge level
rationalizes (or puts knowledge-informed intent behind) an agent’s be-
havior while the symbol level mechanizes (or puts subpersonal mecha-
nisms behind) that behavior. The primary function of knowledge level
modeling is to reflect on the apparent function (i.e. knowledge + goals
+ actions) of intelligent systems with the aim of producing new systems
that rationally pursue a similar function more effectively. As a whole,
this dissertation follows a program very much inspired by knowledge level
thinking. It proposes rationale for the behavior of exploratory game de-
signers (suggesting they are after design knowledge and experience that
will expand their ability to confidently design new games) at the same
time that it proposes new mechanisms of game design (offering systems
based on symbolic logic which show how key parts of exploratory game
design can be carried out without the magic of personhood or the re-
quirement of recognizable intelligence or creativity). Chapter 16 offers
a broadly-informed knowledge-level description of game design that, in
light of the formal systems developed in the chapters leading up to it,
makes bold new predictions about the nature of human creativity in de-
sign processes. It culminates in a new, computationally realizable model
of creativity defined expressly at the knowledge level: rational curiosity.
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Chapter 7

Synthesis of Goals

In this brief interlude, I synthesize the goals of my dissertation as concerns
at the intersection of the fields in the previous chapters and link them to
the five cross-cutting strategies mentioned in the introduction. Figure 7.1
provides a high-level visual overview of the major interdisciplinary links
and situates my goals against this interdisciplinary background.

Between game design, design studies, computational creativity, and
symbolic AI, each is an application, an instance, a motivator, or a new
perspective for the others. While it is already uncommon for any pair of
these disciplines to come into contact as deeply as they do here, my work
hinges on bringing all four into simultaneous coherence. In the chapters
to come, I will freely mix the vocabularies of each of these in describing a
new technical process for game design, the declarative modeling of design
spaces, and an array of systems exemplifying this process.

The goal of expanding human creative reach in game design is specif-
ically tied to the concerns of games (vs. general design). To achieve this
goal, I use symbolic AI to give designers new modes of prototyping and
playtesting as well as offer acceleration for game content design and evalu-
ation tasks. Directing these technical interventions where they are appro-
priate requires a description of game design in terms of (computational)
creativity, particularly one that highlights bottlenecks in the creative pro-
cess that can be relieved. The strategies of exploiting a machine’s ability
to automate logical reasoning and the strategy of developing computa-
tional caricatures are most effective towards this goal, where the way in
which machines can and should assist game designers remains wide open
for exploration.

The goal of supporting deep, play-time design automation is not one
that requires creativity, but it does require the automation of key design
thinking processes. In the same way that symbolic AI can be used dur-
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Figure 7.1: Non-exhaustive visual survey of the key interactions between
each of the disciplines that this dissertation engages. The three goals of
the dissertation are synthesized as concerns at the intersection of triads
of these disciplines, with each making heavy contact with symbolic AI.
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ing the design process to support the designer, it can be used in play
to support new and particularly player-responsive game mechanics and
play experiences. This goal is best served by the strategies of focusing on
design spaces over individual artifacts and targeting procedurally liter-
ate designer-programmers who are capable of authoring these spaces for
future games.

Finally, the goal of demonstrating tools that respect design problems is
a natural outgrowth of the perspective adopted in this dissertation when
the specific concerns of game design are factored out. The inherent prop-
erties of design problems as identified in design studies and the demands
of creativity placed by my own model of creativity and that of others
suggests the need for a new generation of software tools that specifically
targets the outer loop of double-loop learning: applying the available in-
frastructure of symbolic AI to help designers in problem formulation and
transformation. The artifacts-as-communication strategy is most effective
towards this goal, where, by speaking in detailed artifacts, the bandwidth
for situational backtalk in exploratory design is greatly enhanced over
specification-oriented feedback mechanisms common in design verification
(e.g. in the formal methods of software engineering).
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Chapter 8

Mechanizing Appositional
Reasoning

In the field of design studies, the term “appositional reasoning” denotes
a mode of cognition that is also labelled “abductive reasoning.” How-
ever, instead of seeking an explanation that is consistent with situational
observations (the logician’s sense of abductive reasoning, readily mecha-
nized with symbolic AI tools), a designer’s appositional reasoning seeks
configurations of artifacts that are appropriate given the designer’s best
understanding of an ill-defined design scenario. In this chapter, I map
the vocabulary of human design practices into the domain of AI knowl-
edge representation, explicating notions such as design space, artifact,
form and function. This mapping suggests new requirements on knowl-
edge representation for design spaces based on a non-explanatory reading
of abduction. In light of these newly discovered requirements, I moti-
vate the translation of the concerns of appositional reasoning into answer
set programming (ASP), a programming paradigm supporting abductive
logic, and articulate concrete demands for a future generation of sym-
bolic AI tools that would better enable the mechanization of appositional
reasoning.

8.1 Introduction

Design automation accelerates human productivity and creativity, but it
often proceeds in narrow, domain-specific directions that neither draw
from nor intentionally contribute to our general understanding of human
design thinking. Work in design studies has explicated ways of thinking
that are unique to design and not subsumed by either the sciences or

87



the humanities [47, preface]. Developing a computational account of the
key ideas in design thinking will unlock new opportunities for design au-
tomation based on domain-agnostic AI techniques and shed light on the
idiomatic use of existing automation techniques.

Recall (from Chapter 4) veteran design researcher Nigel Cross’ iden-
tification of design ability as “resolving ill-defined problems, adopting
solution-focused cognitive strategies, employing abductive or appositional
thinking, and using non-verbal modelling media” [47, chap. 1]. Though
each of these terms refers to deep and complex topics in design studies,
the mention of “abductive” thinking should offer some familiarity to the
AI researcher, but “appositional” less so. Abduction has been called the
“logic of design” [134], in a formal motivation for the leap from required
functions to the potential form of a designed artifact. Why abduction
(the unsound reasoning from observed effects to explanatory causes which
underlies diagnosis) has anything to do with design, however, is better
explained by examining the alternate terminology, that of appositional
reasoning.

In the rest of this chapter, I unpack the concept of appositional reason-
ing with the aim of uncovering the requirements it places on the knowledge
representation for systems that would automate this mode of cognition.
My central strategy is to detach design from the explanation-focused in-
tent of logical abduction and to refocus it on the synthesis of appropriate
design solutions, the core concept of appositional reasoning (as defined in
the next section). This move reveals new uses for AI-supported abduc-
tive logic programming in creating systems that automatically generate
artifacts along with demonstrations of their appropriateness. By map-
ping the idea of a design space (from which artifacts are created through
appositional reasoning) onto the knowledge representation affordances of
answer set programming (ASP), I can realize design automation systems
for a variety of domains while maintaining a strong connection with the
best understandings of human design practices.

8.2 Appositional and Abductive Reasoning

Appositional reasoning, though variously defined [47, chap. 2], is intended
to refer to the synthesis of artifact designs that are apt, appropriate, or
fitting to a design scenario.1 Well-designed artifacts (whether they be
building plans, circuit layouts, or mechanical parts) are intricately mated
to their outer environment and intended use (in that their inner envi-

1Keep in mind that there is more to design than just synthesizing artifacts. To
pick just one other element from Cross’ list, resolving ill-defined problems is another
essential process in design.
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ronment conforms to expected styles, resource constraints, or durability
concerns).

However critical the fit between artifact and scenario, the definition
of the conditions of this fit (perhaps a “fitness function” or “complete
specification”) is rarely available for realistic design problems. Recall the
endemic “ill-definedness” [216] that is incrementally overcome by itera-
tively proposing artifacts that are fit to the designer’s best understanding
of the design problem so far. Given a concrete candidate solution, it is
possible to ask specific questions about what a design scenario requires
even when stakeholders are not able to articulate their needs in general
terms. Throughout this process, the requirements of the design scenario
(the details defining the design problem) are themselves subject to the
same iterative refinement that is applied to candidate solutions.

The strategy of tackling ill-definedness by leading with candidate so-
lutions (one of the designer’s key abilities as Cross noted above) further
emphasizes a designer’s need to be able to reason from the current hy-
pothesized understanding of the design scenario to the design of a fitting
artifact—to apply appositional reasoning. Appositional reasoning is re-
quired not just to produce a final artifact for delivery, but also to even
learn what the problem is!

To a first approximation, “abductive reasoning” and “appositional rea-
soning” are used interchangeably in the literature of design. Interpreting
this practice with an AI reading of abductive reasoning (detailed shortly)
would suggest that the heart of appositional reasoning is to be found in the
process of forming explanations. This is inconsistent, however, with the
accepted understanding of human design processes. Abductive reason-
ing, originally due to Peirce [164], has become associated with “inference
to the best explanation.” The following scenario captures this mode of
inference [100]:

D is a collection of data (facts, observations, givens),
H explains D (would, if true explain D),
No other hypothesis explains D as well as H does.
Therefore, H is probably correct.

In design, however, the notion of observations finds no direct referent,
and there is no universal equivalent of Occam’s razor (often used in judg-
ing the quality of explanation) that generalizes across styles and genres
of design.

Echoing Roozenburg [173], I associate the primary pattern of reason-
ing in design with a non-explanatory sense of abduction, one that he
calls “innovative abduction.” Meanwhile, Magnani’s “manipulative ab-
duction” [133], a mode of scientific reasoning that foregrounds construc-

8.2. APPOSITIONAL AND ABDUCTIVE REASONING 89



tion of artifacts in place of explanations, resembles the solution-focusing
strategy familiar from design thinking.

To forge a link between the appositional reasoning of design and the
well understood abductive reasoning supported by domain-agnostic AI
tools, I need to further unpack the idea of appositional reasoning by ex-
amining the construct to which this reasoning is applied.

8.3 Design Spaces

In the context of this dissertation, I define a design space to be the set of
artifacts (or candidate solutions) that would be appropriate for a design
scenario, given a designer’s experience thus far. To conjure a fitting ar-
tifact, a designer need only sample any element from this set. When the
set is defined extensionally (perhaps as a small collection of pre-approved
artifacts), this task is trivial. In the more interesting case, when the set is
defined intensionally2 (through a definition of the necessary and sufficient
conditions for appropriateness), the task of producing an artifact becomes
intimately tied to the nature of the design space’s formal representation.

The conditions for inclusion in a design space are exactly the condi-
tions of appropriateness. Unpacking appropriateness, we meet the con-
cepts of form and function. Form is comprised of all of the details neces-
sary to realize an artifact (its shape, size, material, internal composition
of subsystems, etc.). Meanwhile, function is the capacity of the artifact
to be used in a larger environment (including interaction with external
agents). This vocabulary could be expanded, as in Gero’s seminal schema
for design prototypes [83]; however, this definition of form and function
are sufficient to articulate a general computational account of appositional
reasoning.

Though design is often idealized as the derivation of form from func-
tion, realistically, the relationship between form and function and between
the two of these and appropriateness is more complex. A designer’s ex-
perience or access to external resources can place strong constraints on
the appropriate form of an artifact, regardless of its intended function.
Likewise, a designer’s intent to embed a signature style or to emulate the
style of another designer is an additional source of constraints on form.
Meanwhile, the sources of constraints on appropriate function are widely
varied as well, from simply pleasing a client to supporting an intended
use (such as dispensing cash) even in the face of an adversarial user or en-

2“Intent ional” means to do something on purpose, with intention. “Intensional”
precisely means being defined by necessary and sufficient conditions—it’s a math thing.
The definition X = {1, 2, 3} is an extensional definition where X = {1 ≤ i ≤ 3|i ∈ N}
is an intensional definition.
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vironment. Requirements placed on an artifact’s function may translate
not just to constraints on form, but also to constraints on the environ-
ments to which the artifact may be deployed (e.g. re-scoping the target
audience).

Sometimes what makes an artifact appropriate is precisely its dys-
function, or, more precisely, its ability to disrupt the function of another
artifact. When trying to probe the robustness of an existing system, de-
signers may seek out artifacts that, in interaction with that system, cause
a failure or other undesirable emergence—playing the devil’s architect.
For example, when designing a system of tax laws, appositional reasoning
is at play in inventing plausible business plans that could exploit loop-
holes in the policy. The function that these likely undesirable artifacts
serve is to argue against the working design of a larger system. The ex-
istence of this type of dysfunctional artifact, even if only conceptual, is
an important form of situational backtalk that drives larger processes in
design thinking.

Appositional reasoning, more deeply, is the construction of artifacts
which come from a designer’s working design space. The design space is a
construct defined by the interleaving concerns of form and function, whose
constraints are driven by both the design scenario (external constraints
articulated and interpreted thus far) and the designer’s own intent and
curiosity.

8.4 Requirements for Knowledge Represen-
tations

At this point, it is clear that a computational account of appositional
reasoning hinges on the ability to formally represent design spaces: col-
lections of evolving constraints on appropriateness which are to be au-
thored in part by external stakeholders and in part by computational
systems themselves. In terms of AI knowledge representation (KR), we
need a substrate that is capable of expressing constraints over a space of
static artifacts (sufficient for judging appropriateness of form). Further,
we require support for expressing constraints on the dynamic interaction
between an artifact and the relevant facets of its environment (sufficient
to judge appropriateness of function). Finally, we clearly need to tie this
representation to efficient tools for sampling artifacts from design spaces.
I offer the following requirements on a KR scheme for design spaces that
satisfyingly supports appositional reasoning:

• Constructivity

– Expresses complete configuration of artifacts
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– Supports automatic artifact generation

• Constraint

– Expresses form constraints (both local and global)

– Expresses function constraints (existential and universal)

• Evolution

– Supports iterative development (elaboration tolerance)

– Supports automatic learning and/or repair of constraints

• Analysis

– Supports justification of appropriateness

– Supports diagnosis of externally provided artifacts

8.4.1 Constructivity

The requirements of constructivity capture my intent that the repre-
sented design spaces are not merely descriptive or analytic; these design
spaces should directly afford automated synthesis of usable artifacts. I say
the configuration of an artifact is complete if that configuration includes
enough detail to realize the artifact without further design thinking. The
configuration may be, for example, simply the input into a lower-level
process for which the generation problem is well-defined (i.e. not a design
problem).

Imperative procedures (such as the constructive content generators
in PCG) certainly offer constructivity; however our goal is to transpar-
ently define a space in terms of appropriateness, not to simply generate
artifacts. By modeling the design space declaratively, a designer gains im-
mediate access to several efficient generation procedures and also future-
proofs their system against radical improvements in generative procedure
design.

8.4.2 Constraint

Appropriateness (the defining concept of design spaces) manifests itself as
constraints on the configuration of artifacts and their potential behavior.
While many existing representations of design spaces only speak to local
constraints on form, such as the top-down composition rules in the shape
grammars emerging from architectural design [27], a desirable KR scheme
will naturally support both local and global constraints on an appropri-
ate artifact’s form. In architectural grammars, local constraints, which
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restrict the interaction between a component and its parent or immediate
children, might ensure that a wall is augmented with either a window
or door, but not both. The requirement that all west-facing walls have
windows (perhaps to capture the light of sunset) cannot be expressed
(without major reorganization of a grammar) as a local constraint in a
system that allows room patterns to be rotated—the west-facing property
of a particular wall is the product of the choice of rotations for all shapes
that hierarchically enclose that wall. Similarly, the constraint that there
be between two and five exterior doors on a building is another state-
ment about a global property of a design that is only detectable from the
analysis of the artifact as a whole.

With respect to function, the scheme should distinguish between those
constraints that an appropriate artifact need only be capable of satisfying
(e.g. that a puzzle have at least one solution, an existence constraint) and
those that it must satisfy in all cases (e.g. that every valid solution to a
puzzle involves a particular strategy of interest, a universal constraint).
In electronic design automation, “high-level synthesis” is primarily con-
cerned with these universal constraints on the function of appropriate
artifacts, specifically the design of hardware with behavior that always
matches the behavior of a reference specification in software [44].

8.4.3 Evolution

Because design spaces are used in an iterative process in which require-
ments are constantly shifting, design space representations should afford
incremental knowledge engineering whereby new knowledge can be in-
corporated into a KR with minimal reengineering of existing definitions,
the property McCarthy calls “elaboration tolerance” [140]. A much more
formal description of elaboration tolerance in knowledge representation
schemes is given in Aarati Parmar’s dissertation [162].

Towards a computational account of the larger design process that
modifies design spaces in response to experience with candidate solutions,
design space representations should be amenable to machine learning and
automated repair (or belief revision) techniques. That is, even though
accelerating the inner loop of double-loop learning (by automatically con-
structing artifacts from a formally defined design space) is a means to
help human designers engage in learning in the outer loop, KR schemes
that afford direct mechanization of learning in the outer loop are clearly
more desirable.
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8.4.4 Analysis

Finally, as design spaces encode design knowledge, I desire that this knowl-
edge representation support usages other than just direct synthesis. A
suitably represented design space should afford not just the generation of
artifacts, but also the generation of justifications for why that artifact is
apt, appropriate, or fit to the current design scenario. That is, it should
permit the reconstruction of design rationale with respect to the expressed
conditions of appropriateness. Additionally, given an externally produced
artifact in the same configuration scheme as those described by the design
space, it should be possible to diagnose why that artifact would or would
not have been generated from the current design space. Such discussions
of the relation of a specific artifact to its degree of appropriateness are
critical to learning in the outer loop. Even though appositional reasoning
is primarily about the synthesis of artifacts, for the cost of encoding a
formal sense of appropriateness, designers should expect something more
than just synthesis in return.

While there are likely to be many KR systems that satisfy these re-
quirements, what is important here is the link between the requirements
and the context of design. Modeling design spaces in a satisfying KR
should allow them to more fluently explore the space of alternative con-
ceptions of what is appropriate than they could otherwise.

8.5 Means of Mechanization

Seeking to mechanize the synthesis of appropriate artifacts, one could
browse through the available high-performance combinatorial search and
optimization tools offered by symbolic AI (such as solvers for the stan-
dard problems reviewed in § 6.2). Although, at some level, nearly all of
the available tools could be used to implement artifact generators, the
problem specification language for different tools will make the task of
capturing a design space easier or harder.

8.5.1 SAT Solvers

Boolean satisfiability (SAT) solvers mechanize the right kind of reasoning:
given a set of design choices (represented by Boolean variables) and set of
constraints (represented as formulae over these variables), a SAT solver
can determine if the constraints are satisfiable and offer an example set
of choices (an assignment of the variables) that witnesses this satisfiabil-
ity. Assuming the other requirements on knowledge representation were
satisfied, Boolean formulae would satisfy the constructivity requirements.

94 CHAPTER 8. MECHANIZING APPOSITIONAL REASONING



Regarding the constraint requirements, the formalism for SAT is ex-
pressive enough to encode any existential property (in propositional logic)
that one could imagine. Adaptation of the algorithms underlying SAT
solvers can be employed to handle universal properties as well [166]. In-
formally, two SAT solvers can be paired in a way that one solver (called
the guesser) searches for a satisfying assignment of only the existentially
quantified variables. Given a satisfying partial assignment, the second
solver (the checker) searches for assignments of the universally quantified
variables that would falsify the first assignment (proving, by existence,
that the universal properties did not hold for that assignment). In this
way, the second solver works as an oracle for the first solver. This is
why the complexity class of problems involving both existential and uni-
versal constraints with exactly one alternation (i.e. 2QBF problems) is
called NPNP —the set of problems that are in NP when given access to
an oracle for NP problems.

Even though SAT solvers can be nested to arbitrary depth to handle
constraints of ever increasing complexity, the approach of modeling de-
sign spaces with the Boolean formulae that SAT solvers understand falls
apart quickly, even in the face of only existential constraints. In this for-
malism, a constraint can say that “variable66 is false or variable102 is
true or variable5013 is true”, but this is far from a natural encoding of
appropriateness for any practical problem. In this formalism, it would be
the designer’s job to build all of these individual constraints from much
higher-level ideas that exist only in their thoughts. In an island map
generation example, stating that all regions adjacent to the edge of an
n-by-n grid map must be covered in water (a simple enough constraint
on form) must be encoded by 4n identically structured constraints over
different variables. That is, the constraint is representable, but only very
tediously.

In terms of my requirements on knowledge representation schemes,
direct SAT encodings completely fail on the evolution requirements. It
would be the designer’s responsibility to reduce the artifact synthesis
problem all the way to expressions over Boolean propositions.3 This rep-
resentation is far from elaboration tolerant—refining the form of one con-
straint means altering all of its propositional instantiations. This same
result would apply for attempts to, say, capture design spaces as planning
or scheduling problems.

3The use of SMT solvers, which allow propositions to be built from richer variable
types than just the Booleans (e.g. real numbers or bit vectors), does not escape this
failing either. Part of what is needed is a first-order representation language that allows
a single rule to talk about entire classes of objects at once (using logical quantification).
The proposition “object_22_width < object_33_width” is a statement about variables
of a numeric type (whose values might come from infinite domains), but it still only
talks about two specific objects: object_22 and object_33.
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8.5.2 Abductive Logic Programming

Revisiting abduction from another angle, abductive logic programming
(ALP, previously reviewed in Chapter 6) is an extension of traditional
(deductive) logic programming that integrates abductive reasoning with
affordances for knowledge assimilation and default reasoning [103]. From
the knowledge representation perspective, ALP importantly allows speci-
fying abduction problems with statements in first-order logic: direct state-
ments about properties of objects or the relations between objects (a
marked improvement over SAT’s abstract Boolean variables).

Where deductive logic programming is usually concerned with whether
a complex query can be proven from given facts, ALP is concerned with
producing (abducing) those new sets of facts that, upon deductive analy-
sis, satisfy a query while not violating any integrity constraints. Because
ALP is simply a symbol-manipulation formalism (as opposed to a model
of explanatory reasoning), one can equally well use it to implement the
constrained construction required of formal design space representations.
The space of artifact configurations and potential interactions with an
environment are captured with the set of abducibles, properties relating
to form and function are captured with deductive rules, and the filtering
of artifacts by appropriateness is specified via integrity constraints.

Unfortunately, most ALP systems have been based on Prolog. Thus,
the search processes they employ are not complete for many problems nor
do they exploit many of the now well-known advances in combinatorial
search technology (such as those features reviewed in § 6.3). Being careful
to avoid divergence or finding ways to encode the constraints of appropri-
ateness in a way that yields acceptable performance often works against
the requirements of evolution. Is there something more elaboration tol-
erant and better performing than ALP that provides a similar modeling
language on top of first-order logic? Given the ability to express appro-
priateness via integrity constraints directly, can the vestigial appendage
of an explicit goal (a feature of explanatory abduction) be removed?

8.5.3 Answer Set Programming

Providing exactly the step up from ALP that I request, answer set pro-
gramming is founded on model-theoretic semantics in place of the op-
erational or proof-theoretic semantics of traditional logic programming
[7]. The notion of a set of supported models provides a cleaner mapping
for the set of appropriate artifacts than does the order-sensitive, proof-
oriented notions behind Prolog-based ALP systems such as ProLogICA
[167].

For an overview of the design and application of a state-of-the-art and
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freely available answer set solving system, see “Potassco: The Potsdam
Answer Set Solving Collection” [78]. For the purposes of this chapter,
however, it is sufficient to understand that these tools support language
constructs that allow the specification of a set of abducible facts (via
choice rules), deductive definitions, and integrity constraints. For a more
thorough treatment of using these representational features to model de-
sign spaces, see Chapter 10.

Beyond the ability to simply construct artifacts, unmodified answer
set solvers have been used to implement concept learning [175], knowl-
edge repair [75], and diagnostic reasoning over ASP representations [18].
Thus, modulo quantitative concerns such as run-time performance and
soft concerns such as degree of usability, ASP satisfies every one of my
requirements for a KR substrate in the service of automated, appositional
reasoning.

8.5.4 Future Demands

ASP is not a panacea, however, as there are still many concepts that a
designer may want to express in a design space model that are tedious to
encode (though not impossible). Specifically, one should demand future
instantiations of ASP (or alternative systems that could compete with it)
to provide better support for non-Boolean properties and more natural
encodings of problems with universal constraints.

The properties one can speak of in basic first-order logic are Boolean
valued; that is, objects either do or do not have a named property. To
name the “west-facing” property of a wall, one must use the proposi-
tion direction(wall56,west)—translated: “it is true that the direction re-
lation holds between the object wall56 and the west object.” If there
are only four direction values of interest, this is only a minor syntactic
inconvenience. However, if directions are measured as an integer num-
ber of degrees (or worse, a real number), the number of instantiations of
the direction predicate produced during propositional grounding in most
ASP systems quickly grows unwieldy. To regain acceptable performance
for this kind of problem (and recover from syntactic inconvenience), future
systems should support a wider array of property types. The experimen-
tal hybrid ASP system Clingcon [80] (used in a few of the example design
automation systems demonstrated later in this dissertation) augments ba-
sic ASP with support for large integer ranges and allows expressions like
“\$abs( direction(wall56) \$- west) \$$<$ 10” for saying “wall56’s direction

is within 10 degrees of the value of the constant west”. Following the SMT
(satisfiability modulo theories) community [23], it seems reasonable to ex-
pect native support for properties with programmer-friendly types such
as bitvectors and arrays in the future.
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Currently, the lack of these features in stable tools requires one to de-
velop helper utilities that expand all combinations of the missing features
before preparing the final knowledge representation. For example, bitvec-
tors can currently be modeled in vanilla ASP systems only by producing
a table of facts encoding the effects of various bitvector operations. Here
is a fact recording one of 64 cases that an unrolled model of 3-bit vectors
would require: bitvector_and(0b110,0b010,0b010).

Although many answer set solving systems are capable of expressing
universal constraints (those that do are called disjunctive solvers), the
manner in which these constraints are expressed is nowhere near as ob-
vious as is expressing existential constraints. Universal constraints must
currently be expressed through a rather counterintuitive technique called
“saturation” [62]. This is unfortunate because universal constraints nat-
urally arise in the description of appropriateness for interactive artifacts
(certainly including game content and game rules). A much more natural
encoding treats the universal constraint as a game: the guesser proposes
an artifact, and a checker representing the environment proposes a re-
sponse. Thomas Eiter and Axel Polleres proposed a general strategy for
modeling elevated-complexity problems in this “guess and check” format
[63], and others have improved upon this approach and generalized it to
complex optimization problems (e.g. subset and Pareto optimization) [77].
However, these techniques could (and I claim should) be built into future
variants of AnsProlog, the representation language for ASP systems.

To handle higher complexity models (those using universal constraints)
with the tools readily available today, one answer set solver can be used
as the the tester that filters that output of another solver used as a gen-
erator. To generate puzzles with no shortcutting solutions, for example,
one solver can propose puzzles that have at least one difficult solution
and another solver can be used to search for simpler solutions to the puz-
zle. This is exactly the same technique as stacking or nesting SAT solvers
mentioned above, but at least this time a more friendly modeling language
is available at each scale.

With today’s available technology, particularly that of ASP, there are
ample resources for developing natural-enough encodings for many design
spaces for which synthesis and analysis can be completely automated.

8.6 Conclusion

Appositional reasoning is a fundamental piece of design thinking, stable
across all domains of design. By unpacking the designer’s appositional
reasoning as a non-explanatory abductive process that aims to produce
artifacts that are appropriate for a partially understood design scenario,
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I have uncovered new constraints on satisfactory, domain-independent
knowledge representations for design spaces. Linking these requirements
to the affordances of abductive logic programming, I have focused at-
tention on the clean representational substrate provided by answer set
programming (ASP). Although ASP is not necessarily the only satisfying
way to represent design spaces, I hope that future developments make en-
coding interesting conditions of appropriateness in this formalism easier
and more fluid.

8.6. CONCLUSION 99



100 CHAPTER 8. MECHANIZING APPOSITIONAL REASONING



Chapter 9

Computational
Caricature

Textbooks of game design advise designers to prototype and playtest as
they iterate towards a final product. However, this high-level advice takes
advantage of the human ability to fill in the gaps; the specific, concrete,
and often project-specific prototyping and playtesting methods depend on
undocumented reflective practices of designers. A mechanization of game
design requires more detail about the myriad interconnected subprocesses
of game design, but, as game design is a wicked problem, no such formal
description can (ever1) be had. My strategy for overcoming this is to
adopt a design-of-design approach, synthesizing formalized fragments of
game design as it could be as opposed to how it objectively is at present.

I propose the creation of computational caricatures as a design re-
search practice that aims to advance understanding of game design pro-
cesses and to develop reusable technology for design automation. Compu-
tational caricatures capture and exaggerate statements about the game
design process in the form of computational systems (i.e. software and
hardware). In comparison with empirical interviews of designers, argu-
ments from established theory, and the creation of neutral simulations of
the design process, computational caricatures provide more direct access
to inquiry and insight about design. Further, they tangibly demonstrate

1The implication here is that mechanizing game design it in itself a wicked problem.
Imagine we had reliable automation for some large part of the design process for certain
kinds of games. The relative cost and abundance of the kind of games producible with
this automation would alter the landscape of what is appreciable as an interesting
and non-trivial game, highlighting different kinds of games as the critical target of
automation. This situation where partial solutions give rise to the next (and often more
difficult) evolution of the problem is one of the hallmarks of wickedness. Nevertheless,
it could be fun.
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architectures and subsystems for a new generation of human-assisting
design support systems and adaptive games that embed aspects of au-
tomated design in their runtime processes. In this chapter, I frame the
idea of computational caricature, review several existing design automa-
tion prototypes through the lens of caricature, and call for more design
research to be done following this practice.

9.1 Introduction

Design research generally intends to understand and advance the process
of design or to transform the space of artifacts that might result from that
process. In many cases, this takes the form of carrying out design projects
with larger questions in mind. In this chapter, I describe a design research
practice that targets game design, specifically addressing the questions
asked by the first Workshop on Artificial Intelligence in the Game Design
Process [67]:

How can retrieval, inference, knowledge representation, learn-
ing, and search loosen the bottlenecks in the game design pro-
cess? How can AI provide assistance to game designers and/or
share the creative responsibilities in design?

In the design of game content artifacts (such as music, level maps, and
story fragments), many automated systems draw heavily on AI search
techniques [220]. In my game content generation work, I have shown how
to use automated inference tools to generate game content from design
space captured in a concise knowledge representation [195] (expanded in
Chapter 10). Earlier, I employed learning and retrieval in a generative
art installation (outside of games) that adapted to its audience to stay
interesting over multiple months of interaction [200].

That the full spectrum of AI has already come into contact with auto-
mated content generation should be no surprise. The design of artifacts by
machines has been a central topic of discussion in computational creativity
[34], a field that uses theory and system building to advance understand-
ing of both machine and human creativity. Recently, I proposed a con-
nection between several computational creativity and AI topics (artificial
curiosity, automated scientific discovery, and knowledge-level modeling)
and the full context of creative game design, making predictions about
the game design process as carried out by human designers and future
machines [196].

I believe that following the program of computational creativity in
the context of game design will continue to advance our understanding of
the design process and unlock the building blocks of a new generation of
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human-assisting design automation tools and currently-unreachable game
systems that embed aspects of the design process in their runtime systems.
Thus, the key question to ask is whether a machine can design, and, if so,
how? Noted design studies researcher Nigel Cross echoes this sentiment
[47, chap. 3]:

Asking ‘Can a machine design?’ is an appropriate research
strategy, not simply for trying to replace human design by
machine design, but for better understanding the cognitive
processes of human design activity.

This question can be tentatively answered by many means. Taking
an empirical approach, Nelson and Mateas [156] interviewed expert game
designers and, through playing the role of the interface between design-
ers and automated reasoning tools, they drew several conclusions about
the potential roles for AI in assisting game designers (including acceler-
ating exploratory prototyping, performing early stage verification of de-
signs, and supporting design-level regression testing). In contrast, my
own development of a knowledge-level theory of creativity in game design
(expanded in Chapter 16) draws weight from established theory in compu-
tational creativity, AI, and game design. Distinct from purely-empirical
or purely-theoretical approaches, I believe the most convincing answers to
the question of whether and how a machine can design games will take the
form of computational systems, inspired by theory and constrained by the
practicalities of what is realizable with today’s computational resources.

I claim that building computational caricatures of the game design
process (with all of the subjectivity and bias that the term implies) will
provide direct access to insight regarding the role of AI in the game design
process.

9.2 Computational Caricatures

The practice of building computational caricatures of the game design
process is tied strongly to the sense of caricature familiar from visual
art, and it holds special promise for game design (where aspects of auto-
mated design are increasingly being embedded into generative and adap-
tive games).

9.2.1 Visual Caricature

In visual art, caricature refers to a style of portraiture (creating images
of a person with the intent to capture likeness, personality, and mood)
in which distortion is used to make the subject more easily identifiable.
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Caricatures attempt to be a better representation of a subject than an ac-
curate depiction (such as a photograph or photo-realistic painting) would
be. Through exaggeration and oversimplification, an artist makes a state-
ment about what is most salient about that subject. Different artists may
decide that different aspects of a subject are the most salient or, agreeing
on saliency, they may decide to present the same aspects in different ways.
As a vehicle for the artist’s claims, these loaded portraits can express some
ideas more quickly than the equivalent verbal description.

What makes a caricature notable is not just the choice of aspects of
the subject that are emphasized but also any of the other choices that go
into it. One artist may decide to borrow stylistic elements such as line
weight or shading techniques from another when creating future carica-
tures. In actuality, a caricature captures two kinds of beliefs: “this is
what is interesting about the subject,” and (implicitly), “this is the most
obvious way for it to be recognizably represented.” In the remainder of
the chapter I will be discussing a kind of abstract caricature that is related
to visual caricature through analogy.

In this analogy, the subject of a caricature (conventionally a human
face) is replaced by a cultural process. In the example systems I describe
later, the subject of each caricature is a proposed process for automating
some aspects of game design through the use of AI. The medium of the
caricature (conventionally ink and airbrush on white paper) is replaced
with computational media: software and hardware. The representation
strategies used to carry out oversimplification and exaggeration (e.g. en-
larging eyes, noses, chins, and ears while eliminating wrinkles and other
blemishes) are translated into choices in a computational system’s imple-
mentation: ignoring certain inputs, focusing on specific subproblems, or
placing very strict requirements on potential users of the system.

However popular, the presence of large, airbrushed chins is not the
essence of caricature. Instead, it is the general use of oversimplification
and exaggeration techniques to make the subtleties of a subject more
identifiable. As such, in the subsequent discussion of computational cari-
cature, it is not my goal to understand the different ways in which cultural
processes can be distorted in order to transform them into software. In-
stead, I want to highlight the use of a caricaturist’s techniques in a com-
putational medium for the purposes of making deeply technical claims
more identifiable.

9.2.2 Procedural Portraits and Computational Cari-
cature

In the general context of using AI in cultural production (which clearly
includes the use of AI in the game design process), Mateas [138] proposed
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the idea of building “procedural portraits”: representations of human
cultural processes in the form of realized computational systems.

Portraits of processes are easily recognizable as simulations. How-
ever, simulations greatly vary in the degree to which the simulator agrees
with the simulated. ACT-R, a system-as-theory cognitive architecture,
has been used to make quantitative predictions about human behavior
[88]. Such simulations are an attempt at accurate modeling (equivalent
to photo-realism in portraiture). By contrast, Weizenbaum’s Eliza, a
simulation of Rogerian psychotherapy in the form of a chatterbot, is best
described (in Weizenbaum’s own words) as a “parody” [227]. Eliza cap-
tures the “nondirectional” nature of Rogerian therapy in a near-stateless
program that simply asks the user about the most recent input. Exag-
geration and oversimplification are used liberally and openly in a charged
simulation like Eliza whereas they would be rationalized or explained
away in a neutral simulation like ACT-R.

By contrast to general portraiture, caricature allows us to be taken
seriously in going after nuggets of truth (or at least proposed truth) with-
out having gotten all of the surrounding details right. One of the values of
caricature is rapidity of recognition. The kind of flash-communication af-
forded by caricatures makes them well suited as conversation-starters. In
the context of system building, procedural portraits can make complicated
and deeply technical arguments accessible, tangible even. The translation
of a (too) familiar human practice into cold, machine crunching can make
it unfamiliar enough that we gain the new perspective required to put
some old questions to rest and ask more important ones.

In the same way that visual caricature encoded two kinds of be-
liefs (statements about the subject and statements about representational
strategies), caricature in procedural portraits conveys two messages: “this
is what is interesting about the human cultural process,” and (implicitly),
“this is the most obvious way to implement it on a machine.” That is,
we can often read more messages from a caricature than the caricatur-
ist intentionally embeds. When a particular system architecture provides
wider affordances for interpreting our message than expected, it is said
to have “architectural surplus” [139]. Identifying sources of architectural
surplus not only improves our ability to communicate through the build-
ing of systems, it paves the way for new kinds of systems that use AI to
manipulate and create human-appreciable meaning automatically. This
process becomes much more concrete when I zoom into the context of
game design.
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9.3 Computational Caricature of the Game
Design Process

Computational caricatures are procedural portraits created with the val-
ues of caricature in mind (enhancing recognizability through exaggeration
and oversimplification). As such, every computational caricature of the
game design process will embed one or more exaggerated and often contro-
versial statements about game design (alternatively thought of as propo-
sitions, claims, or hypotheses). Likewise, every computational caricature
will make wildly simplifying assumptions in the process of reducing their
perspective on design into an arrangement of code that is executable on
a machine. The choice of which concerns to abstract away tells us about
the intersection of what the caricaturist believes is salient and what is
realistically feasible given the implementation techniques known to them.
That a particular computational caricature of game design does not ad-
dress a well-known aspect of human game design practice (perhaps learn-
ing through observing human playtesters) does not immediately imply a
statement of unimportance. Instead, it might imply that the caricatur-
ist knows of no promising architecture for realizing that practice in their
caricature in a way that illustrates the intended claims.

The creation of a computational caricature (whether by a game de-
signer, AI scientist, or design studies researcher) will always invite ques-
tioning beyond whether the statement the caricature seems to push is sim-
ply valid or not. They invite questioning into how accurately the system’s
knowledge representation models a designer’s beliefs: into how the cho-
sen algorithms (perhaps a specific kind of search) captures the designer’s
working processes; into how the machine’s apparent values overlap with
or diverge from those in traditional human practice (such as whether the
value of a game flows from its internal structure, from empirical proper-
ties only observable in playtests, or some interesting balance of these);
and so on.

Tanagra2 [202], a demonstration of mixed-initiative design for plat-
former levels (described in detail later), invites us to explore the statement
“humans and machines should produce game content cooperatively, asyn-
chronously editing a shared design” (my words). Playing with this system
suggests follow-up questions: When an infeasible design arises, should it
always be the human’s responsibility to resolve this? How do we know
when a level design is finished, and can machines have an opinion on the
subject? Should two humans cooperate to design levels in this way? The
machine seems to be faster at verifying basic playability properties than

2In this chapter, the names of computational caricatures are set in italics as would
be works of art and artifice.
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the human; what other asymmetries are there and how should they be
exploited in future design assistance tools?

A visual caricaturist’s preference for certain line weights and shad-
ing techniques translate into a computational caricaturist’s preference for
code-level implementation details. Every computational caricature sets,
reinforces, or breaks precedents in implementation techniques. Every sys-
tem (whether the caricaturist is conscious of it or not) makes the implicit
suggestion that future systems should use a similar problem formulation,
programming language, or software library to realize a given concern.

Even the details of a caricature that are invisible without deep inspec-
tion become potential foundations for future systems and theories. In a
review of content generation systems based on answer set programming
that involved a code-level analysis [195], I found that every system as-
sembled fragments of logic programs on the fly in a process of “dynamic
program construction.” Dynamic program construction, an architectural
motif that appeared to its first users as an implementation detail, has
emerged as a standard practice that future declarative, solver-based con-
tent generators should likely employ. In an interpretation of logic program
fragments as encodings of a designer’s beliefs about a design space, dy-
namic program construction implies a computational model of designers
that heavily recycle domain knowledge between the analysis and synthesis
phases of design.

Taken together, the building of computational caricatures is a design
research practice that, while advancing personal goals (such as sharing
opinionated claims about game design and the technology that should
power future design automation systems), is centered on rapidly com-
municating deeply technical statements about game design and the role
AI can play in its process. By building and sharing these systems, the
caricaturist simultaneously accelerates the discourse around game design
and produces tangible products of value along the way: systems that en-
gage in a human cultural process. The reader should not be convinced by
my claims alone, however. The best demonstrations of the value of the
practice of computational caricature are the caricatures themselves.

9.4 Exemplars

In this section I review three (of many) examples of computational carica-
tures of the game design process found in the wild. None of these systems
were designed explicitly as computational caricatures; nevertheless, it is
possible to pick out statements about design that each system seems to
be pushing and note where unintended details have also lead to revela-
tions about game design. While many of the systems are the product of
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joint work, I attempt to identify the caricaturist behind each system and
speculate on their individual motivations. A sketch of how each of these
examples works as a computational caricature can be seen in Table 9.1.

9.4.1 A Designer in a Box

Cameron Browne’s Ludi is a board game designer in a box, or in Browne’s
words “a system for playing, measuring and synthesizing games” [21]. In
its game synthesizing subsystem, Ludi uses a genetic algorithm to search
the space of games expressible in the same language understood by its
(also search-based) game playing subsystem. Ludi judges the value of
potential games based on properties of typical playthroughs (records of
simulated play between modeled players). These game properties are
encodings of intuitive concepts like “completion,” “duration,” and “un-
certainty” in a mathematical formulation.

Ludi seems to answer our question of whether a machine can de-
sign with a resounding “yes” and continues with the claim that “ma-
chines are human-competitive designers” (again, my words). Yavalath
is a grid-based strategy game designed by Ludi (incidentally, named
by Ludi as well) that is commercially available. On the popular site
BoardGameGeek, Yavalath ranks3 just above the family puzzle card game
Set.

In reaching directly for the mechanical construction of a human ap-
preciable game, Ludi is blissfully unaware of the potential feedback from
human playtesters (it does not employ any), the design patterns used by
any of the games outside of its very specific niche genre, and the need to
redefine one’s own representation system to eventually express new kinds
of artifacts. These are not shortcomings of the system; instead they are
the simplifications that made possible transforming Ludi from a thought
experiment into a live system. The physical existence of Ludi and its
product, Yavalath, materially changes the conversation around machine
design: machines demonstrably can design real, valuable games, and what
remains now is the question of how machines should design (or why ma-
chines design, how we should assign credit/blame between machine and
programmer, and the multitude of related open questions).

Though the particular properties selected for use in Ludi ’s game evalu-
ation routine are presumably not part of the caricaturist’s intended claim,
Ludi demonstrates that there are mathematical properties that we should
look for in two-player, strategic board games that do not immediately re-
duce to classical game theory. This is an unexpected result for human
game design that also suggests a role for machines in the design of future

3http://boardgamegeek.com/boardgame/33767/yavalath
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board games (as verifiers and automated explorers of localized design
spaces).

For machine design, Yavalath’s terse construction in Ludi ’s game de-
scription language raises interesting questions about how much the de-
signer of a representation language affects the products of the systems
that use it. Did Browne, who is independently an experienced board game
designer, do the hard work behind inventing Yavalath by pre-selecting a
representation that was rich with interesting game designs? Similar issues
were raised by the reinvention of fragments of set theory by the math-
ematical discovery system AM [123], resulting in a discussion that has
shaped the discourse around automated discovery for several decades.

9.4.2 Cooperating with the Machine

Gillian Smith’s Tanagra is “a prototype mixed-initiative design tool for
2D platformer level design, in which a human and computer work together
to produce a level.” Upon starting, Tanagra presents the user (assumed
to be a level designer) with a blank canvas and the basic ability to paint
platforms into the game world. A large button labeled “Start Generator”
is also present, and, when pressed, results in the near instantaneous filling
of the canvas with familiar platforming elements (platforms with gaps,
enemies and stompers), all placed to conform to the system’s internal
rhythm-inspired design theory and the limits placed on the player’s avatar
by the associated game’s mechanics. With functionality in place for both
completely unassisted human level design and completely automated level
design, Tanagra invites us to reflect on the give-and-take between the two
designers at work. In a typical demonstration, the human operator will
draw only a few sparse platforms, place high level requirements on large
gaps in the partial design to be filled, and perform minor aesthetic clean-
up activities before declaring the level completed (leaving nearly all of
the low level platform sizing, placement, splitting and recombining to the
machine).

Just a few minutes of observing Tanagra interacting with a human
user (level designer or otherwise) begins to raise the questions mentioned
previously in § 9.3 (e.g. should we communicate only through design ed-
its?). The idea of mixed-initiative design for geometric artifacts where the
human operator expresses high-level constraints and leaves the machine
to adjust the details is hardly new, perhaps originating in Sutherland’s
Sketchpad system [212]. Nonetheless, the existence of Tanagra, operat-
ing in the domain of platformer level design (much more familiar to game
designers and game researchers than Sketchpad’s mechanical design do-
main) transforms the abstract discussion about the distant potential of
a mixed-initiative setup in future game design tools into a more concrete
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discussion. We can now ask very specific, technical questions inspired by
Tanagra’s implementation: Why do no commercial level design tools have
any support for expressing design constraints (such as reachability of some
location by the player’s avatar), even without the ability to automatically
satisfy them?

Where Tanagra zooms ahead of the industry standard platformer level
design tools in support for intelligent assistance (perhaps providing more
support than is needed as an exaggeration to ease one’s recognition of the
system’s aims), it sharply oversimplifies other aspects usually required of
platformer level design tools: exporting files for use in an external game
(Tanagra lacks a “save” button), importing custom tilesets, and placing
additional level details such as background art, flying enemies, optional
paths, scripted and triggered events, etc. As a computational caricature,
these distortions of platformer level design are welcomed in exchange for
a tangible, interactive demonstration of a potential future for level design
tools and a validation of the software architecture that made it possible.

On the implementation side, Tanagra is the composition of a reac-
tive planner and a numerical constraint solver (an unprecedented choice
in level design tools, to say the least) [202]. The caricaturist suggests
that reactive planning is a useful top-level architecture for managing the
mixed-initiative interaction and orchestrating the high-level search pro-
cesses involved in geometry generation. However, she does not attempt
to characterize level design as a constraint solving process (nor is the in-
tegrated constraint solver used, architecturally, as anything more than a
supporting software library). However, that constraint solving (through
answer set programming) played a key role in several content generation
systems [195] suggests that the use of constraint solvers is actually a source
of architectural surplus—it allows us to read the system as possessing a
body of declarative design knowledge in addition to its procedural knowl-
edge. That this surplus can be attributed generally to constraint solvers
(which take a declarative specification of a problem’s design concerns and
produce a satisfying assignment of numerical and structural properties)
and not specifically to answer set solvers is a direct result of Tanagra’s
seemingly incidental use of a numerical constraint solver. Given the lever-
age provided by constraint solvers, we are inspired to think of alternate
formalizations of game design that bring the creation and satisfaction of
constraints to the foreground.

9.4.3 Imagining Gameplay

My own Ludocore (detailed in Chapter 12) is a “logical game engine”
for producing queryable, logical models of the core rule systems of a
game [199]. Many game engines intend to ease implementation of com-
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plex videogames by abstracting away the details of 3D rendering, asyn-
chronous resource loading, and other technical challenges. By contrast
(and through extreme exaggeration), Ludocore is intended to ease imple-
menting games that lack not only graphics and sound but also any form
of live player input. Instead, Ludocore abstracts a videogame down to
the central rules that govern the primary game state and how that state
is affected over time by game events.

Using Ludocore, a designer can rapidly encode and iterate on the de-
sign of the most formal aspects of their game. In exchange for hyper-
formalization, Ludocore promises the ability to imagine gameplay for these
as-yet incomplete games. The system’s “gameplay trace inference” affor-
dance allows a designer to ask for symbolic gameplay traces, from the
vast space of potential low-level action sequences possible in a game, that
satisfy arbitrary logical constraints. In this system, questions such as “is
the game winnable?”, “how would someone get from here to there with-
out using this special item?”, and even “how should I connect the various
regions in my level design such that the player cannot escape without
encountering all of my content?” all fit into a common representation.

Through exaggeration and oversimplification, Ludocore manages to
realize an interactive prototype of a system that can imagine play for
arbitrary games. This capability, of course, is conditioned on the “de-
signer” being an experienced logic programmer, the rules of the game
being primarily symbolic as opposed to numerical, the requested prop-
erties of gameplay being expressible in a subset of first-order logic, and
having to wait unreasonable lengths of time for the results of certain kinds
of queries. It is on top of this admittedly shaky foundation that Ludo-
core makes its statements about AI in the game design process: “Deeply
modeling videogames requires capturing not just the game’s rules, but
(prepare yourself for a mouthful) also the configuration of the game’s
world, a body of assumptions about the kinds of players who might play
the game, yet another body of assumptions about the situation in play
that currently interests the designer, and, on top of that, the ability to
reason through all of this to generate concrete gameplay traces which tell
the designer something that was out of range of their human inferential
ability.” Simplified:4 “deep computational modeling of gameplay is hard,
but possible.”

Ludocore’s method of inference (using an answer set solver) is based
on a system of exhaustive search. While this procedure for reasoning is
alien to us (it is a poor model of how designers actually imagine gameplay
traces), it does lead to example gameplay traces which we would not likely
think of ourselves. Relatedly, Ludocore’s hyper-declarative programming

4These are my words as retrospective interpreter of my own system, years after its
development.
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language (which recycles Prolog syntax) is highly unfamiliar to most game
designers (who are more likely to be familiar with an imperative program-
ming paradigm, if any). Nonetheless, this logical representation seems to
be particularly well suited for use by machines, and it has seen reuse in
other design automation prototypes [155].

Where Ludocore is the most extreme instance of computational car-
icature that I review here (with the least generally accessible results),
such extreme distortion allows for demonstrating interactions that would
be entirely unreasonable in a neutral simulation of design processes. The
more promising facets of an extreme caricature can be recycled into and
evaluated in the context of more tame caricatures. For example, the
“structural query” feature of Ludocore (which produces static world con-
figurations as a result instead of traces of dynamic gameplay) was isolated
and extracted as the less complicated practice of simply using answer set
solvers to power game content generators (mentioned above). Ludocore’s
knowledge representation (but not inference techniques) were recycled
in the Biped game prototyping tool (another computational caricature,
expanded in Chapter 13) which added graphics, sound, and (most impor-
tantly) live player interaction with early-stage game prototypes [198].

9.4.4 Summary

As a caricature, each of the example systems above attempts to make some
technical claim about AI in the game design process easy to recognize. In
doing this, they make many simplifying assumptions, some of which are
oversimplifications of the design process that should be overlooked while
others are promising abstractions to be reused in future computational
systems (either in subsequent caricatures or future design automation and
game systems). Table 9.1 summarizes each of the above systems’ status
as a caricature with a list of claims, oversimplifications, and abstractions.

9.5 Conclusion

Towards the goal of better understanding the role of AI in the game
design process (both for what this tells us about human game design
and future design assisted by and embedded in machines), I have de-
scribed how creating computational caricatures accelerates discourse and
uncovers promising implementation techniques that exhibit architectural
surplus. These caricatures (rich with subjective bias, exaggeration, and
oversimplification) provide more direct inquiry into the questions of if
and how machines can design than would more neutral simulations of the
design process. Further, they appear to be more effective at exploring
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Caricature Claim Oversimplifications Abstractions

Ludi
Machines can
automatically design
games that humans
genuinely appreciate.

• Ruleset invention
boils down to sam-
pling from a given,
genre-specific gram-
mar.

• Use simulated play
to evaluate candidate
levels.

• Games can be eval-
uated without human
player interaction.

• Quickly reject po-
tential designs with
easily detectable
flaws.

Tanagra
Humans and ma-
chines should col-
laborate by asyn-
chronously modifying
a shared design.

• Produced levels
need never be ex-
tracted from the tool
nor imported into a
separate game.

• Use constraint
solvers to quickly re-
solve low-level design
problems.

• Two designers can
sufficiently communi-
cate through design
edits alone.

• Enforce limits im-
posed by the game’s
mechanics during the
level design process.

Ludocore
Beyond worlds and
rule systems, de-
signers accumulate
assumptions about
players and play.

• Designers think like
SAT solvers, and they
read/write logic pro-
grams fluently.

• Use pre-existing
solvers to auto-
matically generate
content and imagine
gameplay traces.

• Arbitrary game
rules are naturally
expressed in declara-
tive logic.

• Quickly capture the
high-level, symbolic
mechanics of a game
in a small amount of
declarative code.

Table 9.1: A non-exhaustive summary of the example systems’ claims
about and oversimplifications/abstractions of the role of AI in the game
design process. The claims are intended to be quickly recognized in the
design of the system. Oversimplifications should be disregarded with re-
spect to the claim (though similar simplifications may enable future cari-
catures). Finally, abstractions provide implicit advice for how to structure
related systems as well as provide fodder for more closely interrogating
the claim.
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deeply technical ideas about the design process than do purely empirical
or purely theoretical approaches.

I hope to inspire the creation of many more computational caricatures
of the game design process, and I welcome exaggeration and oversimpli-
fication in the service of transforming distant ideas into computational
systems.5 I intend that this design research practice produces valuable
results for AI, game design, and design studies generally.

5The strategy of simplifying a problem so that it can be realized as a computational
system is not unique to computational caricature, of course. The computational proto-
types built in everyday game design practice apply the same strategy. Whether one’s
computational prototype is also a computational caricature is a matter of audience
interpretation—does the audience find a broader message in the system or, as it was
perhaps intended, does it mainly serve to answer a project-specific question?
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Chapter 10

Answer Set Programming
for Design Automation

The goal of this chapter is to introduce a general framework for build-
ing design automation tools with answer set programming. In particular,
it develops a practice around modeling design spaces as AnsProlog pro-
grams.

Recall from § 4.3 that one of the ways to describe design is as a double-
loop learning process. The inner loop is concerned with finding solutions
to a given, well-defined problem and learning how to iteratively improve
solutions to better satisfy the constraints in that problem. The outer
loop is concerned with learning that results in a transformation of the
working problem definition, perhaps abandoning old constraints or estab-
lishing new criteria for preference amongst solutions. Design automation
could address either or both of these loops. However, in this chapter, I
focus on producing reliable automation for the inner loop: synthesizing
artifacts that are appropriate with respect to formally defined conditions
for appropriateness.

Although I intend this chapter to be immediately useful in mecha-
nizing exploratory game design, the technical methods developed here
are not intrinsically tied to game design at all. Meanwhile, the target
audience for this practice is videogame designer-programmers. That is,
I intend to offer something to people with a programming skillset suit-
able to implement parts of videogames and a design sense that permits
reflection on what is really desired for a larger game design in response
to experiences with example artifacts. Further, I require a willingness
to learn a new programming language (not an unreasonable burden, as
Chapter 17 demonstrates) and an openness for situational backtalk to
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come from a machine’s analytic reasoning instead of only live experience
with hand-crafted designs.

In the first section of this chapter, I introduce ASP in a context
through which it is rarely seen in AI circles, and I give a high-level
overview of the practice of modeling design spaces with ASP. In later
sections, I provide a series of basic AnsProlog programming tutorials,
reviews of pre-existing design automation systems built on ASP, and con-
clude with a series of in-depth domain modeling tutorials that highlight
how reflective practice concretely interacts with incrementally developing
design space models.

10.1 ASP in Context

In AI research circles, it is common to describe answer set programming
as a knowledge representation formalism. For example, this is the stance
taken in Chitta Baral’s book Knowledge Representation, Reasoning and
Declarative Problem Solving [7], which defines the basic structures of
AnsProlog. A recent discussion amongst ASP researchers concluded that
“ASP is not a programming paradigm in a strict sense, but a formal spec-
ification language instead” [26]. While I agree that ASP involves formal
specifications (this is precisely how answer set programs function as de-
sign space models), I strongly disagree with the first conclusion on the
basis of the personal experience shared in this dissertation. I believe that
treating ASP as a programming paradigm is essential for realizing broad
and practical applications for this formalism that would never be explored
otherwise. For example, Martin Brain, Owen Cliffe, and Marina De Vos’
“A Pragmatic Programmer’s Guide to Answer Set Programming” [17] es-
tablishes a body of knowledge associated with the craft practice of solving
real-world problems with ASP.

Clarified, answer set programming is a programming paradigm (a peer
to, say, lazy functional programming and message-passing, object-oriented
programming), and AnsProlog is a programming language (distinct from,
but analogous to Prolog, Java, and Python). What sets AnsProlog apart
from most widely known and broadly applied programming languages
(particularly its heavyweight cousin Prolog) is that it is a “little lan-
guage.”

10.1.1 AnsProlog as a Little Language

Jon Bentley [9] introduced the concept of little languages by starting with
the concept of computer languages as something that “enables a textual
description of an object to be processed by a computer program” and pro-

116 CHAPTER 10. ASP FOR DESIGN AUTOMATION



vided several examples of languages with a marked littleness. As Bentley’s
littleness is often (but not necessarily always) a result of carefully scoping
the domain of use for a language, the concepts of little languages and
domain-specific languages (DSLs) have since widely overlapped. Some of
the common properties of little languages are the following:

• They are used as generated output of some programs and input to
other programs; they function as a formalized interchange format.

• They are thought of as describing an object. For example, JSON
(JavaScript Object Notation) is a little language for declaratively
specifying nested list-and-record objects that finds use far beyond
JavaScript.

• They are specific to a particular problem or problem domain. For
example, GNU Make is a little language specifically for describing
conditional build processes for software projects [208].

• They are often limited in theoretical expressivity. Regexes (regular
expressions) and SQL (structured query languages) are little lan-
guages that intend to give up Turing-completeness (at least with-
out unrealistic abuse of obscure features) in exchange for either very
concisely specifying a problem or solving a problem via very efficient
means.

• Finally, they may have a smaller or simpler array of language con-
structs or fundamental concepts that a programmer must learn. Al-
though the little language DC [147], for expressing brief numerical
computations to be carried out with arbitrary precision numbers,
includes many of the same mathematical operators that might be
found in Java, it offers no way of defining variables, opening files,
or defining and importing modules of reusable code.

Examining each of these in turn, AnsProlog is often used as both an
output and input format. While this chapter focuses on how to create
AnsProlog programs by hand, each of the pre-existing design automation
systems reviewed in section below involve assembling situation-specific
programs on-the-fly from pre-authored program fragments.

When used as design space models, AnsProlog programs indeed de-
scribe an object: the space itself. Regexes and SQL programs function as
descriptions of spaces in the same way. Programs in these little languages
speak only about the properties of a potential result (a string match or a
query result set) without saying how that result should be found in a sep-
arately defined corpus. In a interesting twist, AnsProlog programs define

10.1. ASP IN CONTEXT 117



a space of artifacts that should be enumerated without the presence of a
pre-existing corpus over which to search.

Although answer set programming is targeted at complex combina-
torial search an optimization problems, the structure of these problems
is relatively unrestricted and the domains in which these problems may
arise is quite widespread. In this sense, AnsProlog is a little language, but
it is not strongly domain-specific. Similarly, while regexes are specific to
the problem of sequence matching, they can be used in almost any area
of application programming. Languages like GNU Make, however, are
awkward to use for anything outside their intended target domain.

AnsProlog’s traditional point of comparison (particularly in an AI
context) is Prolog. The ability for answer set solvers to use the advanced
combinatorial search algorithms that they do is a natural outgrowth of
explicitly targeting ASP at problems in the complexity classes NP and
NPNP (problems for which more structure can be assumed than in ar-
bitrary, Turing-complete languages). To express a broader array of pro-
grams, traditional Prolog includes a broad array of imperative (so called
“extralogical”) language features that complicate designing general, high-
performance search algorithms for the language.

Finally, AnsProlog, at least as Baral defines it [7], has a very small
number of language features and fundamental concepts. Although this
makes the core features of AnsProlog very easy to understand, it makes
the language too little to naturally express many realistic problems of
interest. Accordingly, highly pragmatic answer set solving tools such as
recent versions of the Potassco tools [76] add an array of optional features
designed to make practical programming easier. Among these features
are built-in arithmetic (otherwise not defined in pure, symbolic logic),
complex aggregates (which allow speaking about how many facts in a col-
lection are true in an answer set without encoding the counting logic with
only logical ands and ors), optimization criteria (an extralogical pref-
erence between answer sets), and the integration of the imperative pro-
gramming language Lua [97] (for performing arbitrary transformations on
symbolic terms during the grounding phase of answer set solving). These
advanced features, particularly the Lua integration, provide important
escape hatches1 that allow the programmer to temporarily break out of
the formal logic paradigm without having to give up the benefits of stay-
ing in that paradigm (namely free, high-performance search algorithms
for every domain of application).

1http://c2.com/cgi/wiki?EscapeHatch
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10.1.2 Perspectives

From an AI perspective, an AnsProlog program is a formal specification
of a space of answer sets (the set of stable models consistent with the
program is read as a series of assertions in symbolic logic). From a de-
sign perspective, it is natural to look at a designer-specified AnsProlog
program as a model of their design space of interest. Pairing this pro-
gram with a specific answer set solver yields a fully-automated artifact
generator that, from the perspective of computational creativity, is an
example of a machine carrying out artifact generation activity in an area
traditionally dominated by human effort. From the pragmatic program-
mer’s perspective, AnsProlog programs are definitions in a little language
that should be written by domain-specific programs and consumed by
answer set solvers in a larger process that yields artifact descriptions for
use in the problem domain. Each of these perspectives is an equally valid
description, and all are relevant when building design automation with
ASP.
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10.2 Design Spaces in ASP

The key idea in this section, as setup in Chapter 8, is to encode models
of design spaces with answer set programming. In the following subsec-
tions, I setup a general model–solve–interpret–refine cycle, and describe
the high-level strategy for representing artifacts and spaces of artifacts
with ASP. I follow this up with a discussion of modeled vs. unmodeled
properties and an in-depth tour of each of the processes described in Fig-
ure 10.1.

A design space is an abstract and likely informal concept that exists
only hazily-formed in a designer’s mind. A designer is often capable of
generating artifacts directly from this space through manual construction
effort. Design automation seeks to replace this manual effort for many
reasons. First, it may simply be too costly to involve a human designer
in the creation of every artifact required (this is the cost reduction sought
in many procedural content generation applications). Alternatively, a
machine replacement for the designer may be explicitly required (as in
play-time design automation for games where design automation becomes
part of the formal mechanics of a game). Finally, a designer may simply
not trust themselves to consider all of the design problem’s constraints
at the level of detail and reliability required by the domain. Thus, the
dotted arrow in Figure 10.1, the intent to generate artifacts from a design
space, represents the process I wish to realize via automation.

Following the arrow down from design spaces, a designer now has the
option of modeling their design space as an AnsProlog program (using
ASP as AI researchers intend it: as a formal specification language). Once
encoded, invoking an answer set solver on this program will (after some
delay for computation) yield answer sets. During the solving process,
modern answer set solvers will carry out conflict analysis on any dead-
ends in the search space that they encounter. This leads to the inner-
loop learning of new constraints within the solver that are intended to
speed up solving without altering the space of valid solutions. In a more
interesting outcome, the designer may decide that, upon finally seeing all
of their known conditions for appropriateness laid out before them in a
formal representation, that there is a simpler, underlying structure that
gives rise to many of these special-case requirements. Re-encoding the
design space after this realization often results in a change to the set of
artifacts the solver should produce.

With answer sets in hand, the process of interpretation, which may
be carried out either by the designer or an automated system, constructs
a domain artifact using the descriptions borne by an answer set. These
artifacts are guaranteed to be appropriate with respect to the formal
specification created previously, so a designer may simply choose to deliver
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Design Space

AnsProlog 
Program Answer Sets

Artifacts

refine appropriateness
(outer-loop learning)

generate

interpretmodel

solve

conflict analysis
(inner-loop learning)

refine formulation
(outer-loop learning)

Figure 10.1: Modeling a design space as an AnsProlog program. The
intent to generate artifacts from a designer’s hazily defined design space
is carried out by modeling the design space (producing a tentative for-
mal specification of appropriateness), applying an answer set solver to
produce answer sets, and then interpreting the logical facts in those an-
swer sets as descriptions of an artifact to be used in the desired domain.
Observing artifacts other than those that the designer would think to con-
struct manually provides new opportunities for learning in the outer loop
of the designer’s double-loop learning. Likewise, spotting regularities in
special cases encoded in the model can prompt a complete reformulation
of how appropriateness is defined. This diagram is itself a refinement to
the model–solve–interpret flow described in the practice documented by
Brain et al. [17].
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the artifacts to whomever requested them (not shown in the diagram).
In a much more interesting outcome, a designer may examine the re-

sulting artifacts and take them as evidence that the working specification
of appropriateness should be refined (perhaps to acknowledge an obvi-
ously inappropriate flaw). As this refinement leads to a redefinition of
the working problem definition, it is an example of outer-loop learning
in design. Another kind of outer-loop learning occurs when, examining
their best attempt at formally encoding a notion of appropriateness, a de-
signer realizes a fundamentally new formulation of appropriateness could
express the working conditions in a different way (particularly, one that
is more amenable to the kinds of refinements a designer wants to make).

Overall, this is a cyclic network of processes. From the designer’s
perspective, the cycles that relate to their working design space are the
most important. As a result, whether the answer set solver really does
carry out conflict analysis (or, assuming it does, whether it learns anything
useful) is largely unimportant. This processes is included in the network
primarily as a way to highlight the outer loops.

10.2.1 Representing Artifacts

Working backwards from artifacts in an effort to expose what needs to
be modeled, I start with a high-level strategy for representing artifacts
themselves. In order for an artifact to be constructed in the interpretation
process, an answer set must describe that artifact in sufficient detail that
interpretation is a well-defined problem (otherwise it becomes a design
problem of its own).

The natural way to describe an artifact in AnsProlog is to generate
facts that assert that the artifact has specific properties. For example,
to be able to construct a physical wooden maze as an artifact, an answer
set should describe where to place the start and finish cells of the maze
and where walls or other obstacles should be placed. An answer set need
not describe every physical property of the artifact (e.g. which type of
wood to carve it from) if this information can be reasonably interpreted
from the context of the problem. In addition to the minimal set of facts
required to construct an artifact, we should ascribe additional properties
to artifacts that allow us to describe that artifact’s appropriateness. We
want to include facts that describe the maze’s shortest-path solution or
record, for every location in the maze, which nearby maze is closest to the
start cell. Some of these logical facts should be present in all valid answer
sets (e.g. a fact attesting to the maze’s solvability) or present in none of
them (e.g. that there existed a shortest-path solution that was too short
for the maze to be considered interesting).

Using the same strategy as traditional Prolog, these facts will be ex-
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pressed with predicates in first-order logic—statements about the relation
between symbolically named objects. For example, start(5,6) literally
reads that the start relation holds between the 5 and 6 objects, but it
takes little interpretation to also read it as a statement that the starting
cell of a maze is located at cell (5,6) on a two-dimensional grid.

10.2.2 Representing Spaces

Representing a space of appropriate artifacts requires a means to abstract
over which artifact we are talking about. There are three classes of rules
in AnsProlog that allow space-level discussion of artifacts described by
logical facts. Each of these classes is expanded with concrete examples in
the next section.

At a high level, choice rules describe which sets of facts about an
artifact may be assumed without justification. For example, in maze
generation, one choice rule might assert that the solver is free to assume
any cell may be the starting cell of a maze.

Deductive rules describe what facts must be derived in the presence
of others. For maze generation, deductive rules describe the set of cells a
player can reach given a particular arrangement of walls and starting cell.

Finally, integrity constraints describe the conditions under which a
candidate artifact should not be considered appropriate. To avoid gen-
eration of mazes with uninterestingly long straight-line hallways, an in-
tegrity constraint can be specified that forbids candidates for which the
long-hallway pattern can be detected (deduced). To ensure that gener-
ated mazes are indeed solvable, an integrity constraint might say that
any candidate maze in which reachability of the cell with the finish prop-
erty cannot be deduced should be forbidden (applying a kind of double-
negation).

In this way, a designer-programmer, writing a handful of rules that
shape the space of answer sets, can model a design space of artifacts
whose conditions of appropriateness are expressible in logical rules.

10.2.3 Modeled and Unmodeled Properties

Integrity constraints provide very expressive, direct control over the prop-
erties of generated artifacts. In fact, they offer the convenience of a post-
filtering process on a generator output without committing to a strict
generate-and-test architecture. However, this control is only afforded over
those properties of artifacts that a designer manages to model. In general,
a design space model will only speak to a subset of the concerns that a
designer knows to be critical for artifact appropriateness.
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Although future answer set programming systems may include more
expressive modeling languages and more exotic search algorithms, cer-
tain properties, it seems, are never likely to be expressed as part of an
answer set program. The results of running an arbitrary user program
or the elicitation of human feedback on candidate artifacts (an otherwise
common ability for, say, basic and interactive genetic algorithms) are two
such examples that would be left unmodeled in any ASP-encoded design
space model.

Consider this example from the generative visual art domain: The
output of the Neuro Evolutionary Art (NEvAr) system [132], is often
interesting when its otherwise very abstract compositions resemble a hu-
man or animal face. NEvAr uses a neural network trained on audience
feedback to capture a local, fuzzy sense of interestingness that can permit
the system to generate many face-like images without an explicit logical
model of how images come to resemble faces. This neural network evalu-
ation (rich with floating-point arithmetic) is a natural fit for a generate-
and-test architecture, but it is impractical with the largely symbolic ASP
framework.

Where NEvAr gets away without committing to a complete model of
visual aesthetics, a similar strategy can be used in ASP. This strategy
involves replacing a broad but inexpressible concern with a collection of
narrow, special cases that help a generator to avoid generating artifacts
with easily describable flaws. In the maze generation domain, while “dif-
ficulty” seems impossible to express as a simple logical formula, one can
still add rules that prune away potential mazes that are insufficiently diffi-
cult for obvious reasons: the solution is much too short, the solution does
not involve changing direction often, one cyclic pattern of choices (e.g.
left-left-right-repeat) accounts for nearly all of the required choices, there
are no other paths which get anywhere close to the solution (potential
“garden paths” that a player might enjoy avoiding), and so on.

Following such a strategy, while difficulty is still an unmodeled prop-
erty, many of the design implications of considering difficulty to be a part
of a maze’s appropriateness are addressed via other modeled properties.

10.2.4 Modeling, Solving, Interpretation, and Refine-
ment

Modeling, solving, and interpretation would seem to form a pipeline that
directly implements generation of artifacts. However, these processes, in
concert with refinement, will usually be carried out many times in the
course of developing even relatively simple design space models.
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Modeling

In a first-pass through the modeling process, the most important thing for
a designer to invent is a schema for describing artifacts as answer sets. If a
simple Boolean flag can describe some feature of an artifact, that flag can
be represented by a simple proposition (a fact from a predicate without
parameters). Using richer, multi-parameter predicates allows expressing
most data-like artifact components. For example, sets can be described
by facts asserting whether an object is in the set or not; sequences can
be represented with assertions about which object follows another in the
sequence; tables can be represented with assertions about which object
occupies the cell at a particular row and column; and graphs are natu-
rally represented by sets of node labels and tables of edge labels. Code-like
components of an artifact can be readily built from data-like representa-
tions. For example, a reactive event handling system might be modeled
as a table that maps event identifiers to sequences of actions, where ac-
tions are symbolic identifiers that have special, interpreted meanings in
the final execution environment.

This artifact description schema may be refined later, but some pre-
liminary schema must be established to begin the other processes shown
in Figure 10.1. To sketch a representation schema without yet using any
AnsProlog rules, a common strategy I use is to simply describe one ex-
ample artifact with a collection of facts. This fact-only program is a
minimally functioning design space model: it will yield an artifact de-
scription (just one) when an answer set solver is run on the program. I
will return to how a designer goes about modeling a design space beyond
the first pass when I discuss the refinement process later.

Solving

Once a minimally functioning design space model is defined, a designer’s
direct interaction with the answer set solver is minimal. For easy problems
(those involving a small number of logical objects and admitting a large
number of solutions), a designer may never need to tweak the solving
process.

If a new facet of appropriateness is modeled that presents the solver
with a much more difficult search problem, the designer can, without any
modification of their design space model, try out different solver configura-
tions (usually by altering simple command line flags, even without expert
knowledge of what exactly these flags control). These configurations can
radically reshape the solver’s internal search process. Altering the use
of constraint propagation and learning, randomness, restarts, choice of
search heuristic (from a predefined set), and the use of various kinds of
pre-processing phases can have a dramatic effect on the time it takes the
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solver to find solutions and the incidental style of the first valid solutions
encountered. Except for clearly marked options for early termination,
none of these algorithm tweaks alters the completeness of the underlying
search process (its ability to find and enumerate all solutions before ter-
minating in finite time) or the space of valid answer sets that might be
emitted.

Interpretation

Starting from the hand-crafted answer set from the trivial design space
model (the one we created to sketch out the representation schema), a
designer needs to decide on a process for interpreting this set of facts as
an artifact. In the very early stages of exploratory design, this interpre-
tation may simply take the form of reading the facts and imagining the
artifact. In almost all cases, however, there is a much more natural visual
representation of an artifact that affords instant recognition of the arti-
fact’s structure without tedious decoding of logical statements. As such,
a designer should take some time to find or produce a bit of visualization
infrastructure that will accelerate (or even completely automate) inter-
pretation in future cycles. In the rest of this chapter, I use a utility called
Lonsdaleite2 (based on GraphViz [66]) to develop visualization logic in
the same iterative refinement cycle as the associated design space model.

For artifacts that are not primarily visual, e.g. an interactive arti-
fact like a generated mini-game ruleset (as explored in Chapter 14), the
interpretation process involves building the infrastructure that can load
answer sets into a more complex system (e.g. a game engine that will
interpret the ruleset). As this can be a serious engineering challenge by
itself (to the point of bogging down the iterative design space modeling
process), complete automation of the interpretation process is not always
a designer’s goal. So long as it is easy to try out individual answer sets in
the target environment (perhaps through a small amount of copy/paste
and manual editing), it is reasonable to leave some human effort in the
interpretation process. After all, during iterative development, the de-
signer should be present to make the observations that trigger refinement
of the design space model.

Refinement

Refinement is the process of taking concrete issues raised by preliminary
artifacts and transforming these into new or reformulated constraints
on what makes an artifact appropriate. Because of the inherent ill-
definedness (and occasional wickedness) of design problems, the process of

2https://github.com/rndmcnlly/Lonsdaleite
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refinement will not necessarily converge on an objectively defensible defi-
nition of appropriateness for artifacts. Instead, refinement will guide a de-
signer to producing a design space model that blends the appropriateness-
derived constraints and preferences that the designer knows about with
what is naturally expressible in AnsProlog, efficiently solvable by answer
set solvers, and reasonable to interpret without too much engineering ef-
fort. ASP is not a panacea for modeling design spaces once and for all,
but it does provide some powerful opportunities for offloading some of
cognitive burden that arises in appositional reasoning.

Upon interpreting the one answer set from the initial, trivial design
space model, the first natural refinement move is to replace one of the
hand-entered facts with a basic choice rule. With no other constraints, the
artifact described by solutions to this crudely refined design space model
are quite likely to demonstrate some obvious design flaw that should be
forbidden in the future. This prompts an elaboration: the inclusion of
an integrity constraint. Proceeding in this way, modeling new generative
possibilities by rewriting hand-entered facts with choice rules and carving
away wild combinations with the addition of pattern-matching deductive
rules and artifact-pruning integrity constraints, the designer carries out a
kind of sculpting process on the design space.

Expanding the sculpting metaphor, it is important to note that a
designer’s sculpting of a design space involves both additive modeling
(adding material to a base) and subtractive carving (removing mate-
rial from a base). That is, with ASP, designers manipulate design space
models as if they were clay (equally amenable to additions and subtrac-
tions, but unwieldy at large scales) as opposed to the modeling-focused
medium of wire-and-plaster sculpture or the carving-focused medium of
stone sculpture.

In a generate-and-test architecture, a designer must conceive of their
design space in a form that involves performing all of the additive moves
first (building up a broad but not wastefully large base of material) before
performing all of the subtractive moves (pruning away material without
recourse to make slight additive repairs). With the constructs of AnsPro-
log, a designer may declare that one choice rule is conditioned on the re-
sult of a deductive rule (perhaps the same deductive rule that feeds into
an integrity constraint). This expresses the idea of interleaved additive
and subtractive processes that could not be partitioned into two discrete
phases while also not committing to a particular ordering of operations
as a directly constructive process might.

The result of many incremental refinements is often not the pristine
design space model a designer seeks. Instead, and often in my experience,
the result is a complicated assemblage of overlapping concerns and special
case patches. Even the most elaboration tolerant representation scheme
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can only go so far because refining elaborations trend toward growth.
This result is not a failure, though, because this distended design space
model functions as a detailed record of newly discovered constraints on
the appropriateness of artifacts.

From here, the refinement process will most likely involve a complete
rewrite of a design space model, perhaps representing artifacts in different
kinds of terms that make expressing the space of special case concerns
much simpler (in terms of lines of code, solver running time, and the
conceptual complexity of the sheer number of named concepts involved).
These occasional restarts are hardly exceptional; in fact, they are to be
expected both as part of sculpture and as part of a designer’s reflective
practice. When enough anomalies are found with respect to a designer’s
current understanding of appropriateness, eventually a kind of revolution
occurs (exactly a paradigm shift in Kuhn’s terms [117]) that compacts
the new knowledge into a more coherent framework. The cost of these
revolutions is decreased when the body of knowledge being reformed has
already had algorithm-design concerns stripped out, as is the case when
building design space models with ASP.
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10.3 Programming Tutorials

In this section, I walk through three self-contained example programs: a
classic introductory problem involving only propositional logic, a solution
to the graph coloring problem emphasizing the process of grounding, and a
program for constructing Golomb rulers that introduces optimization over
solutions and hints at the promise of emerging results in ASP research.
Even if the reader is familiar with, say, graph coloring, the discussion
I provide along with each example should be enlightening for what it
reveals about how to think and write in AnsProlog, issue commands with
Clingo, and visualize outputs in a lightweight manner. These examples
are intended to provide a general literacy with ASP before introducing
the practice of using it to model design spaces.

10.3.1 Hello Soggy World

The classic introductory example for AnsProlog involves reasoning about
a soggy patch of grass. The grass may have been wet by the natural
effects of rain, the artificial influence of a sprinkler, or it may turn out
not to be wet after all.

To begin, we will invent a few propositions (predicates that take no
arguments) to represent the different statements that might be true of the
world: rain means “it rained;” sprinkler means “the sprinkler was on;”
wet means “the grass is wet;” and dry means “the grass is dry.” These
four propositions give rise to a space of sixteen (24 = 16) possible world
descriptions (potential answer sets), including many suspicious combina-
tions such as simultaneous wetness and dryness or dryness despite the
presence of either of the wetting processes. Table 10.1 depicts the space
of worlds expressible with these propositions as a truth table. As rules
are introduced, the space of valid answer sets is whittled down to just two
possibilities.

To describe the effects of rain and sprinklers on grass, we need some
rules. The first is a choice rule (with an empty body), asserting that any
number of items from the aggregate may be true:

{ rain, sprinkler }.

Offering this single line of code to an answer set solver and asking
for all of the answer sets yields four solutions: nothing; just rain; just
sprinkler; or both rain and sprinkler. From a generate-and-test perspec-
tive, this line has implemented our generator. We never hear of wet be-
cause we have not yet provided the rules for deducing it. These definitions
provide the means to analyze the grass in each of our generated worlds:

wet :- rain.
wet :- sprinkler.
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rain F F F F F F F F T T T T T T T T
sprinkler F F F F T T T T F F F F T T T T
wet F F T T F F T T F F T T F F T T
dry F T F T F T F T F T F T F T F T

Program 1 X X X X
Program 2 X X X X
Program 3 X X X - - - -
Program 4 - - - - X - - X - - - -

Table 10.1: Answer sets in the soggy grass problem. The top half of
this table shows the inclusion of the four propositions in each of the 16
potential world descriptions for the soggy grass problem. The bottom half
marks whether or not each potential world is a valid answer set after the
addition of extra rules. Program 1 involves the choice rule alone. Program
2 shows the result of adding the three deductive rules. Program 3 shows
the results after adding the sprinkler-shutoff logic, and Program 4 shows
the result after requiring the observation of wetness. Dashes indicate
answer sets that were explicitly forbidden by an integrity constraint.

dry :- not wet.

Adding these rules does not change the number of valid worlds from
above (four), but it does provide each with additional detail. The answer
sets are now: dry; rain and wet; sprinkler and wet; and wet with both rain

and sprinkler.

Suppose we know something else about the scenario: an automatic
shutoff system prevents the sprinkler from wastefully running while it
is raining. The following rule seems to express this idea, but it is not
grammatically valid:

not sprinkler :- rain.

The problem is that not is not allowed in the head of a rule. The
intended effect of this invalid rule is to forbid worlds where sprinkler

and rain are simultaneously true. Thus, an integrity constraint is the
appropriate choice. Adding the following constraint narrows the combined
program down to only three possible worlds:

:- sprinkler, rain.

Having encoded all of our relevant knowledge about the patch of grass,
we can finally ask an interesting question: how did the grass get wet? To
ask this, we want to prune away all worlds that are inconsistent with our
observation. In general, if goal is a proposition that is true when our
interest is satisfied, the integrity constraint “:- not goal.” accomplishes
the required pruning. This is like saying “throw out the world if it isn’t
one that interests me.” Thus, adding the following integrity constraint
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yields only those possible worlds that provide answers to our query:

:- not wet.

There are now only two possibilities: it is wet because it rained, or
it is wet because the sprinkler was on (but not both). With only four
propositions and a handful of rules, it is not hard for a human to mentally
sort through the sixteen combinations (particularly when the rules at play
are familiar from everyday experience). In some of the systems employing
ASP for design automation that I discuss later, the grounded answer
set program involves hundreds of thousands of propositions (with the
number of potential combinations being exponential in that number) and
nearly as many grounded rules encoding the mechanics of a by-definition
unfamiliar design problem. So, while the query-posing setup given in
this introductory example might seem too simple to be useful, the same
techniques scale to queries well beyond a human’s capability to provide
equivalent answers.

10.3.2 Graph Coloring, Complexity, and Visualiza-
tion

To get an idea of how complex problems can be captured in very small
answer set programs, let us now work through a solution to the classic
graph-coloring problem. In this problem, it is our job to assign every node
in a graph one of a small set of colors so that no pair of nodes connected
by an edge is assigned the same color. Deciding whether a graph can
be colored with a given number of colors is exactly the decision-problem
version of the chromatic number problem from Karp’s famous list of NP-
complete problems [104].

See Figure 10.2 for an example graph that we will attempt to color.
To represent this graph and the available colors, we should use a small
collection of facts:

node(a).
node(b).
node(c).
node(d).
edge(a,b).
edge(b,c).
edge(a,c).
edge(c,d).
color(red).
color(blue).
color(green).

In the parlance of guessing, deducing, and forbidding, we will use a
choice rule (with cardinality bounds) to guess a unique color assignment
and an integrity constraint to forbid conflicting assignments. The follow-
ing two lines are sufficient to solve the graph coloring problem for any
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c

b
d

Figure 10.2: This small graph is the example input to our graph-coloring
program.

graph and set of colors:

1 { assign(N,C) : color(C) } 1 :- node(N).
:- edge(N1,N2), assign(N1,C), assign(N2,C).

This brief program is, in essence, a reduction from the graph coloring
problem to the problem of determining whether an answer set program
has an answer set. Thus, it should be intuitively clear why answer set
solving is itself an NP-hard problem. Whether our two-line solution yields
a system with attractive performance or not depends on whether the
algorithms and heuristics used by the answer set solver (which are readily
swappable without disturbing the encoding) can exploit the structure of
our chosen problem encoding (which can be altered without immediate
concern for the solver).

Supposing I have put the collection of facts into a file called instance.lp

and the two rules in a file called encoding.lp, I can ask Clingo to generate
a coloring of this graph by invoking this command in my terminal:

$ clingo instance.lp encoding.lp

That command results in the output below:

Answer: 1
node(a) node(d) node(c) node(b) edge(c,d) edge(a,c)
edge(b,c) edge(a,b) color(red) color(green) color(blue)
assign(b,green) assign(c,blue) assign(d,red) assign(a,red)
SATISFIABLE

Models : 1+
Time : 0.000
Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

From this, we can tell several things. Most obviously, Clingo has de-
termined that the problem was satisfiable, that the graph is not inherently
uncolorable. The note that there are “1+” models means that while only
one solution was generated, there still remains a possibility of finding
more (indeed, there are 12 solutions to this problem). If the graph had
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Figure 10.3: The first solution identified for coloring the graph from Fig-
ure 10.2 with three colors.

contained just two more edges (linking d to a and b) then Clingo would
have reported it unsatisfiable after a small amount of search.

Next, looking at the text of the answer set itself, we can spot terms
that describe the color assignment: “assign(b,green assign(c,blue) assign(d,red)

assign(a,red)”. Note that the answer set contains more than just the
guessed assignments; it contains every statement that is true in that world
(including the facts we simply stated in the problem instance). Visualizing
this solution’s color assignment on the original graph yields Figure 10.3.

Finally, while the preparation (grounding), preprocessing (startup),
and solving (search) times for this particular instance are all too small to
measure, monitoring these times is useful for diagnosing slowdowns that
would delay insightful feedback when using ASP in exploratory design for
larger problems.

Factoring a concrete problem into an instance description (composed
only of ground facts) and an instance-agnostic problem encoding (com-
posed mostly of rules with variables) is a common development strategy.
During iterative development, a very small testing instance (for which
solutions can be manually verified) can exercise the workings of the same
rules that will apply to larger instances. The adaptation of the general
rules to a particular instance happens in the process of instantiation. To
see how the two rules in our problem encoding are expanded in light of
our small test graph, we can ask Clingo to dump the grounded program
as text with this command:

$ clingo instance.lp encoding.lp --text

This results in the output shown in Figure 10.4 where copies of a rule
are created for all value combinations for the variables mentioned in the
body of the rule and aggregates (expressions in braces or brackets) have
been expanded with all value combinations for the variables quantified by
the : operator. As a rule of thumb, the more variables a rule involves
and the larger the domains of each of those variables, the more instan-
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node(a). node(d). node(c). node(b).
edge(c,d). edge(a,c). edge(b,c). edge(a,b).
color(red). color(green). color(blue).
1#count{assign(b,blue),assign(b,green),assign(b,red)}1.
1#count{assign(c,blue),assign(c,green),assign(c,red)}1.
1#count{assign(d,blue),assign(d,green),assign(d,red)}1.
1#count{assign(a,blue),assign(a,green),assign(a,red)}1.
:-assign(a,red),assign(b,red).
:-assign(a,green),assign(b,green).
:-assign(a,blue),assign(b,blue).
:-assign(b,red),assign(c,red).
:-assign(b,green),assign(c,green).
:-assign(b,blue),assign(c,blue).
:-assign(a,red),assign(c,red).
:-assign(a,green),assign(c,green).
:-assign(a,blue),assign(c,blue).
:-assign(c,red),assign(d,red).
:-assign(c,green),assign(d,green).
:-assign(c,blue),assign(d,blue).

Figure 10.4: This variable-free program is the result of instantiating the
graph-coloring program for the small example in Figure 10.2.

tiations that rule will have (and the longer grounding will take). This
expansion is simultaneously the mechanism that allows a very small an-
swer set program to represent a very large grounded problem and the
mechanism that most often leads to grounding performance problems for
inexperienced programmers.

Had we tried to solve the graph coloring problem using a SAT solver
(which would have equally shielded us from writing high-performance
combinatorial search code), it would have been our responsibility to cre-
ate a low-level problem formulation at least as complex as the output in
Figure 10.4. Encoding the set cardinality constraints, such as those ex-
pressed with the bounds in the choice rule for assigning colors, as Boolean
formulae is itself a subtle problem when bounds involve values other than
zero and one. Naturally, the solver’s low-level input would need to be
constructed programmatically. Instead of maintaining a custom problem-
building program, ASP offers us the ability to define our high-level prob-
lem declaratively (here, in two lines) and to leave the repetitive process of
assembling a collection of (mostly) Boolean formulae to the grounder. It
bears mentioning that the majority of ASP systems are distributed with
the grounder and solver as separate programs and that Clingo’s unifica-
tion of these tools is a rare, if modest, convenience.

In the grounded program text, note how references to the node pred-
icate have been elided in the instantiation of the choice rule. Because
the grounder can determine that the node predicate is always true for
every node (as we directly stated as much with facts), the grounder can
safely drop those terms from the body of any rule that mentions them
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without altering the space of valid answer sets. The semi-näıve evalua-
tion algorithm [76] that powers this optimization is also capable of pro-
ducing exact answers to natural3 encodings of the HORNSAT problem
(akin to SAT without the use of negation) or the circuit value problem
(akin to Boolean circuit satisfiability with all inputs known)—both are
P -complete problems. Thus, for some problems, particularly those that
involve simply analyzing a given artifact instead of synthesizing a new ar-
tifact, it is sometimes an attractive strategy to address the problem with
the grounder alone, treating the grounder as a general-purpose Datalog
engine.

As another exercise in working with rules involving logical variables,
let us now think about how to visualize the output of our graph-coloring
tool. Knowing that there are terms like “assign(a,red)” in Clingo’s output,
we could write a custom parser that looked for these terms (along with
those describing nodes and edges) and use them to build an input file for
Graphviz,4 an open source graph layout and rendering tool. This could
be done in about a hundred lines of Python. This is not an unreasonable
amount of effort, but it seems quite out of balance with respect to the
slender two lines of AnsProlog that implement the coloring logic. Consider
this program (in the file viz.lp) that captures the key visualization design
choices in a few more rules:

graphviz_graph_type(graph).
graphviz_node(N) :- node(N).
graphviz_edge(N1,N2) :- edge(N1,N2).
graphviz_node_attr(N,fillcolor,C) :- assign(N,C).
graphviz_global_node_attr(style,filled).
graphviz_global_node_attr(shape,circle).

My visualization tool Lonsdaleite5 will render graph diagrams for any
problem that includes these graphviz_* terms in its answer sets. To re-
cycle this tool for other ASP projects, we need only maintain the small
collection of rules that deduce a graph description from the problem-
specific elements. For our graph-coloring program, this command will use
Lonsdaleite to display a version of the diagram in Figure 10.2 in my web
browser:

$ clingo instance.lp encoding.lp viz.lp | lonsdaleite -cub

Because our visualization rules were all either facts or Horn clauses, we

3Through some unnatural encodings, problems well beyond HORNSAT can be
decided exactly. This is demonstrated by the encoding of a Turing machine that
can be found in the Potassco overview article [78] without the use of negation, choice
rules, or any other feature that would leave a choice for the solver.

4http://www.graphviz.org/
5Lonsdaleite, also called hexagonal diamond, is an allotrope of carbon. With all

of the familiar carbon crystal names like “graphite” and “graphene” already used by
several other graph visualization tools, I was obliged to pick a less common name (that
even I misspell every time) in order to get the graph pun.
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can use the same rules to create visualizations with the grounder alone. In
this example command, imagine example coloring.lp contains several
node, edge, and assign facts generated by a previous run of our coloring
program:

$ clingo example_coloring.lp viz.lp --text | lonsdaleite -ub

During the rapid iteration of exploratory design space modeling, I have
found it convenient to freely mix the details of my test instances, problem
encoding, and visualization logic in a single file where all can be updated
at the same time. I often delay factoring out the reusable pieces until I
have a better understanding of a problem domain and begin looking to
integrate my ASP-based solution with a larger system.

10.3.3 Golomb Rulers, Optimization, and Numerical
Constraints

Let us test our working knowledge of answer set programming with a
slightly more complex problem: constructing optimal Golomb rulers. A
Golomb ruler is a ruler with marks at certain integer-spaced positions such
that the distances between every pair of marks is distinct. Figure 10.5
shows a Golomb ruler of order 4 (the number of marks) and length 6
(the length of the longest span it measures). For a thorough treatment of
the often misunderstood complexity of problems relating to Golomb ruler
construction and a surprisingly diverse list of real-world applications of
Golomb rulers, see “On the Complexity of Constructing Golomb Rulers”
[143].

The Golomb ruler construction problem is naturally parameterized by
two integers: order and length. Instead of specifying length directly, we
will instead specify the total number of markable positions on the ruler to
allow for rulers of potentially shorter length (for real-world applications,
shorter often means cheaper and thus better). To specify numerical pa-
rameters, we use the following AnsProlog syntax:

#const order = 9.
#const positions = 45.

These statements are not rules per se. Instead, they instruct the
grounder to perform a symbolic substitution in the rules defined later
(akin to the #DEFINE directive in the C preprocessor).

Now, using these constants, we assert that there is a set of positions,
and that a precise number (equal to the order constant) of them are to be
marked. Note the use of the “..” syntax to concisely specify a large family
of facts (pos(0), pos(1), . . . pos(45)) at once. Asserting marked(0) anchors
our generated rulers at the origin. We do not assert marked(positions)

because this would force our ruler to span the entire set of given positions
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Figure 10.5: Example Golomb ruler of order 4 (the number of marks) and
length 6 (the largest distance between marks). This is an optimal Golomb
ruler because there are no shorter rulers of the same order.

(we would like to allow shorter rulers of the same order).

pos(0..positions).
order { marked(P) : pos(P) } order.
marked(0).

If we were to invoke Clingo on the program as presented so far, we
would find several different ways to scatter the desired number of marks
across the given space of positions. However, many of these solutions
would fail to have the key property of having all distances distinct. To
enforce this, we must deduce which distances can be measured by the
ruler (and where they are measured from) and forbid rulers for which any
distance is duplicated. As expected, this entails the use of a deductive def-
inition and an integrity constraint. In the code below, “marked(P1;P2)” is a
convenient contraction of “marked(P1), marked(P2)” and “measure(P2-P1,P1)”
conveys the idea that “the distance P2-P1 is measurable on the ruler start-
ing at position P1.” The integrity constraint states that a ruler is invalid
(i.e. not a Golomb ruler) if a distance can be measured from two (or more)
positions on the ruler.

measure(P2-P1,P1) :- marked(P1;P2), P1 < P2.
:- pos(Dist), 2 { measure(Dist,P) }.

The seven lines of code so far implement a functioning program for
constructing Golomb rulers. To apply this program to the search for an
11-mark ruler, we can override our constant definitions on the command
line while also instructing the solver to use an alternate6 heuristic (one

6VSIDS does not perform remarkably better than the default BerkMin heuristic—
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derived from the Chaff SAT solver [148]):

$ clingo golomb.lp -c order=11 -c positions=72 --heu=vsids

For a given number of marks, there is a minimum length of Golomb
rulers of that order. While these optimal lengths have been tabulated
up to order 26 (the result of an ongoing massive distributed computation
effort7), we can easily verify some of these optimal lengths with a small
addition to our answer set program. These next two statements deduce
the set of positions covered by a ruler (the size of this set is the length
of the ruler) and instruct the solver to minimize the size of that set.
Specifically, the covers predicate is true for a position P1 if there is is a
marked position P2 that is greater than it.

covers(P1) :- pos(P1), marked(P2), P1 < P2.
#minimize { covers(P) }.

The minimize statement is not a logical rule. Instead of adding de-
tail to or pruning away potential answer sets, it provides a metric by
which the answer sets can be ordered. When asked to compute more
than one solution, the solver uses the metric value of the previous solu-
tion as a constraint on the value of the next solution. In this way, suc-
cessive solutions are required to improve in quality until the problem is
made unsatisfiable (proving optimality of the previous solution) following
a branch-and-bound strategy.

In this specific problem, minimizing the size of a set was sufficient
to express our optimization criteria. However, a more general syntax
for optimization allows the use of weights.8 In the following statement
(equivalent to the minimize statement above), I describe the metric to be
optimized as a weighted sum over the set of covered positions (with all
weights set to unity):

#minimize [ covers(P)=1 ].

Supposing we did not know the optimal length for rulers of order 10,
we might guess 72 (the optimal length for order 11 rulers) as an upper
bound and ask Clingo to search for the optimal value with this command
(“0” means “compute as many answer sets as possible”):

$ clingo golomb.lp 0 -c order=10 -c positions=72

Printing out solutions as they are found, the metric progresses 71,

this simply demonstrates the command line syntax for altering the choice of heuristic.
7http://www.distributed.net/OGR
8In addition to weights, prioritized (lexicographic) optimization is also possible. By

including terms from multiple predicates in the same statement (including negative
literals) a wide array of optimization criteria are expressible. For the complete syntax
of optimization statements, see the Potassco guide [78]. For more complex optimization
criteria (such as Pareto efficiency) made possible through advanced metaprogramming,
see “Complex Optimization in Answer Set Programming” [77].
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69, 67, 66, 61, 60, and then 55 before confirming there are no shorter
Golomb rulers. Indeed, 55 is the known optimal value for rulers of order
10. This search, taking 32 seconds on a single core of a 2006-era server
processor, involved a problem with 2,772 propositional variables related
by 10,439 constraints. The size of this problem is mostly due to the
measure predicate which grounds to O(p2) cases for a problem with p
possible positions.

Because the Golomb ruler problem is explicitly focused on numeri-
cal variables and the distinctness of their differences, we should consider
exploring the use of the experimental hybrid constraint answer set solver
called Clingcon [80] that uses the high-performance Gecode library [184]
internally for constraints over integer variables. The following Clingcon
program sets up an integer variable for each mark, enforces that marks
are assigned in increasing order, and asserts that the difference between
every pair of marks is distinct using a global constraint. Finally, it in-
structs the numerical constraint solver to treat the value of the last mark
as the metric for optimization. For now, it is not important to fully un-
derstand the Clingcon-specific syntax involving $, as the hybrid solver is
used very rarely in the rest of my work.

#const order = 9.
#const positions = 45.

$domain(0..positions).
mark(1..order).
mark(1) $== 0.
mark(M-1) $< mark(M) :- mark(M), M > 1.

$distinct { mark(M2) $- mark(M1) :mark(M1):mark(M2):M1<M2 }.

$minimize { mark(order) }.

Because this program’s grounding does not directly depend on the
number of potential positions on the ruler (only the number of marks),
we are free to be much more lenient with our guessed upper bound. Here
is the command for determining the optimal length of an order 10 ruler
using numeric constraints:

$ clingcon golomb_numerical.lp 0 --csp-num-as=0 \
-c order=10 -c positions=10000

This variation yields the desired solution in less than a quarter of the
time of the previous variation (on the same hardware). While it is likely
that using Gecode directly from a custom C++ program would provide
some speedup, the ability to mix the Boolean constraints of traditional
ASP with numeric constraints (demonstrated later in this chapter) while
staying within a very concise modeling language is what makes Clingcon
remarkable.

10.3. PROGRAMMING TUTORIALS 139



10.4 Existing Design Automation Examples

In the worked examples above, I ignored the complexity of integrating
ASP-based artifact generators into a deployable system. In the remainder
of this section, I review three instances of ASP-based artifact generators
employed in the context of larger systems that operate in unique domains,
rich with widely varying and realistic constraints on the form and function
of appropriate artifacts.

10.4.1 Diorama

Diorama9 is an open source, comprehensive map generator for the real-
time strategy game Warzone 2100 (Pumpkin Studios 1999) that generates
natural-looking, detail-decorated terrain maps with desirable gameplay
properties. Internally, Diorama uses ASP to solve two gameplay-critical
subproblems in map generation. Externally, the system collects a set of
map design requirements from the user with standard user interface wid-
gets (drop-down menus, numerical spinners, and checkboxes) and allows
them to repeatedly sample different maps satisfying their constraints. An
example of Diorama’s user interface and a schematic diagram of a gener-
ated map are shown in Figure 10.6. Saving a map generated with this tool
injects it into the game’s map library where it can (without additional
user intervention) be interpreted in context: as a 3D world populated with
the buildings and doodads relevant to gameplay (where outputs look like
the one shown in Figure 10.7). After this, the user may generate addi-
tional maps or use a traditional map editor to refine the generated map
to their taste.

The cliff structure of the terrain in a Warzone map has a strong im-
pact on gameplay by blocking land-vehicle passage between tiles with
sufficiently different height values. In the first phase of the map genera-
tion process, amongst other details described later, a coarse grid of cells
is assigned numerical height values with terms like cellLevel(X,Y,Height).
From cellLevel facts, passage between tiles can be derived using deduc-
tive logical rules. Additional user-settable constraints enforce the presence
of interesting geographical features: undulating plains, smooth seabeds,
raised or sunken player bases, and a prescribed number of unreachable
mountaintops. Logical rules for describing undulation and other modeled
properties, of course, are also included in the system’s internal AnsProlog
program.

The problem of placing player base locations and oil wells (the drivers
of the economy in Warzone) is tightly coupled with the terrain generation
problem; cliffs provide a natural, indestructible defense against direct,

9Diorama documentation and source: http://warzone2100.org.uk/
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Figure 10.6: Screenshot of Diorama’s user interface. The “Bake!” but-
ton can be pressed to repeatedly sample alternate maps that satisfy the
user’s specified design constraints.
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Figure 10.7: Generated player base for Warzone 2100, depicted with in-
game 3D graphics. Note how the far corner of the base’s enclosing walls
have been warped from linear to conform to the nearby cliffs in the terrain.
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ground-based attacks. Accordingly, Diorama combines these concerns
into a single design space model, effectively solving for terrain, base, and
well placement all at the same time. The baseLocation(Player,X,Y) and
oilLocation(Well,X,Y) predicates complete the minimal structure of the
generated artifacts at this stage.

To express a preference amongst the myriad possibilities that conform
to terrain design rules, the AnsProlog program declares that the solver
should first (globally) maximize the distance between player bases, and
then, amongst solutions with that maximal base distance, find a place-
ment of oil wells that maximizes the minimum well–well and well–base
distances. Additional constraints optionally enforcing partial cliff-based
defensibility of bases and wells are also active in this process.

I learned that ASP actually replaced a genetic algorithm solution for
this search-intensive phase in a previous version of the generator [19].
Without an ASP solver, such multi-layer global optimization would be
difficult to express with a procedure that had separate generate and test
phases.10

Though Diorama used a fixed priority scheme to layer different levels
of preferences at this stage, a system of numerical weights could have (but
was not) used to express trade-offs between preferences at the same level,
e.g. that one point of resource distance unfairness is a safe trade for two
points of cliff defensibility unfairness. In this case, the AnsProlog program
would have asked the solver to simply enumerate maps that maximize the
sum of the trade values.

Having committed to bases and oil wells on a naked height map with
known traversability, Diorama performs several non-ASP passes to im-
prove the aesthetics of the final map. To break the unnaturally straight
lines of the original cell grid, the map is warped in a post-processing phase
and traversable cell boundaries are smoothed. A plausibly designed road
network is overlaid which visually guides players from their bases to oil
wells and randomly placed abandoned towns. These phases primarily add
visual flair and cannot break the map’s gameplay, so they proceed in a
non-backtracking fashion, enriching the map in-place.

Generating a smoothed version of the abstract terrain is an example
of a subproblem in terrain generation for which ASP is not particularly
applicable. Instead of selecting artifacts with particular properties from
a vast-but-finite space, continuous smoothing is a process more easily

10If the generation subsystem employs a complete algorithm that is guaranteed to
eventually produce every possible artifact, global optimization is feasible. The tester
should simply examine all artifacts and, in the end, return one that was not dominated
by any other artifact. Altering this ideal into an efficient system involves either im-
mense integration of generator and tester (yielding a backtracking-like setup) or giving
up global optimization and, with it, any guarantees on the properties of the system’s
output relative to the stated design goals.
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described imperatively in a general purpose programming language. That
is, while geographical features are modeled properties at the (coarse) cell
level, Diorama leaves the aesthetics of (fine) tile level details unmodeled
and trusts the imperative passes to cover them in a feed-forward manner.

In a gameplay mode of Warzone that allows players to start a match
with generous bases pre-built for them, maps may include a customized
layout of essential buildings and fortifications. Diorama has an option
that will cause an ASP-based base layout phase to be injected into the
generation process after the terrain has been warped and smoothed. At a
high level, location(Building,X,Y) facts are generated using choice rules for
the origin point of each building, from which blocked tiles are deduced and
the number of lined-up buildings is deduced. Overlapping buildings are
easily rejected with an integrity constraint. The size of a boundary zone
around blocked areas is calculated and globally maximized, secondarily
maximizing the modeled tidiness property of the arrangement. The re-
sulting layouts have an organized-looking grid layout, fit to locally warped
terrain features while ensuring ground units can still navigate around the
base.

In order to perform terrain-adapted base layout, this phase needs ac-
cess to terrain details already committed in the previous phase. Dio-
rama dynamically assembles a specialized generator for the situation by
concatenating AnsProlog fragments with facts describing the committed
world details. Such dynamic construction of design space models is very
common, and it represents a kind of adaptability to design problems that
ASP provides that goes far beyond parameterization via numeric param-
eters (which are also used in Diorama, e.g. in specifying the number of
players for which a map should be designed).

In this system, ASP was used to encapsulate two search-intensive sub-
problems as feed-forward generators in the context of a larger, multi-
paradigm generator. Overall, Diorama’s generative procedure is a non-
backtracking pipeline of generate-only components; the test procedure, if
any, is human inspection of the final maps. Even though map design does
not involve a finite space (as terrain heights have a continuous domain),
ASP was still able to solve the most difficult subproblems (particularly
those related to critical gameplay properties), leaving the other phases of
generation free from any hand-written backtracking or generate-and-test
search.

10.4.2 Anton

The state-of-the-art automatic music composition system, Anton (Boenn
et al. 2011), uses ASP to produce detailed melodic, harmonic, and rhyth-
mic musical compositions informed by a seamless blend of local and global
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Figure 10.8: Screenshot of Antons’s user interface. Don’t let the bru-
talist Linux/fvwm visual aesthetic dissuade you—when invoked on the
command line, Anton is pretty slick. In one output mode, the sys-
tem uses the LilyPond (http://www.lilypond.org/) tool to produce
beautifully typeset (or, in musical terms, engraved) sheet music. In
another, it renders high-quality wave file outputs using Csound (http:
//www.csounds.com/).

composition knowledge. Although the musical content is not consumed
in the context of any game (instead in the form of printed music notation,
rendered audio tracks, and even real-time performance), the application
provides examples of potential new directions for PCG systems. A screen-
shot of Anton’s graphical user interface is shown in Figure 10.8.

So far, I have primarily focused on using modeled properties in in-
tegrity constraints, that is, requiring or rejecting properties of generated
artifacts. The Palestrina rules of composition (a codification of renais-
sance counterpoint in western tonal music theory) in Anton serve a sec-
ondary purpose: in addition to composing new music, the system can use
the same rules to diagnose and informatively report flaws in an externally
provided composition. It might report the message “middle note of triad
doubled” and identify a particular part and time in the composition, or
“invalid minor harmonic combination” citing another location. Different
composition styles (such as solo vs. quartet) carry different error pattern
definitions. As a body of computational music theory, it is natural to
expect Anton’s declarative knowledge to be used in both analysis and
synthesis [16].

The different modes of operation in Anton are supported by a pro-
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gram builder that dynamically assembles AnsProlog fragments to craft a
design space appropriate to the problem at hand. In composition mode,
with a certain style and other configuration set, the design space con-
tains musical scores (represented with chosenNote(Part,Time,Pitch) terms)
that strictly conform to the assembled rules. In diagnosis mode, a logical
encoding of a human-created composition is combined with style rules
to produce a design space of critiques (including error(Part,Time,Reason)

messages), as opposed to musical passages.

Automated critique of human-designed artifacts can, of course, help
clean up these artifacts, but it can also be used to understand and debug
a design space (even suggesting particular constraints to relax in the it-
erative design of a generator). Producing intelligent answers to a query
such as “Why won’t you generate artifacts like this one?” is not an ac-
tivity supported by any generators for game content so far, but perhaps
it should be in the future. Answers to such queries can even point out
inconsistencies in the background theory used by the generator (for ex-
ample, it is possible that the Palestrina rules contain contradictions that
are not obvious to human examination).

The ability for the composition mode to also accept partial human-
created pieces allows the system to serve a number of purposes beyond
tabula-rasa generation: supplying fragments allows the constrained gen-
eration of music that ends with a certain pattern or embeds a certain
motif; supplying one part (the score for a single voice) and not others
allows solving for a harmonization consistent with a given melody; and
specifying only a chord progression allows for natural melodic improvi-
sation. By incrementally committing to (or forbidding) details suggested
by the system, the user can carry out a mixed-initiative interaction with
the system (in the sense explored by the Tanagra system [202]). Nearly
all ASP-based generators that employ dynamic program construction will
gain this give-and-take capability by default.

Though the connection is subtle, there is a similarity between the mu-
sic composition task and the task of designing platformer levels (rhythm
has been identified as part of this link [38]). Anton composes music by
selecting a series of local moves a part should take: step up, leap up,
rest, repeat, etc. The trajectory through the space of absolute pitches
and times is derived as a side effect of these local moves. Rhythmic and
melodic composition rules are often written in terms of the global tra-
jectory and have a complex relationship to the local moves. Similarly,
Launchpad, a platformer level generator, works by selecting a sequence
from a set of local actions the player should take: move, jump, and wait
[203]. The player’s trajectory is made concrete by generating geometry
that must fit rhythmic density and style constraints. The line critic in
Launchpad can be seen to be functioning as a melodic composition rule,
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with Anton’s harmonic composition rules speaking to the gameplay of
as-yet-unconsidered platformer levels with interacting, parallel tracks.

10.4.3 Toast

Toast [45] is a superoptimization11 system for machine code. Given
a sequence of machine instructions (completely defining the function of
appropriate artifacts), Toast uses ASP to find the absolutely shortest
possible alternate sequence of instructions that computes the same result
on all possible inputs. In this scenario, the form of artifacts is the literal
sequence of instructions. The function of artifacts is to compute the same
result as a particular larger program.

In reflective analysis of their problem domain, the developers noticed
several fragments of input instruction sequences that were strictly sub-
optimal (they should never appear in an optimal program, regardless of
what it was trying to compute). They noted that, if several of such
sequences were collected, they could be included as new constraints (on
form this time, independent of function) to accelerate search on problems
other than those in which the constraint was originally discovered. When
a piece of the function of an artifact can be captured as a constraint on
form, much less effort needs to be expended in ensuring that artifacts
emerging from the more restricted space have the appropriate function.

One of the interesting results of superoptimization is surprising new
uses for machine instructions thought to be well understood. In a clas-
sic example of the unintuitive results, Crick offers the example of the
C library function used to calculate the sign of an integer (the signum
function):

int signum(int x) {
if (x > 0) return 1;
else if (x < 0) return -1;
else return 0;

}

While a straightforward compilation of this function uses two con-
ditional branch instructions amongst other instructions (e.g. numerical
comparisons), an experienced assembly programmer can likely reduce this
to just one conditional branch. Mechanical superoptimization, however,
reveals a wildly unexpected result involving neither comparison nor condi-
tional branch instructions. The following solution cleverly exploits sensi-
tivity to a carry flag in the different SPARC V7 addition and subtraction
instructions:

11In the world of compilers, “optimization” refers to result-preserving transforma-
tions of a program intended to make it incrementally faster or smaller. “Superopti-
mization” is the (somewhat unfortunate) term for compiler optimizations that result
in an optimal program.
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! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

Just as the above systems used ASP in several different ways to im-
plement a larger tool, Toast uses ASP to solve several different search-
intensive subproblems. Given an example input and output pair for a se-
quence of instructions to be optimized, Toast constructs a design space
model capturing the set of all finite instruction sequences that compute
the same output on the given input. Appropriateness (the focus of apposi-
tional reasoning), here, is the condition that the new instruction sequence
be shorter than the original and agree with the original when evaluated
on at least one input. In another subproblem, a candidate instruction
sequence is tested for complete functional equivalence with the original
instruction sequence. In this subproblem, input values are the artifacts
of interest and the conditions of appropriateness are that different out-
put values result from the two instruction sequences—this subproblem
involves trying to find evidence of non-equivalence in the form of an input
that witnesses the difference. If no such witness can be found, the two
instruction sequences must be functionally equivalent.

In exchange for declaratively modeling the semantics of a set of ma-
chine instructions just once, the developers of Toast gained the ability
to perform several different program synthesis and analysis tasks. In any
other domain where the artifacts of interest involve code-like constructs,
an architecture similar to the one used in Toast can be used to diagnose
faults in given artifacts, produce new artifacts with equivalent function to
given artifacts, or seek out the points of divergence between the behavior
of two artifacts—all without inventing any new search algorithms.
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10.5 Modeling Tutorials

Whereas the previous tutorial section (§ 10.3) was intended to bring
a designer-programmer up to speed in programming with AnsProlog,
this section is intended to convey design space modeling idioms. Those
programming techniques are put to work in developing sketches of pre-
existing game content generators. Each of these sketches functions as a
computational caricature: they make a claim about what were some of
the most salient features of the design spaces considered in these past
systems. They also make an implicit claim about how to quickly convey
these features. This claim rises from the style of caricature used in each
sketch: building each one in ASP.

Although reflection and iterative refinement are critical pieces of the
design process, the following examples distort this situation somewhat by
presenting each scenario as a well-defined content creation problem. This
is an intentional choice that I hope will serve to make these sketches more
interesting to compare with the original systems than might a more accu-
rate depiction of exploratory design (which might iterate off into territory
distant from the inspiring examples).

10.5.1 Chess Mazes

My first sketch is inspired by Daniel Ashlock’s chess maze generator,
presented in “Automatic Generation of Game Elements via Evolution”
[5]. This example models a design space in which only one type of choice
is required.

Overview

Ashlock’s chess mazes are a simple kind of puzzle that is played on a
generalized Chess board (an n-by-n square grid). In this puzzle, it is the
goal of the player, who controls one piece, to move their piece from a
square on one side of the board to a certain square on the opposite side.
The twist is that the player is not allowed to move their piece through
any square that is under attack from (or covered by) any of the other
fixed pieces placed on the board by the puzzle designer.

An example maze is shown in Figure 10.9 in which the player’s rook,
starting at the square marked S and navigating to the finishing square
marked F, must not cross any square attacked or occupied by any of the
five knights.

Automatically designing chess mazes like this, given the size of the
board w and the number of knights k as parameters of the problem,
involves only deciding the x/y position for each of the knights so that the

10.5. MODELING TUTORIALS 149



� 
(4,1)

� 
(8,3)

� 
(5,6)

� 
(10,8)

� 
(3,9)

�
S

�
F

Figure 10.9: Chess maze example. The configuration of this maze was
taken from Ashlock’s paper [5], but it was also reproduced by the sys-
tem described in this subsection. When giving this maze to a player to
solve, no clues would be given beyond the position of the knights and the
starting/finishing squares. The covered and attacked cells are intention-
ally made visible here to illustrate the structure of the maze as reasoned
about in the design space model.
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puzzle’s definition is satisfied. Specifically, we are obliged to check that
there exists some solution to the puzzle we design and, for a bit of finesse,
we want to be able to control the length of the simplest solutions (as a
proxy measure for the difficulty of the puzzle). Let d denote the desired
minimum solution length.

Development

To begin, we should establish the problem parameters so we can refer to
them later in the design space model. I have taken the default values
for these parameters from the example maze shown in Figure 10.9 (an
example taken from Ashlock’s work):

#const w = 11.
#const k = 5.
#const d = 23.

Next, we should establish a vocabulary for the board. How are squares
measured, and how are they arranged?

dim(1..w).
square(X,Y) :- dim(X;Y).

In Chess, knights move by taking two steps in one direction and one
step in an orthogonal direction, forming the iconic “L” shaped pattern.
On a two-dimensional board, a knight can move to up to eight possible
destination squares. We will encode the relative offsets of these destina-
tions with facts for the attack_pattern(DeltaX,DeltaY) predicate. However,
instead of simply listing all eight cases (and risk forgetting or duplicating
a case), we will use the “;” and “;;” pooling operators to generate all
eight cases concisely.12.

attack_pattern(-1;1, -2;2 ;; -2;2, -1;1).

A similar syntactic trick works to define the set of directions the
player’s rook can travel. Here, we are capturing the idea of up/down/left-
/right movements on the grid by encoding a vector. For example, direction(1,0)
refers to going in the direction of increasing X and holding Y constant—
going right.

direction(-1;1,0 ;; 0,-1;1).

Before we start specifying the variable parts of these puzzles, there is
one more bit of background vocabulary we need. Saying a rook can go in
any of the four cardinal directions is not precise enough. We need to say
that a rook can keep moving in the direction it has been heading for free

12Expanded, this becomes eight facts: attack pattern(-2,-1) attack pattern(-2,1)
attack pattern(2,-1) attack pattern(2,1) attack pattern(-1,-2) attack pattern(-1,2) at-
tack pattern(1,-2) attack pattern(1,2).
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(i.e. it costs zero turns), but changing direction indicates the start of a
new move. The rule that expresses this idea has two cases:

transition(DX,DY, DX,DY, 0) :- direction(DX,DY).

transition(DX1,DY1, DX2,DY2, 1) :-
direction(DX1,DY1),
direction(DX2,DY2),
|DX1-DX2| + |DY1-DY2| > 0.

In the above code snippet, there is a symmetry between the treatment
of the X and Y axes that makes for somewhat repetitive code. If we had
been developing a three-dimensional variant of chess mazes, we likely
would have altered the dimension predicate to bundle all of its arguments
together in a tuple: direction((X,Y,Z)). If this were the case, it would
be possible to write the first rule above more concisely (and independent
of problem dimension): “transition(D,D,0) :- direction(D).” I have found
that compact encodings of n-dimensional problems are often possible,
but their compactness comes with increased conceptual complexity for
the programmer that is not often justifiable for the n = 2 case.

From the player’s perspective, the key design choices for a chess maze
are where they start, where they must finish, and where the knights (form-
ing their obstacles) are placed. If we know we always want puzzles in the
style of Figure 10.9, we can simply declare the start and finish squares
are always in the same place:

start( 1+w/2, 1 ).
finish( 1+w/2, w ).

To place exactly k knights, we use a choice rule to declare that between
k and k of the squares have the knight-ness property:

k { knight(KX,KY) : square(KX,KY) } k.

At this point, we have a functioning generator for syntactically valid
chess mazes. The lines above define a design space that includes every
chess maze (of the right shape and number of knights) that we can imag-
ine. Unfortunately, it also includes mazes that are too easy, too hard,
impossible, and downright silly (such as mazes where a knight has been
placed on the starting square). To sculpt this design space model into one
that takes our solvability and target solution length requirements into ac-
count, we need to carve away those solutions with undesirable properties.
In the end, this will come down to using some integrity constraints, but
we need to define a model of the properties we want to constrain first.

Supposing that the answer set solver has guessed the position for each
of the knights (by selecting the desired number of squares to have the
knight-ness property), we can deduce the set of squares that can be at-
tacked by those knights. This is where our attack_pattern predicate from
above comes into play:
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attacked(X,Y) :-
knight(KX,KY),
attack_pattern(DX,DY),
X = KX + DX,
Y = KY + DY,
square(X,Y).

In the snippet above, the reference to square(X,Y) is actually optional
for this problem. Without this, if there were a knight at the top-left corner
(knight(1,1)), this rule would happily deduce that some square outside
of the board was under attack (such as attacked(0,-1)). While this is
not technically untrue, it can be distracting to see these nonsense facts
when we are looking at answer sets that emerge from the solver while
we are performing incremental development like this. Adding optional
requirements like this can make it easier to validate that the program we
write matches our expectations for what we are trying to model.

From the problem definition, the rook cannot pass through squares
that are attacked or covered by the knights. The following pair of rules
captures the set of squares that are blocked by these two conditions:

blocked(X,Y) :- knight(X,Y).
blocked(X,Y) :- attacked(X,Y).

Now comes (by far) the most complex part of this design space model.
In order to deduce whether the puzzle is solvable and if it is solvable in too
few moves, we could use a way to talk about how many moves it takes
to get to each square. In the original evolutionary generator described
by Ashlock, this process was carried out with a dynamic programming
algorithm. In AnsProlog, it is enough to setup the recurrence relation
that would have been expanded into the dynamic programming algorithm,
and we can leave evaluating the recurrence to the solver’s internals.

The predicate at(Time, X,Y, DeltaX,DeltaY) will indicate that the player
can get the rook to move to square X,Y with as few as Time moves. DeltaX

and DeltaY are needed to keep track of which way the rook is headed
with its last move so we can account for long moves in a straight line.
Assuming the solver can compute this predicate for some assignment of
rook locations, the information we seek about the solvability of the level
can be had by examining this predicate with the X/Y of the finish location.

The recurrence for the at predicate has a base case. We will set the
base case so that the rook starts at the starting square. The DeltaX/DeltaY
values are set as if the rook had just moved up so that any valid subsequent
movement forces Time to increment (recall that we have pinned the starting
square at the top of the board).

at(0, X,Y, 0,-1) :- start(X,Y).

With the help of the transition predicate from much earlier, the rela-
tion can be expressed with a single recursive definition:
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at(T+DT, X2,Y2, DX2,DY2) :-
at(T, X1,Y1, DX1, DY1),
transition(DX1,DY1, DX2,DY2, DT),
X2 = X1 + DX2,
Y2 = Y1 + DY2,
square(X2,Y2),
not blocked(X2,Y2),
T < d.

Take a moment to reason through this snippet. It says that if we are
at some square X1/Y1, heading in some direction DX1/DY1, we can transition

to a new direction at some cost DT (zero for keeping the same direction
and one for changing it). If we take a step in the new direction, we land
at X2/Y2 (but only if those coordinates name a valid square on the board).
This move should not be possible if the destination square is blocked. If
the move was valid, we know we can now be at the new square X2/Y2 with
as few as T+DT moves (having just moved in the DX2/DY2 direction).

It seems wrong that we must engineer this procedural-seeming flood-
fill search in a declarative setting. We want to formulate the problem as
something like “guess a sequence of moves for the player, and forbid that
maze if there is a way to solve the level in too few moves (as evidenced by
the guessed move sequence).” Unfortunately, getting the quantification
right (that there exists a maze such that there does not exist a too-short
solution) involves formulating the problem at a higher level of complexity
than handled by most answer set solvers. Disjunctive answer set solvers
can handle this kind of problem, but formulating the concerns above in
their input language (exploiting a very odd sense of logical disjunction) is
currently a bigger hassle than producing the procedural encoding above.
Until this surface-language issue is resolved,13 staying within traditional
answer set programming (formulating problems in NP) is the practice to
follow. The good news is that most constraints on the form of artifacts
are expressible without straying into this territory. The strategy above is
essentially a manual reduction of the concerns of function to the concerns
of form.

Back in the snippet above, the final “T < d” check at the end of this
rule seems like it might be optional in the same way that the square
check was optional in the attacked predicate. In this case, including this
semantically optional check has a very solid engineering motivation: it
allows the grounder to terminate.14 Without the check, the rule above
functions like a convoluted version of this definition of the set of natural

13I have built some promising prototypes on top of the metasp project (http://
www.cs.uni-potsdam.de/wv/metasp/) that make that make me very optimistic for the
future of expressing problems with this kind of elevated complexity.

14In all ASP systems, the solver is guaranteed to terminate in finite time. Whether
the grounder is guaranteed to terminate depends on which language extensions the
tool supports.
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numbers:

%% commented out for your safety: the naturals
% natural(1).
% natural(N+1) :− natural(N).

Approaching the end, now that we have fully defined the at predicate,
we can use it to deduce solvability of the maze. One last deductive rule
suffices, defining for which move counts (less or equal to the desired count)
the puzzle can be finished:

finished(T) :- finish(X,Y), at(T, X,Y, DX,DY).

From here, one integrity constraint ensures that any chess maze in this
design space can be solved in exactly d moves:

:- not finished(d).

Just one more ensures that none of these mazes can be solved in any
fewer than d moves:

:- finished(T), T < d.

Voila! We now have a fully functional design space model for chess
mazes with the size, shape, and properties of the maze shown in Fig-
ure 10.9.

To put this design space model to work in synthesizing appropriate
chess puzzles, here is the shell command I used to generate a w = 11,
k = 5, d = 23 maze in a few seconds15 of wall-clock time using an eight-
way parallelized answer set solver from the Potassco project [78]:

$ clingo chess.lp -l | clasp --configuration=crafted -t 8

In practice, one rarely gets a program right on the first try. One way
to gain assurance that the design space model matches expectations is to
force the solver’s hand and examine the result. If the five facts below are
appended to the program above, we force the solver to place the knights
in the exact configuration shown in Figure 10.9. If we were overzealous
with our constraints, this known valid instance might be blocked.

knight(4,1).
knight(8,3).
knight(5,6).
knight(10,8).
knight(3,9).

15Because parallel answer set solving is inherently non-deterministic (it depends on
how the operating system schedules the solver’s threads), running times will vary. In
this case, I report a crude average of running times for a Mac laptop with a 2.2 GHz
Intel Core i7 processor (a quad-core device with two-way hyperthreading). The flag “–
configuration=crafted” was suggested by the solver’s documentation to set appropriate
default settings for use on “crafted” problem instances, resulting in puzzles in about
half the time required by the “–configuration=frumpy” default.

10.5. MODELING TUTORIALS 155



To get a sense of whether we have underconstrained our design space,
one strategy is to add only a nearly-complete definition of a reference
artifact (adding, say, only four of the five lines from above). Seeing how
the solver squirms under pressure (getting it to enumerate alternative
variations on a familiar artifact) can highlight missing constraints without
needing to make sense of entirely new artifacts. This same trick, of forcing
a partial set of known-good design choices, is also useful in getting quick
feedback on a program that takes a long time to solve without specific
constraints. Constraints that force critical choices like this do a large
portions of the solver’s work up front, leaving a much smaller space left
to explore.

Discussion

Comparing this sketch with Ashlock’s original system, the biggest differ-
ence is that Ashlock formulates the problem as an optimization process
whereas I formulate it as a system of hard constraints. In the genetic
algorithm version, meta-heuristic optimization tries to guide a fixed size
population of candidate mazes in the direction of a target d value. In
the ASP version, I ask that the conditions involving d be satisfied ex-
actly. In reality, the difference between a d = 22 maze and a d = 23
maze is miniscule (and there are likely more pressing concerns from the
aesthetics of the puzzle that we should be considering instead), so writing
hard constraints on d is an oversimplification. The sketch above could be
adapted, using a \#maximize directive, to function more like the original
system. This would allow us to watch the solver, as it finds candidate
puzzles, creep towards a target value and halt the search process early if
we spot a candidate with a “good enough” score.

Another key difference between the systems is that the sketch above
has made hard commitments that the player controls a rook and that the
designer places only knights as obstacles. In Ashlock’s system, the puzzles
could mix and match the different piece types from Chess. Adapting the
sketch above to support different pieces involves altering almost every rule,
though much of the overall structure is retained. Additional background
rules are required to describe the attack patterns of the alternative piece
types and the movement pattern of the player piece, additional choice
rules are needed to select the piece type associated with each obstacle and
the player, and a more complex formulation of attacked is required that
combines this information. From here, the direction and at predicates
need to be similarly re-formulated to account for the type of piece the
player controls.

The final (and perhaps most salient) point of major contrast between
the systems is that the above sketch is backed by a complete search algo-
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rithm. This implies that when we ask “what is the smallest16 k (number
of knights) for which we can require d = 23 solutions on a w = 11 board?”
we can be sure that the answer tells us something about the problem, not
about the algorithm used to examine it. Probing such upper and lower
bounds (possibly in conjunction with certain parts of an artifact held
fixed) is not part of appositional reasoning (it hopes to produce limits,
not artifacts), but it is part the reflection process: examining the impli-
cations of the problem-as-formulated.

10.5.2 Strategy Game Maps

The next sketch is inspired by the real-time strategy game map gener-
ators in “Multiobjective Exploration of the StarCraft Map Space” by
Julian Togelius and others [221] and “Limitations of Choice-Based Inter-
active Evolution for Game Level Design” by Antonios Liapis and others
[125]. This example models the entangled concerns when multiple types
of design choices define an artifact.

Overview

RTS map generators, such as the systems cited above, often work by plac-
ing critical buildings onto a height-field representing the game world’s ter-
rain. Because features of the terrain (such as the presence of sharp cliffs
or smooth ramps between different height levels and impassible water
zones) control how combat units navigate around a map, terrain design
and building placement are entangled design concerns. Although the com-
plex RTS games played by the public often involve continuous domains
for the heights in the height-field (and sometimes for building placement
as well), it is convenient to do coarse-level design for these maps using a
grid representation and then produce the target smoothness and fine vi-
sual detail with a post-processing stage (as done in the Diorama system
described in the previous section).

Inspired by the systems cited above, the sketch below places two kinds
of buildings: player starting locations (called bases) and resource points.
This placement happens at the level of a grid representation that also
encodes a coarse representation of the map’s terrain. In place of a more
detailed height-field, grid cells may either be passable or impassible.

In Togelius’ system (which formulated map design as optimization),
key features of a map were captured with metrics like base distance (the

16In this case, proving that k = 5 is the minimum boils down to removing the lower
bound on the only choice rule and adding a #minimize statement over the set of knight-
filled squares. If there had been a simpler maze, per my artifacts-as-communication, I
would have been very interested to see it.
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shortest-path length on passable cells between player bases), base space
(the passable area around a base available for later building construction),
distance to the nearest resource (for each base), and resource fairness (a
measure of imbalance associated with distances between bases and re-
sources). In Liapis’ system (another optimizer), metrics similar to those
above were augmented with overall compositional metrics (unrelated to
strategic fairness) such as the percentage of passable cells and the hori-
zontal and vertical bias of their concentration. In the sketch below, we
will develop a design space model that accounts for similarly structured
concerns, but we will not be concerned with exactly recreating the metrics
used in these existing systems.

Before jumping into the development of this design space model, see
Figure 10.10 for a preview of the kind of maps that we will be capturing
here.

Development

To begin, we will set up a two-dimensional grid similar to the one used in
the puzzle generator above. The adj(A,B) predicate will encode the rela-
tionship between adjacent cells (organized as anonymous 2-tuples, ordered
pairs, of X/Y values) on the map.

#const grid_width = 8.
dim(1..grid_width).
cell((X,Y)) :- dim(X;Y).
adj((X,Y),(NX,NY)) :- dim(X;Y;NX;NY), |X-NX| + |Y-NY| == 1.

Guessing which cells of the grid should be passible could be as simple as
the one choice rule “{ solid(P):pos(P)}.” This would say that between
zero and all positions could have the solid-ness property (encoding ground
unit traversability, perhaps liquids are impassible). However, there are
various aesthetic constraints that we would like to enforce. In particular,
we would like a large portion of the map to be solid, but we would be
disappointed to see that constraint achieved by lumping all of the solid
cells on any one side of the map. The system of overlapping choice rules
below encodes the idea that about a bounded fraction of the cells on each
half of the map (top/bottom/left/right) should be solid.

#const n = grid_width * grid_width.
2*n/5 { solid((X,Y)) : cell((X,Y)) : X>grid_width/2 } 3*n/5.
2*n/5 { solid((X,Y)) : cell((X,Y)) : X<=grid_width/2 } 3*n/5.
2*n/5 { solid((X,Y)) : cell((X,Y)) : Y>grid_width/2 } 3*n/5.
2*n/5 { solid((X,Y)) : cell((X,Y)) : Y<=grid_width/2 } 3*n/5.

Having chosen which cells are solid, it is easy to determine the traversabil-
ity between cells:

traversable(P1,P2) :- adj(P1,P2), solid(P1), solid(P2).
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Moving next to resource placement, the following snippet assigns each
resource to unique cells. This is done by ensuring each resource is as-
signed to exactly one cell and ensuring each cell is assigned to at most
one resource point.

#const resources = 7.
res(1..resources).
1 { resource_at(R,C) : cell(C) } 1 :- res(R).
0 { resource_at(R,C):res(R) } 1 :- cell(C).

Of those correspondences established by the mapping above, we should
forbid those that place resources on non-solid cells. Further, as a matter
of taste, we will forbid the placement of resources on adjacent cells.17

resource_covers(C) :- resource_at(R,C).
:- resource_covers(C), not solid(C).
:- adj(C1,C2), C1 < C2, resource_covers(C1), resource_covers(C2).

Placing player bases works almost exactly like placing resources, al-
though we will additionally check that bases and resources do not overlap.

#const players = 4.
base(1..players).
1 { base_at(B,C) : cell(C) } 1 :- base(B).
{ base_at(B,C):base(B) } 1 :- cell(C).
base_covers(C) :- base_at(B,C).
:- base_covers(C), not solid(C).
:- base_covers(C), resource_covers(C).

At this point, we have a minimally functional map generator. It can
mark cells as solid or not in an approximately balanced way, and it will
place the required number of bases and resource points without overlap-
ping. However, it may decide to place all of the resources near one player’s
base or create disconnected regions that isolate one player from the oth-
ers. We need some control over the global relationship between bases and
resources to establish a basic level of fairness in these maps.

To determine how the terrain features control the reachability of cer-
tain cells by each player, we will use a similar flood-fill formulation to the
one used in the chess maze generator. Compared to the previous version,
we are now treating X/Y pairs with a single variable, but we need an extra
parameter to keep track of which player base B we are using as a reference
point for measuring distances.

base_reaches(B,C,0) :- base_at(B,C).
base_reaches(B,C2,T+1) :-
base_reaches(B,C1,T),
traversable(C1,C2),
T < grid_width.

17The less-than check is not strictly necessary in this integrity constraint, but it
helps the grounder avoid grounding two versions of a semantically equivalent constraint
between two cells. The less-than operator is defined over all logical terms, so it implies
some ordering (unimportant for us) the ordered pairs we use to identify cells.
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This rule measures how far each resource point is from each player
base:

distance_to_resource(B,R,T) :-
base_reaches(B,C,T),
resource_at(R,C).

Using this information, we will enforce a relatively primitive model
of fairness by requiring that each player can reach the same number of
resources in the same number of moves (this sketch ignores resource con-
tention in the interest of brevity). To do this, we need to know how many
resource points a particular player can reach by traversing a particular
distance. The following rule performs this counting operation over a fixed
search radius:

resources_at_distance(B,T,N) :-
base(B),
T = 1..grid_width,
N = #count { distance_to_resource(B,R,T):res(R) }.

A map is unfair if there is some distance for which different players
can reach different numbers of resource points. Stated differently, in a
fair map, there should be a unique number of resources available at each
distance. The following snippet ensures this uniqueness:

resource_count(T,N) :- resources_at_distance(B,T,N).
:- T =1..grid_width, 2 { resource_count(T,N) }.

Now we have a model of the map design space that admits only fair
maps. Unfortunately, this encoding fails to capture one major concern. It
allows for the generation of maps where each player, stocked with equal
resources, is isolated on their own island—the map is technically fair
(according to the above definition), but it has no potential for interesting
conflict between players.

To tie up this last concern, we should first define the space of cells that
a given player can touch (with fixed exploration radius). Two players can
reach one another if there is some cell they can both touch, but they are
too close together if one can directly touch the other (in that radius). A
final snippet enforces this design policy:

base_pair(B1,B2) :- base(B1;B2), B1 < B2.

base_touches(B,C) :- base_reaches(B,C,T). % any T is good

bases_touch(B1,B2) :- % they both touch cell C
base_pair(B1,B2),
base_touches(B1,C)
base_touches(B2,C).

bases_overlap(B1,B2) :- % B2 is placed on a cell B1 can touch
base_pair(B1,B2),
base_touches(B1,C),
base_at(B2,C).
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:- base_pair(B1,B2), not bases_touch(B1,B2).
:- base_pair(B1,B2), bases_overlap(B1,B2).

Running the above program through the same parallel solver setup
used in the chess maze example yields a description of the map shown in
Figure 10.10 after about two seconds.

In this particular example, the solver has decided to ensure that every
player has one resource point that is one step away from their base, two
within five steps, and three within seven steps. It is tempting to exam-
ine the map and think “it looks like the player who owns ‘B2’ has an
advantage here because his two closest resource points are uncontested
and there is a single bottleneck protecting his territory.” However, with-
out trying this map in any particular game, let alone specifying even a
sketch of the game mechanics, this is idle speculation. It may be the
case that we should complain “the player owning ‘B1’ is over-privileged
in this map because her air units have better access to harass enemies
at the resource points than any other player.” Map design, particularly
for strategy games, can be a very subtle art. In time, exploratory design
practice can dig out the deep properties of interest in this domain.

Discussion

Similar to the setup in the chess maze example, I have captured some of
the key ideas from an optimization-based system as hard constraints on
appropriate artifacts in the sketch. Sometimes incremental optimization
is used as a way to exploratorily discover artifacts that satisfice (we do
not what threshold on a metric value defines “good enough,” but we can
watch artifacts improve until we see one with which we are satisfied). In
other applications, particularly Togelius’ system operating in the domain
of playable StarCraft maps, the intent of the multi-objective optimization
was to map out the space of possible tradeoffs between different met-
rics we might want to apply to the maps. For example, an easy way to
achieve good resource fairness score in that system is to place all of the
player bases close together, but this diminishes the base distance metric.
Maximizing one metric often comes at the cost of reducing others.

If there were only one metric of interest (perhaps a weighted sum
of scores from simpler metrics), then we could readily use a #maximize

statement to globally optimize the overall metric. However, this would
likely yield an unsatisfying compromise that allows some bases to be close,
some resources to be reached unfairly, and some skew to the distribution
of reachable squares. Looking to probe the limits of our design space (as
we did in the previous example by minimizing the number of knights that
present a given level of modeled difficulty) entails searching for artifacts
on the Pareto frontier: artifacts for which none of the metric scores can be
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Figure 10.10: Generated strategy game map for no game in particular.
Yellow diamonds represent the starting base locations for four players.
Green clouds represent seven resource points that players might capture.
The notion of fairness at work in this map is that every player has the
same number of resource points accessible within the same number of
steps on the grid (up to some maximum radius). Here, players can reach
one point in one step, two points in five steps, and three points in seven
steps. Other concerns such as the distribution of passable grid cells and
the distance between bases have also shaped this map’s form.
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improved upon without reducing another. Finding Pareto efficient solu-
tions within answer set programming is a subtle topic (it involves solving
an NPNP-complete problem), but it is not impossible. The metasp li-
brary from the Potassco project provides the building blocks for modeling
Pareto efficiency as one of the concerns in a design space model [77].

In Liapis’ system, the optimization process starts with human-designed
maps as a form of expert input. Although ASP provides no way to suggest
that search start from any given point, we can recycle a trick from the
previous example to ask for new maps that are variations on a given map.
To explore variations on a hand-crafted terrain map (ignoring bases and
resources for now), we should collect up a set of facts like crafted_solid(C)

that note whether a cell was solid in the crafted map and append these
facts to the design space model. The snippet below will ensure that the
resulting design space only includes artifacts for which the terrain differs
in a few places (say, 5) from the crafted input.

#const tolerance = 5.
disagreement(C) :- cell(C), 1 { solid(C), crafted_solid(C) } 1.
:- not 0 { disagreement(C) : cell(C) } tolerance.

Another feature of Liapis’ system is fitting a model of user preferences
to feedback given on machine-generated maps. As this adds a machine
learning component to the system, I have left this feature out of the sketch
above. The natural equivalent for this sketch would be to learn symbolic
constraints from user input. This is exactly a task for inductive logic
programming (ILP), which can be implemented using ASP [43]; however,
sketching such a learning system here would distract from the much more
direct way of involving the user in the generation process examined in the
next example.

10.5.3 Platformer Levels with Support for Mixed-Initiative
Interaction

My final sketch is inspired by “Tanagra: Reactive Planning and Con-
straint Solving for Mixed-Initiative Design” by Gillian Smith and others
[202]. This example couples a design space model to the rich collection
of external constraints that might come from a user in interaction with
a graphical design tool. It also models a design space using a numerical
constraint answer set solver.18 Even though constraint answer set solving
is an emerging topic, it is interesting to explore building something with
technology that, in time, may become more stable and mainstream.

18Specifically, this example uses language features introduced in Clingcon v2.0.2
(http://sourceforge.net/projects/potassco/files/clingcon/2.0.2/).
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Overview

Recall from § 9.4.2 that Tanagra is a prototype level-design tool for plat-
former games. Tanagra explores the potential for mixed-initiative inter-
action between a human designer (who knows the high-level requirements
for a design project and can make aesthetic judgments without the need
for formal justification), and a machine designer (that knows numerical
constraints rising from a game’s mechanics and can be trusted with the
tedious search process involved in ensuring that a level is playable). Al-
though our sketch will not be integrated with a graphical interface, it is
designed to function as exactly the kind of internal system that would
support this mode of interaction.

In Tanagra’s model of platformer levels, a level be can broken down
into discrete beats during which the player performs a single action (such
as killing an enemy or waiting for a stomper to clear from the path). The
system’s beat-timeline reads like a high-level script for how to complete
the level: jump up, jump up, kill enemy, wait, jump down, and so on.
In the game world, beat activities are realized by placing platforms with
numerically parameterized geometry (specifying their left/right endpoints
and their height). To ensure that a level is valid and playable, a constraint
solver inside of Tanagra verifies that all of the platform parameters are
internally consistent (e.g. their right sides are indeed to the right of their
left sides) and that the width and height of gaps between platforms are
within stated jump feasibility tolerances. Our sketch will support the
same local validity and playability constraints that Tanagra used, and it
will use the same library of basic activities: jumping, springing, killing,
and waiting.

Beyond simply placing platforms to ensure playability, Tanagra makes
use of multi-beat patterns inspired by level design motifs in popular plat-
former games to enforce higher-level structure on the generated levels.
In the sketch below, we will only account for one example of Tanagra’s
multi-beat patterns: the valley (described later).

With no specific constraints coming from the user, Tanagra functions
like a traditional level generation system, producing a new level from
scratch each time it is invoked. Our sketch below will support this tabula
rasa mode of generation as well. However, the intent of Tanagra is to
allow the user (assumed to be a novice) to get help on her own design
project, not to accept the machine’s output as it first appears. In place
of allowing the user to graphically paint constraints on where platforms
should be placed, our sketch will require its users to manually type in
their intent as logical facts at the end of the program. This process would
be automated in a graphical system.

When the user of Tanagra paints new platforms that break the work-
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ing level’s playability, Tanagra searches for a local adjustment of platform
geometry that will restore playability. If no suitable local adjustment
is possible, Tanagra widens its search to nearby platforms (potentially
breaking multi-beat patterns), examining more and more drastic edits to
restore playability. If the search process cannot quickly find a repair with-
out undoing any of the designer’s work, it gives up. In the sketch below,
we will not be so gentle. The resulting system will restore playability of
the level at all costs (or, rather, at minimum cost). In consolation, it will
attempt to leave as many features of the previous level design unchanged
as possible.

Before we launch into the development of this sketch, the reader should
recall that the focus of this sketch is to exercise mapping a design space
onto external constraints that are not known at development-time. Mak-
ing a design space model controllable in this way goes beyond providing
tweakable numerical parameters; it involves exposing a language of con-
straints that others can use without requiring them to first understand
the rest of the design space model’s encoding. As before, look ahead at
Figure 10.11 for a visual clue of where this sketch is headed.

Development

As with the other examples, we will start by defining some numerical
constants. These particular numerical parameters would only be adjusted
by someone wrapping a graphical interface around this system, not by the
end users of the system, so we can imagine that they are really constants.

#const num_beats = 10.
#const min_platform_width = 4.
#const max_platform_width = 16.
#const jump_height = 4.
#const jump_width = 4.
#const spring_height = 8.
#const spring_width = 8.

Clingcon’s language requires us to specify a domain of values for the
integer variables that it will manage.19 While we could set the limits
of this domain to some very large value without much impact on solver
performance in this problem, we will set it to a reasonable number moti-
vated by Tanagra’s user interface. In Tanagra, platforms are painted with
discrete blocks (and a typical gap size between platforms might span two
block units). In our sketch, we will model a canvas that is 100 units wide:

#const units = 100.

19Any syntax in this example involving the $ sigil is specific to this experimental an-
swer set solver, not a standard AnsProlog language feature. See http://sourceforge.

net/projects/potassco/files/clingcon/2.0.2/clingcon_language.pdf for a brief
review of the language features available in the version of Clingcon used in this example
(v2.0.2).
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$domain(0..units-1).

Before we place platforms, we should establish the vocabulary of ac-
tivities a player might perform in each beat of the level.

action(jump).
action(spring).
action(kill).
action(wait).

Jumping and springing are treated specially because some multi-beat
patterns depend on the direction of the activity (e.g. springing up vs.
jumping down).

directional(jump;spring).
dir(up;down).

The following snippet will assign every beat a unique action, and it
will optionally tag directional actions with a direction:

beat(1..num_beats).
1 { activity(B,A):action(A) } 1 :- beat(B).
0 { direction(B,D):dir(D) } 1 :- activity(B,A), directional(A).

With just the above rules, our sketch captures a space of beat time-
lines, but we will need to map beat activities to platform geometry before
we can examine any concrete levels. Unlike many constraint programming
languages, Clingcon does not require us to declare constraint variables—
we just start using them.20 In the snippet below, “left(B)” (or “left(2)”
when grounded for the second beat) is not a reference to a predicate;
it is the identifier for a constraint variable (e.g. “left(2)” is the integer
constraint variable that holds the horizontal position of the platform as-
sociated with beat #2). This snippet enforces a minimum and maximum
width on platforms as a relation between the left/right variables associ-
ated with each beat:

right(B) $- left(B) $>= min_platform_width :- beat(B).
right(B) $- left(B) $<= max_platform_width :- beat(B).

Similarly, this snippet ensures that beat geometry is ordered from left
to right:

left(B) $< right(B) :- beat(B).
right(B) $<= left(B+1) :- beat(B).

To ensure that the generated level geometry spans the whole 100-unit
canvas, we can pin the edges of the first and last beat to the edges of the
canvas:

left(1) $== 0.
right(num_beats) $== units-1.

20Clingcon can get away with this because it supports only integer constraint vari-
ables. Richer constraint programming systems have a wider vocabulary of constraint
variable types, making variable declaration useful to avoid ambiguity.
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If we want our canvas to look like the short and wide canvas used in
Tanagra, we need to put an upper limit on the height parameter associated
with each platform:21

height(B) $<= 20 :- beat(B).

More importantly, the heights for each platform should agree with the
direction specified in the beat timeline:

height(B) $< height(B+1) :- direction(B,up).
height(B) $> height(B+1) :- direction(B,down).

The height difference associated with directional jumps should not be
too extreme—the player needs to be able to make these jumps.

$abs( height(B+1) $- height(B) ) $<= jump_height :- activity(B,jump).
$abs( height(B+1) $- height(B) ) $<= spring_height :- activity(B,spring).

Similarly, the width of a jump (the distance between the right side of
one beat’s platform and the left side of the next beat’s platform) should
not be too extreme either.

left(B+1) $- right(B) $<= jump_width :- activity(B,jump).
left(B+1) $- right(B) $<= spring_width :- activity(B,spring).

To encourage the player to jump, we will ensure there is a minimal
width to the gap they must cover.

left(B+1) $- right(B) $>= 1 :- activity(B,jump).
left(B+1) $- right(B) $>= jump_width :- activity(B,spring).

The above numerical constraints only covered jumping and springing
activities. To make sure no spurious gaps show up in beats tagged with
the kill and wait activities, we should add the constraint that platform
geometry for successive beats be contiguous in these cases.

adjoined_action(kill;wait).
height(B) $== height(B+1) :- activity(B,A), adjoined_action(A).
right(B) $== left(B+1) :- activity(B,A), adjoined_action(A).

We now have a functional platformer level generator—or at least we
have a generator for playable yet often uninteresting levels. As a gesture
in the direction of capturing interesting high-level structures, the next
snippet shows how detect instances of a multi-beat pattern called a valley.
In a valley, the player jumps down to kill and enemy and then immediately
jumps up to a platform of the original height before continuing.

detected(valley,B) :-
direction(B,down),
activity(B+1,kill),

21What’s wrong with platforms with height set to 100? Why isn’t this set in a #const

directive? When I was viewing levels generated from this design space as generated
ASCII-art in my terminal, a maximum height of 20 allowed me to comfortably examine
two levels and their associated metadata without scrolling. In this example, the canvas
is an abstraction that would be altered to fit the graphical constraints of some other
tool as needed. Exploratory design can be a little messy.
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direction(B+2,up),
height(B) $== height(B+3).

Unfortunately, we have no a priori reason to want a valley to be
detected in our levels. Whether there should be a valley and where it
should be situated is a matter of the user’s taste. In the next snippet we
forbid levels missing valleys, but only if the user (who we can imagine is
able to append only ground facts) cares to ask us to enforce this policy.

required_detection(valley,3).
:- required_detection(Pattern,B), not detected(Pattern,B).

As encoded above, the presence of a valley at beat #3 is a hard con-
straint. As much as the generator will be willing to tear up the rest of
the current level design to ensure playability, it will never consider failing
to form the required valley. Although this seems like an overly strong re-
quirement for a relatively minor pattern, I have included it in this sketch
primarily for contrast with the soft constraints that we will model next.

Imagining that our user has painted some geometry of their own design
on one side of the level, how should we capture the intent of the as-
local-as-possible playability repairs that Tanagra produced? First, we
will represent what the user has done so far:

previous_activity(1,jump).
previous_direction(1,up).

previous_geometry(left(2),12).
previous_geometry(height(1),8).
previous_geometry(height(2),3).

They seem to have given us conflicting design goals. It looks like
they want beat #1 to involve jumping up,22 but they are also asking for
the platform in beat #2 to be lower. Knowing that when given no hard
constraints beyond that of playability, the solver will only emit playable
levels, we can start by simply detecting when the solver makes a choice
that disagrees with the user’s previous inputs.

activity_tweak(B) :- previous_activity(B,A), not activity(B,A).
direction_tweak(B) :- previous_direction(B,D), not direction(B,D).
geometry_tweak(G) :- previous_geometry(G,V), G $!= V.

At least now the solver can notice when it disregards the user’s intent.
To get the solver to prefer local repairs, we should have it determine a
sense of the size of the repair it is considering and have it (globally) opti-
mize that metric. We will give priority23 to solutions that preserve (or do

22Would users really be manually specifying the beat activities like this? It is possi-
ble, but I imagine automatically detecting the activities implicit in the geometry that
they paint. In this way, the solver can still attempt to maintain the intent of what they
painted even if it needs to alter the geometric properties of every platform nearby.

23This prioritization is done through the mechanism of lexicographic optimization,
a form of multi-criteria optimization that is related to but distinct from Pareto opti-
mization [169].
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not tweak) activities and their directions over those that preserve precise
geometric parameter values. In the resulting levels, there is no alternative
repair that tweaks fewer geometric parameters while still preserving the
same number of structural features, and there is no repair that tweaks
fewer structural features.

The encoding is simple enough:

#minimize { geometry_tweak(B) @ 1 }. % lower priority
#minimize { activity_tweak(B) @ 2, direction_tweak(B) @ 2 }.

A similar prioritization strategy could be used to implement several
levels of soft constraints (perhaps even allowing the playability constraint
to be relaxed if needed in the interest of getting some visible result on
which to attempt manual repairs).

Defined in this way, our design space model is wrapped around our
hypothetical user’s current working design (encoded as logical facts that
can be generated from his graphical input). Whether an artifact has
appropriate form (or perhaps how appropriate its form is) depends on
how well it resembles an under-construction reference artifact with which
the user is already very familiar. When a particular design project requires
artifacts to have subtle and difficult to formalize properties, we need not
immediately dive into trying to encode those properties in AnsProlog. We
can instead model the design spaces of artifacts that look like minimal
edits to some artifact that is perhaps aesthetically appropriate but missing
a key structural property that would be tedious to reliably ensure.

Combining all of the above snippets into a single program and running
them with the following command24 results in the level design visualized
in Figure 10.11 in less than half a second on a much older machine than
the laptop used in the two previous examples.25

$ clingcon dathon.lp --rand-freq=1

Discussion

Although not apparent from my description of Tanagra so far, one of the
key differences between Tanagra and the sketch above is one of software
architecture (the topic of the journal article on Tanagra [202]). Tanagra’s

24Why is the system called dathon? Dathon, the Tamarian space cruiser captain,
was the alien who, through non-verbal means, was able to convey the core meaning
of the story of “Tanagra” to the wounded Captain Jean-Luc Picard, allowing the
two to cooperate, fighting off a violent creature and surviving to be rescued. Well,
Picard was rescued and Dathon died—but the point is that this Dathon guy was
able to communicate something deep about the “Tanagra” story. See also: http:

//en.memory-alpha.org/wiki/Darmok_(episode)
25Conveniently precompiled binaries for Clingcon v2.0.2 were only available for

Linux.
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search through the space of possible levels is split between two loosely cou-
pled components: a reactive planner (written in ABL [135]) that manages
that search through structural features (beat activities and multi-beat
patterns like valleys) and dedicated numerical constraint solver (choco
[30]) that manages the search for numerical parameters satisfying a very
specific query posed by the planner. In the system we sketched above,
the structural and numerical search processes are tightly interleaved26 in
the single invocation of the answer set solver.

In Tanagra, when the planner is searching for a consistent repair to
the level, it does so in the open. We can watch it add and remove plat-
forms from the canvas in real-time. In a hypothetical mixed-initiative
design tool built around the system sketched above, the machine would
play a much more cautious and contemplative role in the conversation. It
would only report back an edit to the level when it was sure there was
absolutely no better alternative. Even if we visualized sub-optimal results
emerging as the search progressed, we would only ever see the machine
imagining (more drastic than necessary) edits that fully restored playa-
bility. In between these complete solutions, examining the state of the
solver’s decision variables will often yield results that are difficult to vi-
sualize. It may have decided that one platform is below another one but
not know where either are placed on the canvas. Similarly, it may have
decided that the activity for a certain platform is not springing without
having yet decided what alternative to pick instead. The solver’s ability
to manipulate partial artifacts is a both a major strength and point that
makes its search process difficult for human interpretation. For a large
and complicated map, this means the machine might sit uninformatively
silent as vast spaces of alternatives are being tested and invalidated. Even
when Tanagra’s visibly frantic search cannot find a solution, observing it
struggle and examining the options it is trying may inspire the human
user to find a way around the impasse. Because the sketch above was
designed to hide exactly this sort of detail, it is unclear how to get it back
when it might be useful in communicating with the human designer.

Although the problem did not arise in this sketch because of the small
number of beats considered, adding and removing user constraints to an
existing answer set program can involve paying the cost of grounding the
program each time (even though only a small piece has changed). The
system of external predicates supported by the Potassco tools [78] mostly
avoids this problem, though it is not without subtleties. The “reactive

26Clingcon uses its internal numerical constraint solver, Gecode [184], quite similarly
to how Tanagra uses Choco: it adds and removes (called posting and retracting)
numerical constraints as part of the outer search over Boolean properties such as those
describing the beat activities. When the inner constraint problem becomes infeasible,
it forces the outer search process to backtrack and try another alternative.
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answer set solver” Oclingo [74] is designed for building interactive design
spaces such as the one sketched above, however it has not yet been inte-
grated with the numerical constraint solving system that powers Clingcon.
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Chapter 11

Applied Systems
Overview

The previous chapters made the case that answer set programming should
be useful in producing design automation systems on the basis of language
affordances and self-contained examples. By contrast, the following chap-
ters examine the interaction between my design automation practice and
several larger, applied projects. Each of the systems I present in the next
chapters function as computational caricatures, offering a vision of mech-
anized exploratory game design capturing one or more varieties of game
design spaces.

A slight variation on Chapter 12 was previously published as “Ludo-
core: A Logical Game Engine for Modeling Videogames” as joint work
between myself, Mark Nelson, and Michael Mateas for the 2010 Confer-
ence on Computational Intelligence and Games [199]. The design spaces
at work in Ludocore are primarily those of gameplay traces. That is,
while a game designer seeks to craft a game, managing the space of pos-
sible play traces that the game allows is hefty task—one that could make
use of some mechanized assistance.

Historically, Ludocore was the first of my systems that hinted at
the general use of ASP for design automation purposes and, in particular,
its use for level design automation. In the internal work that lead up to
Ludocore (previous to and independent of Martin Brain and Florian
Schanda’s use of ASP in the Warzone 2100 map generator) I was pri-
marily using ASP as a slightly more convenient way to access the event
calculus than the tools chosen by my colleague (Mark Nelson tended to
use Mueller’s decreasoner1 system, e.g. in “Recombinable Game Mechan-

1http://decreasoner.sourceforge.net/
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ics for Automated Design Support” [155]).
Chapter 13 is a variation of “Computational Support for Play Testing

Game Sketches” published with the above authors at the 2009 Artifi-
cial Intelligence and Interactive Digital Entertainment Conference [198].
Although the Biped system it describes predates Ludocore in the publi-
cation record, Ludocore is in fact one of Biped’s two legs. This chapter
explores building out support for human playtesting of the very same
models that Ludocore supports under machine playtesting. Although
Biped makes use of no additional design space models beyond those used
in the previously described machine playtesting subsystem, it does high-
light a major source of new constraints to exploratorily apply to design
space models: live interaction with artifacts. Playing with a game, real-
ized with even placeholder graphics and sound, can make the gap between
what-you-modeled and what-you-thought-you-modeled immediately obvi-
ous.

Chapter 14 represents the first of my published work (previously pub-
lished as “Variations Forever: Flexibly Generating Rulesets from a Sculpt-
able Design Space of Mini-Games” [194] and presented at the same venue
as Ludocore) that acknowledged ASP as a means of synthesizing new
game elements (rules and content) instead of as a technology to assist in
the analysis of hand-crafted game designs. Although I never returned to
development of the game that the chapter describes, Variations Forever,
the intent to use an ASP-based content generator in a deployed game was
resurrected in the next project.

Chapter 15 is a variation on “A Case Study of Expressively Con-
strainable Level Design Automation Tools for a Puzzle Game” presented
at the 2012 Conference on the Foundations of Digital Games with my new
colleagues at the Center for Game Science at the University of Washing-
ton (Erik Andersen and Zoran Popović) [192]. In my previous applica-
tion projects, requirements on generated artifacts always arose from my
personal interest. In developing a set of level design automation tools
for Refraction, I encountered rigid, external constraints that, before the
project began, seemed like they might be difficult to tackle with answer
set programming. Indeed, the three tools I created were intended as re-
placements for hand-crafted search tools created by the game’s designers.
Could ASP compete with the pre-existing, project-specific tools and go
on to provide additional benefits? The outcome was positive, and results
suggest a new practice for the development of in-house design automation
tools. At the time of writing, an enhancement to the tools described in
this chapter is being embedded into the ongoing development of a sequel
to Refraction.
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Chapter 12

Ludocore

My first applied system resembles a general game playing system: it pro-
duces sequences of player actions that achieve some goal. However, in-
stead of being used for competitive play, it is intended for use by designer
in understanding his or her own games. The primary design spaces to
be modeled in this scenario are spaces of play where the appropriateness
of a given play trace is subject to the designers interest, often involving
figuring out how a particular kind of player might play.

Ludocore is a logical “game engine,” linking game rules as reasoned
about by game designers to the formal logic used by automated reason-
ing tools in AI. A key challenge in designing this bridge is engineering
a concise, safe, and flexible representation that is compatible with the
semantics required by videogames.

12.1 Overview

While the term “videogame” brings to mind graphics, sounds, and story
worlds, at the core of every game is a formal rule system. I am inter-
ested in declaratively modeling these games so that the emergent prop-
erties of their rule systems can be understood. The tools of symbolic
AI hold promise for bringing such properties to light, but have not been
used for design or analysis of videogames, in part because of a mismatch
between how designers think of their rule systems and the way logical
specifications are usually written. I propose the use of a logical “game
engine” to ease and accelerate the modeling of game worlds in formal
logic. The engine provides a set of primitives and abstractions that link
game-level concepts to the first-order logic understood by AI reasoning
tools. Specifically, the engine supports automatically generating game-
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play traces, integrated player modeling, and both temporal and struc-
tural queries. Finally, games modeled in Ludocore can be directly read
in, without compilation or translation, to a custom, prototyping-focused
game engine (described in the following chapter) allowing them to be
played as real-time, graphical games.

An existing way to represent purely abstract games in logic is GDL,
the game description language [130]. GDL was designed to specify games
for the general game playing competition [82], in which computers com-
petitively play unfamiliar, turn-based games. Thus, the language itself
was designed primarily to write infrequently-edited specifications to be
read and understood by computer players as state-transition systems. In
contrast, when modeling videogames, designers are much more concerned
with the ease with which they can incrementally build up a game’s rule
system through a series of experimental tweaks [73, p. 14]. Ludocore
supports this kind of modeling, at least for technically savvy designer-
programmers.

My iterative-design motivation also contrasts with the goals of formal
verification. While verification attempts to prove that a set of desired
properties hold, it is not clear during a game’s prototyping phase which
properties are even desirable. In fact, coming to understand what proper-
ties a game has, and which ones would be desirable, is the main challenge.

My bridge from games to formal logic is based on the event calculus,
a logical formalism commonly associated with commonsense reasoning.
In previous research [156], my colleagues proposed the event calculus as
an attractive basis on which to build informative, queryable prototypes.
Since then, in building games with the event calculus, we encountered
various design patterns and idioms, common to all of our games; it is this
experience that prompted the design of Ludocore.

12.2 Building Games on the Event Calculus

Standard game-design texts discuss a game’s mechanics in terms of objects
with dynamic properties (the state of the game), and triggered behaviors
(events and conditional state updates) [1, p. 295][73, p. 112]. While state
and events can be modeled with several formalisms, or even ad-hoc logical
encodings, a common challenge is the well-known frame problem, com-
monly solved by adding frame axioms. In a language like GDL, frame
axioms explicitly declare when state doesn’t change from turn to turn.
An alternate proposed solution is based on the commonsense law of iner-
tia [187], which reads that states retain their values until an event changes
them. This mirrors the usual imperative game programming assumption
that variables stay set to the same value until changed by an active be-

176 CHAPTER 12. LUDOCORE



havior.

Given my desire to model state and events, and avoid frame axioms
that are tedious to maintain, the event calculus (EC) is a natural choice.
Additionally, there is a large body of literature discussing the use of EC as
a practical knowledge representation, e.g. Mueller’s book [151] on applying
it to commonsense reasoning problems involving interaction of objects
over time, for which inertial state is the common case.

The discrete event calculus [150] is based on fluents (predicates whose
truth values vary over time) and events, which happen at particular
integer-valued timepoints and can change the truth values of fluents. Its
key predicates are: happens(E,T), which says that an event happens at a
timepoint; holds_at(F,T), which says that a fluent is true at a timepoint;
and initiates(E,F,T) and terminates(E,F,T), which map event occurrences
to changes in fluent truth values. In addition to state that does not
change without cause (inertial fluents), the circumscription used in the
event calculus implies that events have no effects besides those that can
be explicitly derived. Together, these two kinds of default reasoning give
the event calculus a degree of elaboration tolerance [140], the ability to
modify a knowledge representation without re-engineering it, because new
assertions override defaults.

To realize EC in a computational setting, I use an encoding of the
EC axioms in answer-set programming (ASP), an approach proposed in
unpublished notes accompanying Mueller’s book [151],1 which Kim et al.
[109] proved preserves the expected EC semantics. Answer sets are sets
of literals that represent acceptable beliefs in an abstract world [126].
When applied to programs in the discrete event calculus, these answer
sets amount to assertions about what was true and what happened at
each timepoint. Further, for games modeled in EC, the narrative of events
amounts to what I call a gameplay trace. While there are more direct ways
to extract a single trace from a game, ASP does not forward-simulate a
game, but rather reasons abstractly about the space of possible execu-
tions, which is far more flexible.

The combination of EC+ASP is an interesting tool for game-related
AI because ASP provides fast inference to models of a game’s execution,
and EC is a solid knowledge representation for abstract worlds with time.
Together they facilitate generating traces from concise declarative descrip-
tions. This trace inference is in fact more expressive than forward-search
based methods such as Monte Carlo rollouts; for example, it can defini-
tively prove certain properties of a game, rather than simply showing that
they are unlikely.

1http://decreasoner.sourceforge.net/csr/ecas/
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12.3 The Logical Game Engine

There are some drawbacks to modeling games directly in EC+ASP. In
particular, nearly all of the T variables are superfluous because, outside of
the event calculus axioms, the logical rules of a game tend to refer only to
the current timepoint. Secondly, crafting more complex games directly in
the event calculus formalism leads to duplication of common preconditions
for an event in each of its initiates/terminates clauses. This duplication
creates a maintenance challenge for the game’s author, who might want
to make simple changes to the conditions for a particular event. Finally,
expressing the fact that some set of game events conflict with each other,
despite being independently possible, requires mapping a complex idiom
(of threading special conditions through most game logic) over each new
game design. Mutually conflicting events are a common occurrence even
in simple turn-based games, but describing this constraint directly is, in
my experience, error-prone. These annoyances are resolved in Ludocore
while retaining the advantages of EC+ASP.

Programming computer games is an immensely difficult task, and only
through the continued application of software engineering practices has
a sequence of increasingly powerful game engines made possible the rich
games we expect today [13]. Game engines attempt to provide standard
solutions for game programming problems without prescribing particu-
lar rules or settings for a game. These solutions are exposed by a set
of APIs that games can be programmed against. Some engines, such as
Torque2 and Unreal,3 go so far as to provide custom programming lan-
guages to ease the integration of a game’s specification with the engine’s
services. Ludocore is modeled after this richer variant of game engines:
it provides not only APIs that encapsulate solutions to difficult logical
modeling problems (such as conflicting events) but effectively provides a
new language that is tailored to the application of specifying logical game
worlds. Games produced with the engine are not only smaller than their
equivalent specification using only the event calculus, but also easier to
maintain throughout meaningful design changes, and easier for the game’s
author (or even automated tools) to analyze.

My game engine is essentially a background theory for logical game
descriptions. In the rest of this section I will describe the logical pred-
icates of our game engine and how individual games can leverage them.
Figure 12.1 gives an overview of how our engine builds on the event calcu-
lus, and in turn supports modeling games on top of it. The event calculus
axioms provide the base semantics for discussing state and events over
time. The engine adds higher-level abstractions for modeling games than

2http://www.torquepowered.com
3http://www.unrealtechnology.com
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Figure 12.1: Block diagram illustrating how the logical theories involved
in a complete application of Ludocore fit together to form a logic pro-
gram: (a) provides a temporal logic basis; (b) expands the temporal logic
to include videogame-level concepts; (c) is a complete specification of a
particular game; (d) provides a model of a certain class of players playing
this game; and (e) represents a focused view of particular situations that
could arise in this type of player’s play.
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the raw event calculus primitives do (discussed below).
To produce a completely specified logical game that admits automatic

gameplay trace generation, the author adds a particular game’s rules: the
specific state and events that make up the game, the consequences of
events happening in the game world, the configuration of entities within
the game world (e.g. level layouts), and a model of when things take place
in the game world without the player’s intervention (caused by “nature”).
While this fully specifies a game world, a player model additionally adds
assumptions about what kinds of actions a player can take, in which
combinations—either due to actual restrictions (e.g. if the author has in
mind an input mapping4 that would make certain actions impossible to
perform simultaneously), or due to a desire to investigate certain kinds
of player behavior. Finally, speculative assumptions can be added that
restrict the generated traces to certain kinds of situations that the author
wants to investigate.

12.3.1 State, Events, and Consequences

Since state and events are natural elements of a game’s definition, I ex-
pose the event calculus’s fluents and events in the game engine with the
predicates game_state and game_event, respectively. A game state assertion
in Ludocore looks like this:5

game_state(at(A,R)) :- agent(A), room(R).

This assertion reads that at is conceptually a table that records the
relation between agents and rooms (answering, “is agent A in room R?”).
Elements of this table stay set until changed otherwise, a property inher-
ited from the event calculus’s commonsense law of inertia.

For state that should be updated dynamically as a function of other
state, I provide the state_helper mechanism, which provides a computed
view on inertial state. State helpers are, semantically, event-calculus flu-
ents with inertia disabled, which cannot be directly initiated or termi-
nated. This stratification into primary and derived fluents that I enforce
syntactically is one safe idiom for avoiding the ramification problem in
the event calculus [188].

The state_helper assertion below provides a convenient view on the
at state for checking when a particular agent is at their starting location
(starts_in) without having to name that location. This example also

4My colleagues discuss elsewhere [154] why, when modeling games, input mappings
make sense to model separately from the mechanics that define a gameworld.

5Note that the code examples given in this chapter are from Ludocore’s custom
logic programming language, not standard AnsProlog. The translation from Ludo-
core’s language (a subset of Prolog) to AnsProlog is fairly transparent, but do not
expect this code to function as-is.
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illustrates how rules can be conditioned on the current game state using
the holds predicate. This state helper rule implies that home is a dynamic
(time-varying) property of the game world:

state_helper(home(A)) :- holds(at(A,R)), starts_in(A,R).

Game-event declarations are relatively straightforward. The assertion
below describes the event of an agent performing a healing action:

game_event(heals(A)) :- agent(A).

However, game events can have significantly more structure in Ludo-
core than in the event calculus alone. For example, the conditions under
which a game event is possible (e.g., the legality of moves in a board
game) are specified using the possible predicate. In this example,6 agents
may only heal in their starting room:

possible(heals(A)) :- home(A).

Possibility assertions are used not only for defining the rules of the
game, but also to control event selection when generating gameplay traces.
Importantly, possibility is deeply intertwined with the event conflict mech-
anism. An assertion7 like the one below can keep two otherwise possible
events from happening together:

conflicts(heals(A), moves(A,R)).

By providing possible and pairwise conflicts conditions for game events
in a game model, the required event-selection logic can be implemented
and debugged once in the game engine, instead of by each game author.
By default, actions that are not marked to conflict are safe to co-occur
(whereas basic GDL enforces exactly one player action per turn, which is
unsuitable for modeling a more general class of games).

Game events can be tagged with whether they are direct player ac-
tions or spontaneous actions that can only be caused by a non-player
entity, thought of as “nature” or “the game master.” The player_event

and nature_event predicates signify this tagging. Although these anno-
tations do not correspond to what we normally think of as game rules,
they play an important role in scoping the applicability of player-modeling
rules, described with the player_asserts and player_forbids predicates (and
corresponding nature_ predicates), discussed later.

6After translation to AnsProlog, this rule takes the form
“possible(heals(A),T) :- holds(home(A),T).” Note the injection of T variables
and the translation of the state-helper into a check on a fluent.

7After translation, this assertion is given meaning in AnsProlog an integrity
constraint: “:- conflicts(E1,E2), happens(E1,T), happens(E2,T).” Although this
single assertion successfully blocks co-occurence of conflicting events in generated
gameplay traces, additional internal complications arise when implementing the de-
sired semantics for the player and nature models described later.
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Linking game state to game events, the initiates and terminates pred-
icates from the event calculus are exposed to game authors with minimal
change. The only modification my engine uses is that these predicates are
defined in a time-invariant fashion, always referring to the current game
state. The example8 below asserts that the moves event causes an update
to the at game state, and that the hits event causes the target of the hit
to no longer be alive, under certain conditions:

initiates(moves(A,R), at(A,R)).
terminates(hits(A1,A2), alive(A2)) :-

holds(armed(A1)),
not holds(armed(A2)).

Finally, the initial state of the game world is given by the initially

predicate, which is often conditioned on world configuration. Even in
the examples above, I have suggested the existence of room and starts_in

predicates as background knowledge used to control the state-and-event
logic. Many predicates of this kind can be thought of as specifying a static
world configuration: time-invariant facts about the game world, such as
level geometry, item properties, and tables of weapon effects.

12.3.2 Player Model Interface

In addition to tagging the subset of game events that are player actions
with player_event, I build an additional interface for specifying models for
players’ behavior.

Simply allowing a certain set of events to be considered by the player,
by tagging them as player events, does not immediately yield an expressive
modeling interface. The player_asserts and player_forbids predicates can
be used to express stronger preferences that an action be taken or should
never be taken under some circumstances. The example below illustrates
these assertions in the context of a hypothetical game in which picking
up objects is a player action:

player_asserts(pickup(O)) :- kind(O,gold).
player_forbids(pickup(O1)) :-

kind(O1,K),
holds(carrying(O2)),
kind(O2,K).

This model describes a player who never misses a chance to pick up a
gold object, but never picks up duplicates (even of gold objects).

The combination of such assertions allows for the specification of a
complex, nondeterministic player action policy that automatically re-

8The terminates case expands to the following AnsProlog rule:
“terminates(hits(A1,A2),alive(A2),T) :- agent(A1;A2), holds(armed(A1),T), not holds(armed(A2),T).”
Ok, enough of this compiler-in-the-footnotes game. The reader can imagine how T

variables and appropriate domain predicates are inserted as needed to form a valid
AnsProlog from here on.
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spects the game’s mechanics. The default player model is maximally
permissive (it reads that the player considers all player events) which
allows meaningful play traces to be extracted from games even when no
effort has been put into player modeling. Every clause of player_forbids or
player_asserts serves to pare down the space of gameplay traces to those
that are more reasonable to expect (thus appropriate) given the provided
knowledge.

Identical in structure to the player-modeling interface, I provide nature_asserts

and nature_forbids predicates to operate on the events marked with nature_event.
Whether the nature model is used to model an opponent, a game master,
a collection of non-player characters, or even used at all, is largely a game
author’s choice. Many of the rules that end up in a nature model could
be pushed into the game’s core rules, resulting in an equivalent logical
model. Leaving certain elements of the game in the realm of the nature
model, however, makes it easy to experiment with modification to these
policies without modifying the accepted base rules. Having such flexibil-
ity is crucial when modeling videogames with a live world, full of enemies,
moving platforms, and other active, non-player entities.

12.3.3 Relation to the General Event Calculus

In comparison to the general event calculus, I disallow holds and happens

from ever being used at the head of a rule. In event-calculus terms, that
means I disallow state constraints and triggers.

In general, state constraints are not game mechanics. For example,
the state constraint that the hero is never at the bottom of a pit while
alive might be true of a bit of design, but it is not itself a game rule. There
may be rules that produce this state constraint: for example, saying that
the hero dies when he hits the bottom of pits (a terminates clause); and so
would a rule that prevented the hero from ever falling off ledges into pits
(a possible clause). The result is that every element of state is either only
changed by initiates and terminates, or is known to be completely passive,
in the case of state helpers. Disallowing general state constraints ensures
that games have well-defined, consistent, procedural meanings (which is
required for them to be human-playable).

By disallowing a game’s author from directly specifying when an event
happens, I can ensure that the engine has complete control over event man-
agement, allowing me to implement possible, conflicts, and the player and
nature models. The logic required to implement the required semantics of
these predicates is highly circular and rather counterintuitive. Since such
a mechanism is required for almost any interesting videogame model, by
implementing it once and for all in Ludocore, a game author need not
create an ad-hoc reimplementation of similar constructs for each game
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they model.
While I disable rules with happens at the head, the engine permits a

conceptual equivalent to the use of triggers (rules that specify that an
event happens whenever a particular combination of state holds) through
the nature model. For example, to model a triggered collision event, the
nature model could include a line that says nature_asserts the collision
event between two objects if their positions are identical at the current
time.

In summary, my engine provides a modified view of the event calculus
that is designed to make game-level assertions easy to express while mini-
mizing the possibility of a game author (modeler) accidentally introducing
purely logical bugs such as deductive loops and contradictions. This lets
exploratory designers focus on whether their set of game rules is an in-
teresting game, and how it functions, as opposed to spending much time
worrying about whether their set of logical assertions specifies a game
at all. It should be clear from Figure 12.1 that a complete, inspectable
model of play includes much more than just the event calculus.

12.4 Ludocore in Action

Having defined the major ideas in the game engine, I now use it to generate
interesting gameplay traces, and to perform incremental rule modification,
world configuration changes, and player modeling.

12.4.1 Gameplay Trace Inference

The simplest use of the engine is to simply generate any gameplay trace
compatible with a game’s definition. One of the difficulties for game
designers is understanding the potential consequences of rule interactions.
When initially crafting game models, these unconstrained traces provide
easy access to possible interactions within the game, quickly revealing
undesirable behaviors resulting from game-design bugs without having to
conceive of an interesting query to begin. The output of my tools provides
not only a log of game events, but the complete game state at all times
to ease diagnosis.

Figure 12.2 shows an automatically generated event trace from the
Ludocore model of a popular online game, Motherload,9 in which a
mining robot recovers ore and treasures from a network of caverns without
running out of fuel (my playable model of the game is visualized in the
next chapter). In this case, I show both player-action events, such as
mine(a1) (the player’s robot mined the rock named a1, which removed

9http://www.xgenstudios.com/play/motherload
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happens( mine(a1), 0).
happens( drain, 1).
happens( drain, 2).
happens( trade, 3).
happens( refuel, 3).
happens( mine(a2), 4).
happens( mine(a0), 5).
happens( down to(a), 6).
happens( mine(space_canary_corpse), 7).
happens( mine(c0), 8).
happens( down_to(c), 9).
happens( down_to(f), 10).
happens( up_to(c), 11).
happens( up_to(a), 12).
happens( down_to(c), 13).
happens( down_to(f), 14).

Figure 12.2: Generated gameplay trace for DrillBot 6000 (reviewed in
detail in Chapter 13), generated by asking the analysis engine for an
arbitrary 15-time-step trace with no constraints.

it from the world and added it to the robot’s inventory), and natural
events, such as drain (the robot’s energy drains by one unit). The player
here mines a single rock reachable from the starting location, and trades
it in and refuels. Then, he embarks on a longer mining journey, mining a
few rocks and moving downwards into the ground, before finishing with
some fairly aimless wandering up and down. The values of each piece of
game state at each time step can also be viewed, but we focus here on
just the event trace.

While Figure 12.2 shows a trace generated with no special constraints,
the most common use of Ludocore is combining a game with a set of
hypothetical or speculative assumptions (SAs). SAs are commonly used
to assert that certain events do happen or never happen, or that a certain
condition is met by a certain timepoint (e.g., victory within 20 turns).
This helps explore the space in a much more focused way than simply
looking at random gameplay traces. For example, while the random wan-
dering up and down in Figure 12.2 is a common feature of unconstrained
traces, it does not illustrate anything particularly interesting about the
gameplay possibilities. SAs allow a designer to express what would make
a gameplay trace particularly appropriate to see at this point in their
design process.

The mechanism of specifying speculative assumptions (based on in-
tegrity constraints) provides a simple, modular querying interface for
narrowing down a model to more interesting traces, and asking ques-
tions about gameplay possibilities. “Is my game winnable?” requires
only one SA to specify (asserting that victory happens at some time-
point). To scope the question further, asking “is my game winnable with
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avatar health never dropping below 5?” requires only one more SA.10 In
my model of Motherload, I used SAs to look at extreme kinds of game-
play possibilities: speed-runs by players beating the game in as short a
time as possible, or what kinds of gameplay would result if a player never
refueled, or refueled cautiously. I compared these traces to traces from
human playtesters, who gave me an idea of how beginners would play the
game before being familiar with it, which showed me, for example, that
my players were much more cautious on refueling than necessary.11

In generating these kinds of constrained traces, the logical inference
approach taken in EC+ASP shines. Had I used randomized forward
search in the game’s state space, constraints on happenings of the fi-
nal timepoint would be difficult to encode and inefficient to compute,
requiring exhaustive search to prove nonexistence. ASP lets me “run the
game backwards” (or even sideways, in a sense) as needed to satisfy trace
constraints or quickly prove them impossible.

While gameplay traces can be highly informative (because each in-
cludes a complete narrative of events), even the absence of traces can be
informative. If adding a particular SA yields no traces for a game that
previously admitted many, then it has been proven (by exhaustion) that
the SA is incompatible with the game’s rules, i.e. that the assumption is
false in the game’s abstract world.12

Extraction of gameplay traces is the primary function of the Ludo-
core engine. The affordances I describe below for modeling and modi-
fying games all serve to give the game’s author the ability to sculpt the
space of traces that the system will generate.

12.4.2 Modifying Rules and Configuration

Recall that game design is often an iterative process, adding, removing,
and tweaking rules as a design progresses. Rules, in Ludocore, are repre-
sented by the game_event, game_state, possible, conflicts, and initiates/terminates
predicates. A game’s author might make changes to these rules (and ex-
amine the traces for the new game) as part of a major intentional design
change, or simply as a way of quickly testing the implications of alterna-
tive formulations of a particular mechanic in the game. Often it is useful
to disable (by simply commenting-out) several rules to focus on sub-parts

10Together, these two SAs look like this:
:- not happens(victory,T):timepoint(T).

:- holds(health(H),T), H < 5.
11I discuss this complementary use of human and machine playtesting in more detail

in Chapter 13.
12Thielscher (2009) also uses termination without models of an ASP solver to prove

properties of a game via contradiction.
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of a game in isolation without distracting interactions, e.g. disabling am-
munition consumption on weapons when examining health-point man-
agement. In a language without elaboration tolerance, this would require
more complex editing than simply commenting out a rule. Creating a
variant of chess without castling in GDL, for example, cannot be done
simply by removing the castling rule, but requires other edits as well.

To illustrate rule modifications, I draw on two examples from my Lu-
docore model of Motherload.

If I wanted to add a fixed inventory capacity to the mining robot
(constraining an existing event on the basis of existing game state), I
would modify the possible conditions for the game’s mine event to depend
on a count of the number of items for which the bagged state for rocks
held. This single change would not only stop traces that violate the new
rule from being generated but also reject traces when even an externally
assumed narrative (expressed with SAs) included too many mining events:

state_helper(have_space) :-
count(R,holds(bagged(R)),N),
N < 10.

possible(mine(R)) :-
holds(present(R)),
touching(R),
fueled,
have_space.

To modify the game to charge players energy points for mining instead
of moving, I would drop the initiates and terminates rules linking the
moving event to the energy state and create two new ones linking mining
to moving (one to terminate the previous energy value and another to
initiate the diminished value). This re-wiring task incurs only a four-line
change to the game source when using the engine, due to the conciseness of
expressions enabled by the game engine. With access to gameplay trace
inference, I can quickly verify the effectiveness of the rule modification
without the need for human play testers.

This ease of rule modifications directly derives from the elaboration
tolerance afforded by the underlying EC formalism. Recall that McCarthy
[140] describes elaboration tolerance as the ability (of a knowledge rep-
resentation) to accept changes to known facts without having to “start
over,” which is exactly what I realize for the space of game rules. Further,
in other research applying EC to games, my colleagues have shown how
entire modules (corresponding to game mechanics and vocabularies) can
be swapped in and out without trouble [155].

In addition to swapping rules, it is quite easy to pair a fixed game with
different sets of configuration such as map layout, static item properties,
and tweakable constants. For example, a simple map can be used for early
testing, and a more complex one used later for detailed player modeling.
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In addition to manually specified game configurations, it is possible to let
the answer set solver reason across possible configurations for the game.
In my model of the game Minesweeper, I am able to reason over possible
placements of mines that are consistent with player observations. In a
simple dungeon crawl game, I allowed the solver to manipulate the pres-
ence and connectivity of rooms on a map. The ability to make structural
queries of this sort is a novel feature for game engines. In the larger con-
text of this dissertation, this ability of Ludocore is clearly just another
instance of modeling design spaces with ASP.

12.4.3 Using Player and Nature Models

While I tend to think of speculative assumptions as convenient but throw-
away constraints, specifying complex assumptions can be tedious. The
player-modeling interface provides a more straightforward way of build-
ing larger player models that will be retained and modified, rather than
used in only a few queries. Sets of player_asserts and player_forbids clauses
are collected to carve out the space of behavior that can be reasonably
expected of the kinds of players being investigated.

A custom nature model can similarly be used to carve the behavior
of other in-game entities. In the dungeon crawl game, I used the nature
model to control monster wandering behavior. I had tagged the monster
movement event as a nature event, implying that it should always be
considered in trace finding when using the default nature model. To effect
patrolling behavior, I used the following assertion, which yields monsters
who wander only within their own marked areas:

nature_forbids(move_to(M,R)) :- not patrolled_by(M,R).

12.5 Applications Enabled

Ludocore enables a number of broader applications, some of which have
already been investigated in other forms.

12.5.1 Game Design

Designing games in a logical game engine, or at least using one to pro-
totype game ideas, can provide designers with insight about design pros
and cons, and suggest possible improvements. Many logical formalisms
can allow verification that desired properties hold, and undesired prop-
erties do not. However, designers often work in an iterative, exploratory
manner, and find exact yes-or-no queries somewhat difficult to formulate
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[156]. The experimentation with gameplay traces that the engine sup-
ports can help designers understand the possibilities of their design by
iteratively “zooming in” on specific kinds of traces using SAs, and observ-
ing how different player models shape emergent properties of the game.
I have already begun pursuing this application to larger design process,
creating a game the prototyping system Biped in which human-playable,
board-game-like prototypes can be built, using the logical representations
described in this chapter.

Logical game engines may also form a core component of emerging
research in automated videogame design. In a subsymbolic approach, To-
gelius and Schmidhuber [219] generate Pac-Man variants from a param-
eterized space and use reinforcement learning to demonstrate gameplay
in the resulting games. Games implemented in Ludocore can be varied
in a much more open-ended and incremental manner than with a param-
eterized space of variation, and its elaboration tolerance addresses the
problem of brittleness of symbolic representations, which was in part re-
sponsible for the move towards parameterized numerical representations
in content-generation research.

Furthermore, given sets of traces, inductive logic programming (ILP)
can be used to induce models for the style of gameplay exhibited in those
traces. The player-modeling interface in Ludocore makes this more
feasible by having player models built from only two key predicates. Many
popular ILP systems, such as Progol [153] can only learn single predicates
at a time. In Ludocore’s player-modeling interface, single-predicate ILP
systems can learn the player_asserts predicate from example gameplay
traces. Some research has even been done on learning EC rules themselves
[149], which, for games, would open up the possibility of inducing new
game rules from a collection of desired gameplay traces.

Procedural level design can be done by specifying and solving con-
straints for what constitutes a good level, sometimes as part of a larger
search process. Particularly relevant here, a community-driven project
recently13 added procedurally generated maps and base layouts to the
real-time strategy game Warzone 2100, using ASP to specify and solve
constraints on the maps’ layouts.14 Designing a good level, however, often
means designing a level that supports good gameplay, and these sorts of
static constraints only indirectly speak to gameplay. Other approaches,
such as that of Togelius et al. [217], generate levels and score them with a
fitness function that predicts whether they support interesting gameplay.
For games written using my logical game engine, a constraint-based ap-
proach can easily include these kinds of constraints on gameplay in addi-
tion to constraints on static level properties, because the level-generation

13Well, it was recent as of the time of this research.
14http://warzone2100.org.uk/manual-diorama
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search and play-trace search are unified into the same query mechanism.

12.5.2 Crafting Game Playing Agents

Despite my motivating focus on analyzing game designs, my logical game
engine has applications to playing games as well. Because gameplay trace
inference in the engine corresponds exactly to what is commonly known
as EC planning [186], it is possible to use the engine directly in a general
game player. Thielscher [214], for example, has already argued for the
applicability of ASP with temporal-logic models for the contemplation
phase of GGP competitions.

The player-modeling interface I provide is designed to accept incre-
mental additions of knowledge about how a player (or their opponents)
make choices. Though this interface cannot express a minimax-like policy
(that includes quantification over models at every timepoint), it does co-
alesce overlapping asserts/forbids cases into a unified move-set selection
policy that would allow minimax to operate in the more restricted space
in which the modeled opponent is really playing.

The ease of adding and removing rules in our games has another ben-
efit for those wishing to craft general game players. The elaboration tol-
erance of the representation makes syntactic construction of novel games
much easier. By building all combinations of a fixed set of add-on me-
chanics, a generative space of games can be realized, providing a much
wider selection of games for agents to be tested on.

12.6 Conclusion

In this chapter, I introduced a new concept: the logical game engine. My
logical game engine, Ludocore, much like a traditional game engine,
both provides a higher-level language to describe games, and centralized
solutions to tedious or error-prone programming tasks. By virtue of using
declarative logic, I gain not only a concise representation of a game’s me-
chanics, but also the ability to automatically generate interesting game-
play traces that meet meaningful constraints.

While clearly Ludocore serves as a bridge from the concerns of game
design to symbolic AI tools, it has also served as the basis for imple-
menting interactive prototypes. In the next section, human-playtestable
prototypes with real-time interaction and graphics are written with the
Ludocore engine, enabling the same game specifications to both be used
with logical tools (objective, machine playtesting) and as gameplay demos
(subjective, human playtesting).
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Chapter 13

Biped

My second applied system extends the gameplay models expressible with
Ludocore with an interactive, graphical interface suitable for direct
playtesting with human players. While this system does not employ any
design space models beyond those in Ludocore, it provides an exam-
ple of linking the highly abstract artifacts reasoned about by answer set
solvers to the playable systems designers expect to be manipulating in
game design.

In this chapter, I describe a language designers may use to sketch
simultaneously interactive and formally queryable games, how they might
use the tool in the two modes of playtesting (human and machine), and
how the prototypes are computationally realized. Additionally, I study
using the system to prototype a game and examine it in human and
machine play tests.

13.1 Overview

Prototypes, both physical and computational, are an essential tool in a
game designer’s arsenal. In a popular game-design text, Fullerton [73]
defines a prototype to be “a working model of your idea that allows you
to test its feasibility and make improvements to it.” At the earliest stages,
the designer can operate purely conceptually, thinking up new mechanics
and imagining how they might interact with each other and the player; but
at some point all designers need to try them out. This has been described
as getting “backtalk” from a design situation: the designer begins with
some idea of how her design should work, but by trying out a prototype,
she uncovers unforeseen new information on how it actually does work
[182]. In game prototyping, that new information can be both in terms
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of player experience, observing player’s excitement or hesitation to take
a critical action; and in terms of how the game’s rule system operates,
laying bare gameplay exploits and additional solutions to counterintuitive
puzzles.

Physical prototypes are an early-stage game design and playtesting
tool, in which low-fidelity versions of a game’s core mechanics are mocked
up. Even a complex real-time videogame can be prototyped using cards,
tokens, dice, and similar physical objects [189][73, chap. 7]. These pro-
totypes aim to let the designer get backtalk after minimal effort, before
committing to the cost of building a computational prototype (though
it may provide higher-fidelity backtalk). An important aspect of low-
commitment techniques is the ease of exploring related ideas.

Recall that there is some gray area between physical prototypes and
computational prototypes. One common way of using a computer to run
the game’s rules while keeping things lightweight is to use a spreadsheet,
either stand-alone or as a computational aid to physical prototypes. The
designer writes the game rules in a scriptable spreadsheet, and has it
update game state as players take actions [73, p. 216, 221, 246]. This
style of prototyping is best suited to numerically oriented games, such as
physical or economic simulations. However, many of the elements used in
physical prototypes do not transfer well to spreadsheets. Instead, there
are discrete cards and tokens, and rule systems with many cases and
spatial rearrangement of the tokens, rather than equations that update
numerical fields.

I propose a game sketching approach to provide computational sup-
port for the class of physical prototypes that use board-game like elements
to represent complex videogames. Through this approach, game design-
ers can access formal analysis afforded by computational approaches while
designing prototypes similar to those made with physical methods. The
designer specifies game state, possible player actions, and state update
rules (in the language of Chapter 12’s Ludocore system). Elements of
game state can be mapped on to a simple set of board-game primitives—
connected spaces and tokens—and user actions are mediated by UI affor-
dances such as clicking and dragging, constituting a fully playable game
suitable for early playtesting. Using logical reasoning, I also allow the
designer to query formal properties of their sketch, such as getting ex-
amples of possible gameplay traces resulting in specific outcomes. My
contribution here is a technique that supports both machine and human
playtesting, using a single game-sketch definition, to provide designers
with the synergy of two complementary sources of backtalk. It is these
two sturdy legs for which the system presented in this chapter, Biped, is
named.
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13.2 Playtesting Background

What can designers get out of playtesting, and why would they need both
kinds? I review discussions of human playtesting in the game design liter-
ature, and proposals for machine playtesting in the artificial intelligence
literature, to provide a background for the kinds of design backtalk that
have been proposed as particular strengths of each approach, especially
as applied to early game prototyping.

13.2.1 Playtesting with Humans

Fullerton [73, chap. 7] has an extensive discussion of early prototyping
and the kinds of design questions playtesting with them can answer. She
describes four main stages of prototyping. In the first, the designer fo-
cuses on foundations, looking at only a loose version of the core mechanics
and avoiding filling in details like how many squares a player can move;
the designer self-tests to validate and flesh out the design. In the second,
the focus is on the game’s structure, specifying rigid mechanics such as
combat-resolution rules. The third stage fills in formal details and tweak-
able constants, such as starting health level and hit percentages, as well as
minor elaborations on mechanics. In the last stage, the designer focuses
on game flow and understanding how features of the game contribute to
the play experience.

Implicit in most discussions of playtesting is that important elements
of gameplay come from intrinsically subjective human reactions. Koster’s
theory of fun [114] focuses in particular on fun and engagement and their
relation to an individual’s process of learning a game’s mechanics. Elad-
hari and Mateas [64] discuss feedback from paper prototypes testing a
game mechanic derived from personality theory, with playtests focusing
on how the mechanics connect to players’ personalities and subjective
gameplay experiences.

13.2.2 Playtesting with Machines

Although the subjective human experience of games is the key to their
success, designing games involves crafting formal rule systems and un-
derstanding how they operate. Salen and Zimmerman [176, chap. 12]
discuss emergent properties of game rules, since a small set of rules might
actually imply a larger set that are not explicitly specified; understand-
ing these implications can help a designer decide how to revise the game
towards its intended subjective experience. Since the formal properties
of game rules are amenable to automated reasoning, Nelson and Mateas
[156] study what kinds of objective questions designers would find useful
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to ask; automatically providing answers to those questions would free up
the designers to focus on more subjective design issues.

Salge et al. [177] apply artificial intelligence to playtesting, going as
far as to argue that automatic testing can be superior to human testing,
because human testers instinctively try to play in a balanced and fair style.
An automated agent, by contrast, could look for exploits in the game rules
without preconceived notions of how the game should be played. Although
this perspective is overly pessimistic about insights derived from human
playtesters, there is legitimate value to be derived from how machines
play differently than their human counterparts.

In work predating Ludocore, Nelson and Mateas [155] propose that
designers prototype their early rule systems in a formal language, in ex-
change for which they can receive abstract gameplay traces. These play
traces may illustrate interesting or undesirable gameplay possibilities that
motivate a change, finding early issues with the game rules before spend-
ing time on human playtesting (or even writing code for input and graph-
ics).

13.3 System Overview

The architecture of Biped, with its dual support for human and machine
playtesting, is shown in Figure 13.1. A designer using the system be-
gins by writing a game sketch. This sketch is combined with an analysis
engine (in reality, the Ludocore system) to produce a formal rule sys-
tem on which the designer can perform machine playtesting. To do so,
she specifies combinations of queries and constraints and can get back
abstract gameplay traces with specific characteristics, determine implied
properties of the rule system, find exploits, and list solutions to puzzles.
The sketch can also be combined with a more traditional game engine
(one supporting graphics and sound) to produce a playable prototype,
which, when the designer or human subjects she recruits play it, can give
feedback on more subjective properties of the game, such as player en-
gagement, fun, or hesitation, as well as traces of actual gameplay. From
these two sources of backtalk, design insight may prompt the designer to
perform another iteration. I should emphasize that my approach focuses
on early design prototypes, not late-stage prototype implementations of
a full game.

13.3.1 Game Sketching Language

Game sketches are defined in a subset of Prolog (chosen both for the logic-
inspired style and the similarity to the internal languages expected by the
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Figure 13.1: Architecture diagram for the Biped system.

agent(pc).
agent(thief).
item(loose_coins).
item(assorted_gems).
game_state(has(A,I)) :- agent(A), item(I).
game_event(drop(A,I)) :- agent(A), item(I).
terminates(drop(A,I),has(A,I)) :- agent(A), item(I).
possible(drop(A,I)) :- holds(has(A,I)), agent(A), item(I).

Figure 13.2: Snippet of the game sketch language defining part of an
inventory mechanic. The last rule, for example, says: the game event
that an agent drops an item is only possible if the agent has the item,
for any agent or item. For the specification of a game’s mechanics, the
language of Biped coincides with the language of Ludocore.

13.3. SYSTEM OVERVIEW 195



formal analysis and human gameplay subsystems); an example defining
an inventory mechanic is shown in Figure 13.2. The designer can use
logical predicates and constants to specify the entities in the game world
and their properties. In this example, there are two agents, the player
character and a thief; as well as two items, a bunch of loose coins and
set of assorted gems. Entire levels can be described in a similar manner,
specifying, for example, the rooms of a dungeon and hallways between
them.

The language comprises a superset of those predicates used in Lu-
docore. These can be used to specify the dynamic parts of the sketch,
organized around game state and game events. The game state is a set
of properties that vary over time, under the influence of game events.
The game engine and analysis engine are implemented so as to provide a
common semantics for these predicates, ensuring what is possible in the
human-playable version is possible in the logical version and vice versa.
Returning to the example in Figure 13.2, the has game state specifies,
for any agent and item, whether the agent has that item. The next rule
specifies a drop event (for any agent and item). The following rule gives
the event’s effect: it terminates the has state (sets it to false). The final
rule specifies that a drop event is only possible when the has state holds
(is true).

13.3.2 Interface elements

To complete the prototype, a set of interactive visual elements are avail-
able to specify a game’s playable representation. Based on the kinds of
representations often used in simple physical prototypes, the main inter-
face elements are clickable tokens and spaces, with optional connecting
lines between spaces. Figure 13.3 shows an example of the interface pre-
sented to the player. Figure 13.4 gives a simple example of setting up
interface elements and connecting them to a game world. In this code ex-
ample, there is a visual board space for every room in the game world (as
well as a token for every item). Clicking on a board space that represents
a room is set to trigger a move_to event in the game world for that room
(similarly for tokens and grabbing of items).

As with actual physical prototypes, there are many ways of using the
visual elements to represent the state of the game world, and mappings
need not all be as direct as in this example. Spaces can instead be used
to represent inventory, with tokens on the space representing items in
the inventory; or they can be buttons, with clicks causing a state change
that may be reflected in a different part of the visual representation;
or space and token combinations can represent turns or phases of the
game (just as a physical dealer token is passed around a poker table).
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Figure 13.3: Human-playable prototype for our example game: DrillBot
6000, a logical demake of Motherload.

ui_title(’My adventure game’).
ui_space(R) :- room(R).
ui_token(I) :- item(I).
ui_triggers(ui_click_space(R), move_to(R)) :- room(R).
ui_triggers(ui_click_token(I), grab(I)) :- item(I).

Figure 13.4: Bindings from UI elements to a game world. All ui_* predi-
cates are specific to Biped’s human-facing side and would have no mean-
ing for Ludocore alone.
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Similarly, connecting lines need not only represent how tokens can move
between spaces; they might represent other relationships between entities
represented by the spaces, or elements on which a button would operate
when pressed. As a result of this flexibility, the designer does need to recall
that there is no automatic meaning of the UI elements in terms of the
game word: instead, it is their responsibility to give the representation
elements game-relevant semantics via triggers that attach them to the
game’s abstract mechanics.

In addition to the visible elements, the event system is a major rep-
resentational tool. Time in the game world logically stands still until an
event happens. The only sources of events are mouse interactions and
expiration of timers. The effect of a living game world can be achieved
using a ticker to create a regular stream of tick events, which can trig-
ger interesting game-world events. The ui_triggers predicate defines these
mappings from mouse-interaction and timer events to game-world events;
it checks to ensure that it only triggers game-world events if they are
inferred to be possible at the time.

I have been able to mock up a wide range of physical prototypes us-
ing this set of elements, and have avoided introducing a larger range of
special-purpose elements in order to keep the prototypes simple and easy
to modify. I have, however, included a number of aesthetic elements that
do not directly represent game state, such as instructions, title, victo-
ry/loss animations, and background music, that can be used to provide
an interpretive framework for the human playtesters. I acknowledge that
aesthetics of even early-stage prototypes can set the mood for the game
and impact the subjective play experience, even if they are not the main
focus [189]. In particular, end conditions that support a subjective dis-
tinction between good and bad outcomes are a key feature of games [101]
(though many of my Biped prototypes did not exercise the related UI
support for this).

13.3.3 Supporting Playtesting

To playtest games created using Biped, the designer may begin with
either machine or human playtesting; I have found that each process
informs the other, so alternating between them is strongly recommended.

Human playtesting often begins with self-testing. The designer loads a
game definition that she has created into the game engine, and is presented
with an initial playable game. Even before mechanics are fully specified,
it is often gratifying to see on-screen a level previously only described in
the abstract. As the mechanics of a paper prototype are added to the
first computational prototype, many design decisions have to be made
to create the desired rigid rule system. A lightweight cycle of revision

198 CHAPTER 13. BIPED



happens(fires_at(jack,right),0).

display_to(time(1),jill,
health(2),
enemies_at(right)).

display_to(time(1),jill,
health(2),
self_at(left)).

display_to(time(1),jack,
health(1),
enemies_at(left)).

display_to(time(1),jack,
health(1),
self_at(right)).

happens(fires_at(jill,right),1).
happens(frags(jill,jack),1).

display_to(time(2),jill,
health(2),
enemies_at(right)).

display_to(time(2),jill,
health(2),
self_at(left)).

Figure 13.5: Partial trace from a multiplayer shooter game prototype,
illustrating events and game state over time.

followed by self-testing can allow the designer to quickly flesh out these
rules while playing the game themselves, giving a first glimpse at the
gameplay possibilities afforded by their sketch.

When testing with others, it is important to formalize any parts of
the game that the designer may have been keeping in her head during
self-testing. By utilizing timers, on-screen instructions, and background
music, the designer can externalize the desired dynamics and mood of
the game (e.g. fast-paced and frenzied). The designer, who can then
observe player engagement and hesitation, as well as make verbal clari-
fications, best mediates human playtesting. Because playable prototypes
from Biped are user-tweakable, standalone sketches, however, they can
be sent to and played by remote individuals as well (unlike physical pro-
totypes or computational prototypes with extensive dependencies).

Playtesting with humans is a well-established practice; in contrast,
playtesting with machines is a relatively new, speculative idea. Thus, I
have opted to focus on support for extracting gameplay traces, because
these seem to be strongly tied to player experience (as opposed to gener-
ating game-playing agents).

A designer can specify scenarios and conditions, and the analysis en-
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gine will provide her with gameplay traces (if any exist) starting from
those scenarios and meeting those conditions. Figure 13.5 shows a short
excerpt of a trace from a multiplayer shooter prototype, in which an agent,
interestingly, inflicts damage on himself. To look for an exploit, the de-
signer might ask for traces starting in a particularly tricky scenario, which
end in victory only a few timesteps later. If any traces exist, the designer
has a specific example of the behavior to forbid in the game rules; if not,
the engine has proved that no such exploit is possible (which would be
difficult to determine with certainty using only human playtesting). In
cases where there are many uninteresting traces, the designer can restrict
the conditions in order to “zoom in” on more plausible gameplay (using a
mixture of player modeling and speculative assumptions). Alternatively,
the designer can run both human and machine experiments in which the
scenario and conditions are held constant, and some element of the rules
is changed. This gives the designer backtalk regarding a possible rule
change rather than more detailed inspection of a particular rule set.

13.3.4 Implementation

My implementation is primarily split between two engines. The inter-
active game engine, supporting human-playable prototypes, was imple-
mented in the Scala programming language, which targets the Java Vir-
tual Machine for easy redistribution of games. The rules of a particular
game, implemented in Prolog, are interpreted using jTrolog,1 a Prolog in-
terpreter for Java, so game sketches can be modified by end users without
recompilation. The game engine executes the game rules by advancing
time in response to UI events, querying the Prolog interpreter to find
whether visual elements have changed (e.g. whether tokens have moved),
and which elements of game state hold on the next time step.

The analysis engine (Ludocore) was implemented in Lparse/Smod-
els,2 an ASP system that has since been largely obsoleted by more recent
advances in answer set solving. A source-to-source compiler written in
Prolog translates the game-sketch definitions into AnsProlog. Addition-
ally, a small AnsProlog library ties the rest of the game sketch (excluding
UI) into the event calculus semantics. This compiler is also responsible
for checking that a game sketch is complete (defining a minimal set of
required predicates) and checking any additional designer-specified static
properties (e.g. that there are no rooms in the level description without
an adjoining hallway).

An interesting result of this translation is that when the analysis en-
gine is looking for traces, it treats time as a symbolic constraint rather

1https://jtrolog.dev.java.net/
2http://www.tcs.hut.fi/Software/smodels/
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than simulating game worlds forward in time. In this way, it is as easy to
put constraints on initial conditions as it is on end conditions, or on any
point in between. In the game engine behind human-playable prototypes,
logical time, while discrete, behaves much more intuitively, advancing step
by step in response to timers and human interaction (effectively finding
a single trace).

13.4 Example Prototype

To exercise playtesting with Biped beyond those prototypes created with
it during the development of the system, we created DrillBot 6000 (previ-
ously illustrated in Figure 13.3). In this game, the player moves a mining
robot through underground caverns, drilling out rocks of mixed value,
while managing energy usage by periodically returning to the surface to
refuel and trade items. This game was designed as if to be an early proto-
type version of the popular Flash game Motherload from XGen Studios.3

My game focused on the core mechanics: moving around underground,
mining, and refueling (whereas Motherload additionally includes shopping
for upgrades and story elements).

13.4.1 Game Mechanics

To describe the mechanics of the DrillBot 6000 game world, my sketch
definition asserts that position and energy are elements of game state (that
apply to the one robot), and that subterranean rocks can be present in a
cavern, bagged in the robot’s inventory, or possibly banked after trading.
In terms of game events, I allow mining of rocks, moving up or down
between caverns, refueling, trading rocks, and spontaneous energy drain.
The game sketch also defines the consequences of these events, and when
they are possible. For example, the mine event for a rock initiates the
bagged state for that rock, terminates its present state, and drains a unit
of energy. This mine event is possible if: the rock is present, the location
of the rock is reachable from the robot’s current position, and the robot
has energy. The rigid rules for other game events are defined similarly.
Finally, the definition asserts initial conditions: the robot starts fully
energized at the base, and all rocks are present.

13.4.2 UI Bindings

While the game mechanics described above are enough to allow machine
playtesting, for human testing I needed to expose the abstract game world

3http://www.xgenstudios.com/play/motherload
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to the player. Caverns are mapped to board spaces, and the up/down links
between caverns are visualized with connecting lines. Individual tokens
represent the minable rocks, and a special token represents the robot
itself. The UI event of clicking a rock’s token is bound to the mine event
for the corresponding rock. Likewise, clicking a cavern’s space triggers
either a move_up or move_down event to that cavern. These bindings are
expressed concisely without need to reiterate the necessary conditions
(e.g. the proper move_up or move_down event is selected for an ambiguous
click on a cavern by virtue of the game-world definition of when these
events are possible).

I bound the position of rock tokens to cavern spaces using the abstract
level definition and the present status of the rock to select a space. When
rocks are not present, the player should have a way of knowing the rock’s
bagged or banked status. The additional spaces called inventory, bank,
and slag_pile are used as the location for rock tokens that are no longer
present but have differing bagged or banked states (valueless rocks cannot
be banked, and their tokens are sent flying to the slag pile with a quick
animation). Spaces themselves are anchored particular x/y locations to
the board with an optional predicate; these positions were configured to
portray the directionality of links between caverns.

To give my prototype an element of the time pressure present in Moth-
erload, there is a ticker for which the tick event is bound to the game
world’s drain event, draining a unit of the robot’s energy. Thus, robot
energy drains at a regular pace, but faster when the player actively trig-
gers game-world events that consume energy. Energy is replenished by
clicking on the base’s space, which triggers the game-world refuel and
trade events simultaneously.

A game definition also specifies several non-interactive elements. A
large title and an original4 background music track set the tone for a lively
real-time mining game. On-screen, written instructions lay out both the
premise of the game and explain how the player can use the mouse to
take actions in the world of rocks, caverns, and a robot. Some elements
of game state not mapped to spaces and tokens are depicted textually,
in this case energy level and score. Finally, when the game determines
that no additional actions are possible, a few tokens fly onto the screen
to announce the game’s outcome.

4Because I spent far more time making the one-minute loop of background music
than I did on the rest of DrillBot 6000, I feel compelled to share a link to the result:
http://adamsmith.as/music/reason/rsmy-db6k.mp3
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13.4.3 Human Playtesting

As suggested by Fullerton [73, p. 252], since I was testing the foundations
and structure of the game, I primarily tested DrillBot 6000 by self-testing
and testing with confidants. Self-testing revealed that my early iterations
had allowed unintended gameplay; for example, one could mine a rock at
arbitrary distances. Additionally, I found the first version of the game too
simple, and decided to add several additional rocks and caverns. When
testing with others, one tester initially felt pressured by the speed of the
automatic energy drain. While I could have adjusted the speed of energy
drain or the maximum energy level, at this stage of the prototype I was
interested in more foundational questions, rather than game balancing.
To get feedback on the game’s other mechanics, I showed the tester how
to convert the game to a turn-based one by removing the ticker. All three
testers claimed to enjoy the game (i.e. the game’s abstract depiction was
not so jarring that the artifact could not be related to as a functioning
game), and could reach rocks at the deeper levels after some practice.
Interestingly, no testers related to the game as a puzzle or path-planning
challenge, even in turn-based mode; all focused instead on the action
aspect of the game motivated by the continuously draining energy.

13.4.4 Machine Playtesting

While human playtesting validated that the game’s basic concept was
interesting, Biped allowed me to turn to machine playtesting to ask more
detailed questions that would have been tedious or impossible to test
with human testers. Because players focused on improving their speed,
in machine playtesting I decided to look at the limit case, corresponding
to a player that could execute several actions without incurring any time-
based energy drain (which was possible but difficult with my drain timer
settings). This would allow me to focus on the energy cost of mining and
moving as the limiting factors, effectively discovering speed-runs.

In one experiment, I looked for gameplay traces that maximized the
number of treasures the robot could bank by the end of a fixed number
of timepoints. In 15 timepoints, I found that the ideal player could bank
up to five valuable rocks. Then I asked about a player who would never
refuel, wondering if this would place some rocks out of reach. Over this
game length I found that the ideal player could still bank five valuable
rocks, indicating that refueling is needed relatively infrequently. This was
interesting, because my human testers refueled quite often, as a hedge
against energy drain, indicating that they were much more cautious with
managing energy than strictly necessary.

In the setup for this experiment, when looking at general gameplay
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traces, I found undesirable traces revealing that several rocks from the
same cavern could be mined simultaneously (even worse, with only a
single unit of energy drain). This revealed that I had not completely
specified when game actions should conflict. That issue was not revealed
in human testing, because the UI bindings happened to make it impossible
to mine several rocks at the same time (which would not be the case if
mining had been tied to clicks on spaces instead of on tokens). Finding
that this design choice was incompletely specified both forced me to think
about what mechanics I actually did want, and avoided the persistence of
a UI-masked bug that could reappear in later prototypes.

In another experiment, I looked at a few properties of the level’s de-
sign. One question involved asking how many caverns a player could
explore in a given interval (where the robot starts and ends in the base).
This query is particularly tedious to answer through human playtesting,
since it would require trying a vast number of possibilities. It also goes
beyond simple graph search, because it takes into account the effects of
time-varying presence of rocks due to mining. In 15 timepoints, a player
can explore up to eight caverns before returning to the base. Making
what I thought would be a radical change to the level’s design, I added a
direct link from the base down to the deepest cavern in the level. Running
queries for the number of reachable caverns and banked rocks again, I was
surprised to find this change made no difference in the properties of an
optimal play-through.

13.5 Conclusions and Future Work

I have proposed a computational prototyping approach to combined sup-
port for human and machine playtesting of early-stage game sketches.
This approach has been cashed out in Biped, a tool that uses declarative
game descriptions to produce both standalone, playable games and for-
mal rule systems that admit automatically finding gameplay traces with
specific properties (while minimizing design commitments, yet allowing
sufficient interpretive affordances to support useful human playtesting).
I explored the process of designing with Biped by prototyping DrillBot
6000, an action-oriented game in the style of Motherload. In doing so, I
illustrated the synergy of human and machine playtesting for insight into
the game’s design.

The semantics of my game-sketching language are based on a knowl-
edge representation that is optimized for designer exploration, while the
syntax used here was chosen in large part to minimize the distance to the
two declarative reasoning engines involved. In future work, I intend to
address the language’s accessibility, particularly to game designers with-
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out a logic-programming background; it is best to think of the language
presented in this chapter as an intermediate representation (a target of
compilation from a more designer-friendly format). In addition, future
work should investigate other reasoning back ends for the analysis engine
with better scaling and numeric processing capabilities.

Several miscellaneous improvements to this approach could be unified
in a game-design “workbench” that bundles all the tools necessary for a
designer to carry out exploratory game design, including a better query
language paired with more intuitive visualization of results. Addition-
ally, such a tool should provide a more fluid way of modifying a game’s
mechanics than editing a logic program.

A tool like Biped is an interesting target platform for automated game
generation research (whether aiming to create whole new mechanics or
just tweaking level designs). Moving beyond generation, the addition of
detailed instrumentation to the human-playable prototypes would admit
collecting enough information from human play testers to inform the anal-
ysis used in an intelligent game-design agent that might learn from how
humans play the games it produces.

Finally, an open problem is how to extend the human–machine playtest-
ing approach to later stages of the game-design process. For now, my ap-
proach is focused on allowing designer-programmers to take large creative
leaps by getting rich feedback from simple, early-stage prototypes.
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Chapter 14

Variations Forever

Ludocore and Biped consumed rule systems produced by game design-
ers, but producing these rules in the first place is, of course, another area
where design automation would be useful. In an instance of PCG-based
game design (in the sense examined by Gillian Smith and others [201]),
this section investigates the co-formation of a novel game and the play-
time design automation needed to support it.

Variations Forever is a novel game in which the player explores a vast
design space of mini-games. In this section, I present the procedural con-
tent generation research that makes the automatic generation of suitable
game rulesets possible. My generator, operating in the domain of code-
like game content exploits answer-set programming as a means to declar-
atively represent a design space as distinct from the domain-independent
solvers that I use to enumerate it. These design spaces are powerfully
sculptable using concise, declarative rules, allowing me to embed signif-
icant design knowledge into the ruleset generator as an important step
towards a more serious automation of the larger game design process.

14.1 Overview

Automatic generators exist for many game content domains: 2D textures,
3D models, music, level maps, story segments, ships and weapons, items
and quests, character attributes, etc. In terms of a distinction between
code and data, these kinds of content feel like data and they are inter-
preted by the fixed code inside game engines. However, some kinds of
content such as location-based triggers on a map, behavior trees, or the
contents of game scripts blur the line between game data and game code
(between representational and behavioral components). The field of game
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research known as procedural content generation (PCG) can be expanded
to include richer aspects of game design if the “content” that is generated
includes the kind of conditionally-executing logic that we would otherwise
call a game’s mechanics.

While PCG is often motivated as a means to reduce development ef-
fort or costs for game content [168], it can also provide access to richer,
and more personalized, play experiences than could be reasonably hand-
authored by human designers. The rich worlds of Dwarf Fortress (Bay 12
Games 2006) include procedurally generated multi-level landscapes and
thousands of years of dwarven history. Meanwhile, the player-designed
creatures of Spore (Maxis 2008) are enhanced with unique, procedurally
generated skin details and body animations. Further, these personalized
creatures are used to populate a vast, procedurally generated galaxy rem-
iniscent of the seminal PCG work seen in Elite (Acornsoft 1984). These
games had impressive generated data, but employed hand-authored me-
chanics.

Though the automatic generation of game mechanics is an important
and underexplored component of automated game design, it is important
not to collapse the part with the whole (which has been done in the
literature [94]). Nelson & Mateas [154] proposed a factoring of game de-
sign into four domains: abstract game mechanics (abstract game state
and how this state evolves over time), concrete game representation (the
audio-visual representation of the abstract game state), thematic content
(real-world references), and control mapping (relation between physical
player input and abstract game state). While I can imagine a procedural
generator for the content of any of these domains, even this would miss
out on an opportunity to illuminate several commonly accepted processes
in game designs that cross-cut these domains. Conceptualization, pro-
totyping, playtesting and tuning are essential parts of game design [73];
there is no compelling reason to think they should not also be addressed
in a nuanced automation of game design. However, addressing only a
piece of the whole game design process, the research presented in this
section focuses on flexibly generating a variety of abstract mechanics, uti-
lizing hand-authored components for concrete representations, thematic
content, and control mapping.

Variations Forever (VF) is the name of both a work-in-progress1 game
and the research project of developing the technology necessary to imple-
ment it. In the remainder of this section I will distinguish these two
projects.

1As of 2012, this game project is actually long dead. It turns out that the design
decisions made in many game engines are incompatible with deep reconfiguration of
game mechanics as play-time.

208 CHAPTER 14. VARIATIONS FOREVER



14.1.1 Variations Forever as a Game Project

VF, the game, aims to provide players with the experience of exploring
a generative space of games as an in-game activity. The premise, visual
style, and themes employed by the game are inspired by a set of recent,
independent games. ROM CHECK FAIL2 is a glitch-laden arcade game
in which the player’s avatar, movement mechanics, level design, theme
music, and enemy mechanics shift at regular intervals. In the unique,
emergent meta-game, the overarching goal is simply to survive the on-
slaught of new mini-games. In VF, however, the meta-game will involve
unlocking new mini-game design elements which reshape the space of
mini-games.

Warning Forever,3 Battleships Forever,4 and Captain Forever5 each
have a space combat setting with glowing vector art. Beyond aesthetics,
they share the theme of recombining elementary parts in novel ways in
the player’s major choices (assembling a spacecraft from standard modules
such as girders, thrusters, and weapons). In VF, the recombinant nature
will shift from ship design to ruleset design.

This chapter presents a prototype of VF (depicted in Figure 14.1) in
which I have realized a large space of varied mini-games. This prototype
does not yet include player-control over the design space; however, I will
show how the approach supports such functionality.

14.1.2 Variations Forever as a Research Project

The goal of VF, the research project, is to create a means to automatically
explore a generative space of game rulesets that supports both the variety
of mini-games I desire and the hooks needed to place the exploration into
players’ hands. My emphasis is on flexibility of generation, and I leave
evaluation of game quality for future research.

I have adopted a symbolic approach to representing games because I
believe that breaking free of the parameter-vector paradigm pervasive in
PCG will be required to address the larger automation of game design.
Reasoning through the intentional creation of prototypes, the identifi-
cation of useful mechanics and generation of hypotheses to validate in
playtesting requires a representation which resonates with the symbolic,
modular, non-parametric medium used to implement every videogame:
code.

In this chapter, I also describe a flexible approach to game ruleset gen-
eration that should also be of interest to those PCG researchers working in

2http://db.tigsource.com/games/rom-check-fail
3http://db.tigsource.com/games/warning-forever
4http://db.tigsource.com/games/battleships-forever
5http://db.tigsource.com/games/captain-forever
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Figure 14.1: Screenshot of gameplay for a generated mini-game in the
Variations Forever prototype. The player controls the white character
using an Asteroids-inspired movement model, trying to touch all red char-
acters which move via a Pac-Man-inspired movement model. The encir-
cling walls, random-walls and random-blocks algorithms have generated
dangerous obstacles which can harm the players square. This particular
games rules also define the stars and grid backdrop details as well as a
third kind of character (yellow) which drifts on its own.
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traditional content domains such as level or map generation, etc. While
I will use VF as a running example, the schema I provide for creating
generators is not inherently tied to the ruleset generation domain.

My contribution here is a content generation approach based on con-
straint logic programming that allows the declarative specification of de-
sign spaces and uses domain-independent solvers to sample these spaces.
My application to ruleset generation demonstrates the representational
flexibility and ease of incremental modification that comes with the use
of a symbolic representation. Such flexibility and modifiability are criti-
cal to integrating the generation of rulesets into larger-scale game design
automation efforts.

14.2 Related Work

Automated game design has been studied from a number of different an-
gles. An important bit of vocabulary I can use to reconcile these efforts
is “generate and test” a popular discussion topic on a PCG community
mailing list.6 Generation tells us how artifacts of interest come into ex-
istence, and testing tells us how these artifacts are separated from their
less-interesting neighbors in some space (generally involving both evalua-
tion and filtering).

A recent example of generating and testing simple game designs is
seen in the work by Togelius and Schmidhuber [219] in which a space of
Pac-Man-like games is automatically explored using evolutionary com-
putation. Game variants, represented as fixed-length vectors of integer
parameters which encode quantitative properties of a game such as its
time and score limit as well as basic qualitative data such as which move-
ment logic or collision effects are used by the various “things” in the world.
The mechanics of the games generated by this system are the result of
combining the parameter vector with some fixed rules defining the mean-
ing of each parameter. The mechanics of the mini-games I consider in VF
are directly inspired by this work.

Togelius’ parameter vectors use an operationalization of Koster’s the-
ory of fun [114] based on reinforcement learning. The system illustrates
that while games may be generated by some simple, syntactic method,
they must be played to understand their semantics and to assign them
value. While acknowledging the depth of automatic playtesting as both
a computer-science and game-design problem, VF focuses on bringing
flexibility to generation. Where Togelius’ games all involved exactly four
colors of “things,” VF’s generator is capable of choosing an arbitrary num-

6https://groups.google.com/d/msg/proceduralcontent/TUVfuus1zKw/

GzHdGLAKzTIJ
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ber of characters types and populating the appropriately sized collision
effects table to describe their mechanics (such scalability in terms of set
cardinality is awkward for fixed-length parameter vectors).

Hom & Marks’ [94] project in generating balanced board games also
took an evolutionary approach, opting for three-way crossover as the
means of generating games represented by a tuple of board type, piece
type, and victory condition. Testing, in this project, was done using gen-
eral game playing software to look at the relative win rates for the first
vs. second players.

In addition to the main tuple, the representation also allowed optional
rule modification tags that could be appended to a game ruleset. While
these tags could have been folded into additional Boolean values in the ge-
netic description, the authors decided to treat them specially to simplify
the crossover logic of their generator. This also points to awkwardness in
using parameter-vector techniques to represent rulesets. Incidentally, the
general game-playing tool they used already expected a code-like repre-
sentation as input.

Automation of ruleset generation has also been addressed without in-
cluding a distinct test component. The Metagame system [165] and the
Eggg system [161] are both capable of generating games as complex as
Chess without any testing. However, this ability comes at the cost of an
immense knowledge engineering effort to embed as much intuition about
the game design space into the generator as possible. Metagame’s au-
thor refers to the generator as “long and complicated and full of special
cases”. These systems illustrate that generators can actually contain and
represent large amounts of domain knowledge. It is desirable to have a
generator that is improvable, that is, can be easily augmented with new
knowledge which helps it avoid uninteresting or problematic regions in the
design space. My generation approach indeed aims to ease the process of
adding new knowledge to a generator (particularly that which focuses the
generative space).

In a filtering-heavy approach to designing games, Nelson & Mateas use
a common-sense knowledgebase to filter out only those combinations of
mechanics and representational art that “make sense” from a larger gen-
erative space [154]. Because the mechanics used in their WarioWare-style
games are so simple, detailed playtesting is not required for evaluation.
Rather a common-sense knowledgebase is effective in filtering a game
where a duck avoids a bullet shot by a gun (a reasonable premise) from
a games where a person fills a piano with ducks (less reasonable), both
of which are in the latent generative space tested by this system. For a
given target concept, such as “duck,” the system might produce any of a
small space of games which both make sense and include the target con-
cept. This project illustrates that filtering one generative space to make
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another is an important technique in design automation.
Finally, though it only consumes and does not produce rulesets, the

dual human-and-machine playtesting supported by my Biped system is
relevant. This playtesting tool reads in rulesets represented as logic pro-
grams and produces gameplay traces in a similar logical representation
that are derived either from human players or from logic programming
tools which can solve for edge and limit cases in a game’s design. This
project shows that both humans and machines can comfortably use sym-
bolic, logical representations for game rulesets and they can serve as an
effective interchange format for the playtesting stage of design.

14.3 Representing Game Rulesets in Logical
Terms

To put ASP to work in the ruleset generation domain, I need to somehow
represent elements of game rulesets in the heads of ASP’s choice rules
and encode the logical conditions which ensure the generated rulesets are
valid into the bodies of these rules. This implies a representation of ruleset
elements as logical terms.

Though logical terms are a standard knowledge representation format
in AI, I review them here because they have not been used in published
PCG work previously. A logical term is either an atom or a compound
term. Atoms are symbols, numerical constants, or logical variables. Com-
pound terms combine a symbol called a functor with a sequence of logical
terms as arguments, as in afraid_of(6,7).

An example of a logical term encoding an element of a game script
is the following: scripted_event( spawn(boss_creature, temple), 120). This
term, if it were asserted in an answer set, might mean “a boss-class crea-
ture should be spawned in the temple after two minutes of play”. The
meaning given to scripted_event is given by the code that consumes it,
which might be other rules in the answer set program or the game en-
gines that delivers this content to the player.

The rules for the kind of games I am considering for VF contain var-
ious types of information: collections of objects that participate in the
game and their properties, policies for handling events that arise during
play, conditions under which we can consider the game to end in victory
or defeat, and, additionally, miscellaneous procedures and configuration
details that I can use to add to the variety of play experiences. Lists,
variable sized look-up tables, and nested expressions are all difficult to
represent with fixed-length parameter vectors.

Each of the elements I would like to include in rulesets has a straight-
forward representation in logical terms. Lists, such as a list of valid move
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types, are represented by a pattern of terms that may be instantiated sev-
eral times: “move(rock). move(paper). move(scissors).” (a numerical argu-
ment may me added to represent a strict ordering if needed). Tables, such
as a mapping from event to a handling character’s response action with
a performance modifier, are represented by simply asserting the presence
of each tuple of the data the table contains: “on(poke, giggle, quietly).

on(jab, yelp, loudly). on(stab, die, slowly).”. Code-like nested expres-
sions are also natural:

when( equal(health,0)
, go_state(defeat) ).

While I could use a simple, context-free grammar to syntactically gen-
erate masses of such terms, building my generator as an answer set pro-
gram gives me the means to powerfully sculpt the space of generated
rulesets using the same language used to define it. For example, when
generating terms of the form “on(poke, giggle, Adverb)” I can require that
the adverb come from a table of modifiers compatible with the giggle ac-
tion or forbid the use of certain adverbs in conjunction with the poke event
by consulting a blacklist of known problem cases. Further, such a table
or blacklist might itself be the output being simultaneously produced by
another part of the same generator. The ability to specify defaults and
override them with many levels of specialization, important for flexible
modeling, comes from the non-monotonic reasoning used in ASP solvers.

14.4 VF’s Generative Space

Having introduced a representation of game rulesets in its terms, I now
describe how the concrete elements of rulesets for VF are generated and
how these elements influence one another. The generative space of the VF
game prototype is meant to exercise the expressiveness of the generator’s
logical formulation and does not yet represent the complete set elements
in the other Forever games I intend to reference. Figure 14.1 provides a
visual guide for one element of VF’s generative space.

A basic element used by all mini-games in VF is the play space. It
is always rectangular, but has a numerical grid resolution parameter that
is used by certain character movement models and obstacle-placement
policies. Specifying the simple selection of a numerical parameter looks
like this:

resolution_factor(2;3;4;6;8;12;16).
1 {space_resolution(4*F) :resolution_factor(F)} 1.

This snippet asserts that it is true that several numerical symbols
are valid resolution factors, and that exactly one ground clause of the
space_resolution predicate should be emitted in answer sets. The clause in
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curly braces is a choice rule that gives permission to emit terms of a certain
form (where the F variable has a domain given by theresolution_factor
predicate in this case).

My mini-game play space has an overall topology that is either toroidal
(like Pac-Man), spherical (strange but nonetheless distinct), or flat (re-
sulting in “falling off” the edges of the world) if not otherwise spec-
ified. The generator outputs between zero and one instances of the
space_topology predicate (as dictated by numerical bounds on the choice
rule) using a scheme similar to the above with symbols to name the various
topologies instead of numbers.

Related to the space, but not an element of the game mechanics, the
game may utilize (or not) any of two background layer display algorithms
(twinkling stars or dotted grid lines). The generator code for this aspect
introduces dependence between a generated element and a flag that might
be toggled via player exploration in future VF prototypes:

tech(backgrounds).
{background(L) :background_layer(L)} :- tech(backgrounds).

The play space is primarily populated by characters, identified by
their color. The generator internally selects an active subset of colors
from a larger set, and whether a color is active or not is used as a logical
precondition for the rest of the character-related generator rules.

Every active character color is assigned a unique movement model (de-
termining their response to keyboard input and, eventually, autonomous
behaviors). The VF prototype includes Asteroids, Pac-Man, and Rogue
inspired movement models. The generator code to support this combines
quantification over multiple variables to produce a one-to-one mapping
specific to the active characters is shown below:

1 { agent_movement(C,M) :movement_model(M) } 1 :-
active_color(C), color(C).

In addition to a movement model, characters have another required
property called their spawn model that dictates whether exactly one of
them should spawn at the start of the game or a larger, random number.
The generator code has identical structure to that of the movement model.

Much more interesting is the character–character collision effects table.
This table, which describes only active characters, produces agent_collide_effect,
a predicate which is not only used by the game engine during mini-game
execution, but also by the generator itself as I will describe later. The
table describes which collision resolution behavior should be applied to
the character of the first color if it hits another of the second color. There
are kill and bounce options with a default of simply passing through on
collision. In future versions of VF, the set of collision resolution behaviors
that are considered will be conditioned on player exploration as well.
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Beyond the basic space and characters, if the generator has the obstacles

exploration flag enabled, the game will consider any combination of three
obstacle placement patterns: an encircling wall, stick-like scattered walls,
or isolated blocks with slight rotations (all three are active in Figure 14.1).
The selection of these algorithms is described with the same schema used
to select background art layers. If obstacles are enabled, an optional
collision resolution behavior is selected for each character and encoded
as the obstacle_collide_effect predicate (obstacles themselves cannot be
“killed”). In this case, not just the size but also the very existence of a
table in the ruleset is conditioned on other generated outputs (the active
set of colors).

In order to make games in this space playable, I need to assign the
player control of one of the characters. This assignment is based on color;
if the player controls a character with the “many” spawn model, then
they will only control one such character and the rest will perform their
default behavior.

At this point, games include a player who can fly a character around a
variously configured world, bumping into other characters and obstacles
to trigger effects out of tables, but there is still no goal to my mini-games.
The final element of the mini-game description gives it one. The goal pred-
icate must have a single instance in each game design to enable victory-
condition checking. Its form may either be goal(kill_all(Color)) which
monitors for when all characters of a given color are killed or goal(escape)

which monitors for when the player character reaches the world boundary
(which only exists in the flat space topology).

This final output illustrates a clear representational flexibility that my
symbolic representation has over fixed-length parameter vector represen-
tations: some of my game goals are parameterized by active character
colors, while others such as escape are not. There is no architectural
penalty for mixed structures such as this. The escape goal, in particular,
is additionally forbidden in games utilizing the encircling wall obstacle
generator (from which it is impossible to escape). This is an example of
capturing special-case knowledge in the generator extracted from experi-
ence playtesting broken games.

The complete generated ruleset for the “kill all the red guys” game
shown in Figure 14.1 is represented by these logical statements produced
by the generator:

space_resolution(32,24).
space_topology(spherical).
background(grids; stars).
active_agent(red; yellow; white; cyan).
agent_movement(red,asteroids; white,asteroids;

yellow,roguelike; cyan,pacman).
agent_population(red,many; white,singleton;

yellow,singleton; cyan,many).
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agent_collide_effect(red,white,kill;
cyan,yellow,kill).

player_agent(white).
obstacle_distribution(enclosure; random_walls;

random_blocks).
obstacle_collide_effect(red,kill; white,kill).
goal(kill_all(red)).

14.5 Zooming in on Games of Interest

While the exclusion of known problematic interactions between mechan-
ics is something that could be encoded directly into the preconditions in
the body of the choice rules used in the generator, there are many oc-
casions in which I would like to temporarily scope down my generative
space without disturbing any existing logical formulae. The mechanism
of integrity constraints in ASP provides exactly this functionality.

I can use integrity constraints to zoom-in on a subspace of games in
which I am interested via several methods, but the simplest is to simply
require that certain ruleset elements be present in all answer sets I see.
I can simply append an integrity constraint rejecting the absence of the
required configuration. If I wanted to tweak the implementation of the
Asteroids motion model in VFs game engine, I might add this collection
of constraints to always give myself control over a red character in a
primitive field of asteroids to navigate, regardless of other mechanics:

:- not player_agent(red).
:- not character_movement(red, asteroids).
:- not use_obstacles(encircling).

Another use of integrity constraints to sculpt the generative space
is to reject co-occurrence of mechanics known to interact poorly. The
special-case knowledge for the escape game goal is encoded with the single
integrity constraint:

:- goal(escape), obstacle_distribution(enclosure).

Integrity constraints need not only operate on the same elements that
are exported by the generator, they may involve complex deduction. The
following snippet of code (slightly condensed from the version active in
the VF prototype) zooms in on rulesets in which the game is reasonably
winnable by indirectly pushing characters into each other to achieve the
stated goal:

pushes(A,B) :-
on_collide(A,B,bounce),
on_collide(B,A,bounce).

kills(A,B) :- on_collide(A,B,kill).

indirectly_pushes(A,B) :- pushes(A,B).
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indirectly_pushes(A,C) :- pushes(A,B), indirectly_pushes(B,C).

winnable_via(indirect_push_kill(A,C)) :-
indirectly_pushes(A,B), kills(B,C).

compute {
player_agent(A), goal(kill_all(B)),
winnable_via(indirect_push_kill(A,B)) }.

In the above example, I have shown an elementary attempt at engi-
neering emergent gameplay. As new mechanics are added to VF’s design
space and the winnable_via predicate is augmented with a simple complex-
ity metric, it becomes possible to write single-line integrity constraints
which translate to statements akin to “only show me rulesets for games
in which a reasonable plan for victory involves an indirect chain of at least
5 steps utilizing at least 3 different low-level interaction types.” Games
complex enough to satisfy this constraint would likely come from a space
that also includes many broken games. Fortunately, additional integrity
constraints may easily be added to carve away such failure cases as they
arise in playtesting. It is this use of additional deductive rules to capture
complex relationships between low-level mechanics that demonstrates the
power of using a declarative representation over attempting to capture
the equivalent design space with a custom generation procedure.

14.6 Generating Playable Mini-games

At this point I have described how to create, enumerate, and expressively
sculpt the generative spaces of game rulesets. However, I have yet to
show how to transform such sets of assertions about how a game should
work into functioning games that operate as the generator designs them.
In this subsection I will describe the concrete software components that
bring ASP-based ruleset generation into contact with the player in our
prototype of VF: the game generator and the game engine.

14.6.1 Game Generator

My game (ruleset) generator is manifest in two distinct parts. The first
is the logical definition of a design space using an answer set program
as described above, and the second is the software we use to enumerate
games in the design space. I have adopted the freely available Lparse
and Smodels7 tools that, respectively, translate first-order logic programs
into simplified, grounded logic programs and solve for the desired number
of answer sets, outputting each as it is found.

7http://www.tcs.hut.fi/Software/smodels/
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To surface the functionality provided by these highly obscure (from a
game programming perspective) command-line tools, I created a minimal
web-service wrapper that allows any HTTP-capable program to request
a stream of answer sets to a given answer set program.8 This wrapper
allows me to be much more flexible about the kind of game engine I use
to consume the generated game designs.

The result of organizing my generator in this way is that the designer of
the generative space does not need to think about (nor necessarily under-
stand) the underlying generation algorithm. Indeed, different solvers that
consume Lparse groundings may employ radically different algorithms
while being indistinguishable at the level of answer set enumeration.

14.6.2 Game Engine

Realizing the outputs of my game generator in the glowing vector-art
aesthetic (and supporting low-level mechanics such as movement with
momentum and collision detection/resolution) requires the use of a game
engine. I built my game engine using the Flash game library Flixel9 as a
base. To this base, I added skeletal support for the elements I knew the
ruleset generator would like to instantiate: abstractly depicted characters
which can roam about, bumping into each other and obstacles, victory
condition templates, basic level generation algorithms, and background
image generation.

At each major design decision that would normally be hard-coded in a
particular game (such as how big the game world is, which character the
player controls, etc.) I added code to consult a configuration object (to
be provided by the generator). Though making an engine that supports
many possible games is significantly more difficult than making a partic-
ular game in isolation, the task is similar in complexity to the integration
of a scripting language10 which many complex games already possess to
ease the development process.

The general flow of my prototype works as follows. On startup, the
engine sends the internally stored AnsProlog program to my ASP web-
service and begins streaming in solutions over the network. The player
can randomly sample mini-game rulesets, given a basic textual preview
of the game (describing what they control, the goal of the game, and
other details selected by the generator). Upon selecting a mini-game,
play begins. The mini-game’s rules are fixed across restarts triggered by

8https://github.com/rndmcnlly/aspaas
9http://flixel.org/

10Unforseen at this point in my research, exposing sufficient customizability for game
mechanics through this scripting interface quickly becomes the bottleneck for similar
projects.
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when the player character is “killed.” The player rejoins the initial game
selection screen upon victory or intentionally abandoning a difficult (or
broken) game.

In the design of VF beyond the prototype, I envision performance in
mini-games linked to a resource which can be spent to either unlock new
reaches of an initially small mini-game design space or buy constraints
which enforce interesting patterns. Through incrementally refining the
possibilities open to the generator the player can slowly come to under-
stand the interaction between the various modular mechanics set into the
VF universe. Each new game design element the player unlocks results in
new tech(T) assertions being simply appended to the text of the internal
logic program, which, in concert with existing integrity constraints and
preconditions, means the design space of mini-games can be dramatically
reshaped during play at a scale unmatched by any other game.

14.7 Discussion

14.7.1 Coupling between Generator and Engine

While the definition of the design space is strongly separated from the
means of sampling the space in our approach, there is a strong coupling
between the content generator and the game engine which consumes the
content. This mandatory coupling is not problematic if one considers
the generator and the engine to be two parts of a single program. In
the VF game prototype, the game engine and ASP code used for ruleset
generation are combined into a single binary that runs in the player’s
browser while the (project agnostic) answer set solver runs independently
on remote server.

14.7.2 Tradeoffs in Levels of Abstraction

The relative expressiveness of the generator compared to the engine de-
pends on the level of abstraction used by the logical terms with which they
communicate. As the generator takes on more responsibility for defining
the mechanics of games (e.g. working with lower-level terms to implement
movement models instead of simply instantiating them), it becomes even
more critical that one be able to sculpt the design space to avoid the
swath of well-formed yet meaningless or broken (in terms of gameplay)
constructions which a grammar might admit.

At the low-level extreme of generating the equivalent of machine in-
structions, clearly an astronomically tiny fraction of such “rulesets” would
represent valid games and we would have a hard time writing down con-
straints that have any useful effect. Meanwhile, at the high-level extreme
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of parameterizing a game by only a few configuration values, the space
of games (even if all were guaranteed to be valid) would be uninteresting
for a player to explore. The challenge, which I have taken but a single
step towards, is to work at the lowest, code-like level possible (enabling
the richest variety) while not losing control of the design space and con-
sequently asking the player to play a structurally broken game.

14.7.3 Evaluation

Towards gauging my level of success in this project, I am most interested
in expressivity of the generation approach and the constraints it employs
to shape generative spaces for the application of procedural content gen-
eration.

In my experience with the VF prototype, I found a 100-source-line
ruleset to be abundantly generative, generating rulesets which exposed le-
gitimate bugs in my game engine and raising important game design issues
(such as how the momentum of Asteroids-style characters should change
in collision with Rogue-like characters). With integrity constraints, it was
both easy to both zoom in on failure cases for testing and to forbid the
occurrence of situations I had not yet resolved.

In terms of expressivity of constraints, recall the space of indirect-
push-kill games (described previously). This scenario demonstrates how
I can encode additional knowledge about a game design space (such as
how to produce a high-level plan to win games in it) into the gener-
ator itself. Knowing that high-level descriptions such as “winnable_via(
indirect_push_kill(red,blue))” are present in the games definitions allows
me to write single-line constraints requiring or forbidding high-level pat-
terns. Such in-line self-analysis of games could also be used to prepare a
small manual for each generated game. Eggg [161] was able to produce
documentation for the game it generated, also by virtue of having so much
design knowledge baked into the generator.

Evolutionary methods such as Togelius’ system aim to produce rulesets
optimized by some metric (with Browne’s Ludi system [22] even striking
commercial success in autonomously designing Yavalath11). However, in
PCG, there is an inherent demand for sizable spaces with significant,
player-visible variety. My declarative approach allows easy manipulation
of generative spaces of arbitrary size, while evolutionary approaches only
maintain a fixed-size population (on the order of tens or hundreds) during
their search for a single, optimal individual. While both approaches are
highly declarative in their own sense, I believe my approach is distinctly
more space-oriented, and is therefore better suited for PCG.

11http://www.cameronius.com/games/yavalath/
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As a final form of evaluation, I can look at our ruleset generator as
a creative system (though it was not designed as one). In the field of
computational creativity, a standard means of evaluating an artifact gen-
erator are to look for novelty and value in the artifacts it creates(Pease,
Winterstein, and Colton 2001). One instance of novelty I experienced was
a seemingly unwinnable game. After some effort I realized the game could
actually be won by indirectly pushing an intermediate character into the
characters it was my goal to kill. Excited by this occurrence which was
both unexpected (novel) and fun (valuable), I quickly devised the indirect
kill detection logic described previously to zoom in on other games of this
variety, transforming the generative space.

14.8 Conclusion

In seeking the technology to support a novel game design, I have de-
veloped a new content-generation approach and applied it to the chal-
lenging domain of game ruleset generation, producing a large space of
playable mini-games. The flexible representations afforded by ASP allow
concise-yet-powerful modifications to this design space. This representa-
tion schema has also prepared us for a more serious attempt at automating
the larger processes in game design.
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Chapter 15

Refraction Tools

Thus far, my applied systems have been applied to problems of my own
design. It is natural to ask whether my program of modeling design spaces
in ASP can survive contact with pre-existing problems coming from real,
ongoing, complex game design projects. In this chapter, I report on the
experience of being embedded in a larger game design team at the Center
for Game Science at the University of Washington working through how
to produce a future, player-adapted version of their game that requires
deep, play-time design automation.

Some problems in procedural content generation for games involve
hard constraints (e.g. that a generated puzzle is necessarily solvable).
Common techniques for generator design lack a way to specify crisp (yes
or no) constraints on what counts as a valid content artifact and guar-
antee these constraints are satisfied in the generator’s output. In this
section I present two independent implementations of three diverse level
design automation tools for the popular online educational game Refrac-
tion. All of the systems guarantee key properties of their output. Apply-
ing a constraint-focused generator design perspective in depth, I found
that even emergent aesthetic style properties were straightforward to di-
rectly control. Our results with Refraction provide further concrete evi-
dence for the claim that the expressive power of constraints and the ease
with which they can be incorporated into suitably designed generative
processes makes them a powerful tool for producing reliably-controllable
generators for game content.

223



15.1 Introduction

In procedural content generation (PCG) for games, the topic of what guar-
antees a generator makes about its output often goes unaddressed. When
seeking to apply PCG to a future, player-adapting version of the popu-
lar online educational game Refraction,1 we encountered a strong need
for assurances regarding generated content. Refraction is a Flash puzzle
game in which players arrange devices on a grid to construct networks of
laser beams. By requiring the player to construct beams of varying power
levels, the game aims to teach mathematical skills, such as proportional
reasoning, while exercising spatial problem solving abilities.

With regard to guarantees, we require that puzzles generated for a
given player be not just solvable, but solvable under conditions appro-
priate for that player’s progress: with precisely dictated size, complexity,
and mathematical and spatial skills (such as being able to understand
fraction simplification or use three left-turns to make a right-turn). Fur-
ther, we want to prescribe aesthetics of the visual composition to continue
the standards of control used in the creation of the game’s current hand-
authored puzzle sequence. While some of these requirements flow from the
game’s educational goals, it should be clear that methods for addressing
these requirements will have use well outside of the realm of educational
games.

Content generators are often designed as either directly constructive
processes or generate-and-test systems [220]. Constructive processes guar-
antee some properties of their outputs by construction, however other
properties can only be enforced by carefully hand-picking from sampled
outputs. Generate-and-test systems attempt to automate this process,
however they are often realized as open-ended optimization processes
(such as genetic algorithms) that still require human intervention to decide
precisely when generated artifacts are sufficiently fit for use in gameplay.
Crisp thresholds (sharp boundaries defining what content is acceptable or
not) are not defined in the problem formulation used by these systems be-
cause picking a single acceptance threshold on artifacts’ computed fitness
(usually a single scalar value) is difficult to impossible.

Ideally, we would have many examples of generators with crisply de-
fined output spaces to draw from when designing new systems. These ex-
ample generators should handle the full complexity of well-known games
to provide realistic references for familiar problems. Towards generality,
they should demonstrate direct control over a wide variety of features of
interest (e.g. low-level structural validity, user-specified control parame-

1As of November 2012, Refraction had over 500,000 plays at http://kongregate.

com/games/GameScience/refraction
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ters, and high-level aesthetic concerns). Schanda and Brain’s Diorama,2

a highly controllable map generator for Warzone 2100 (Pumpkin Studios
1999), is one such system in the domain of real-time strategy games, but
it has only been briefly reviewed in the literature [195].

In this chapter I describe six systems that guarantee key output prop-
erties. I consider three diverse level design automation problems in Re-
fraction: generation of high-level missions (under educational and game-
play constraints), transforming missions into spatially realized puzzles
(which must be solvable in particular ways), and producing alternative
solutions to pre-existing puzzles (allowing us to probe the requirements of
our hand-made levels and those generated with different goals). For each
problem, I review two system implementations. Our initial implementa-
tions were based on either constructive techniques or familiar complete-
search techniques (bounded depth-first search). Exploring recently pro-
posed techniques from my own research program [195], our subsequent
implementations used answer set programming (ASP), a declarative pro-
gramming paradigm that targets difficult combinatorial search problems
with state-of-the-art algorithms.

Because each of our systems are complete by design (in that they al-
ways produce content conforming to input requirements upon termination
when it is logically possible to do so), we focus our analysis of these sys-
tems on their uncontrolled aspects: code size, running times, accidental
style features, and authoring affordances. We found that our ASP-based
tools often produced example outputs which directly drove refinement of
our problem formulations, causing us to better understand the deeper
issues of puzzle design in games like Refraction. Because we were able
to rapidly iterate on the specification of constraints, our later ASP-based
tools are significantly more controllable and thus more useful in the face
of our design automation problems.

The primary finding of this case study is the unexpected expressive
power that resulted from the in-depth application of a constraint-focused
generator design perspective. My results provide further evidence for the
claim that declarative languages with first-class constraints such as those
available in ASP are powerful tools for producing expressively constrain-
able generators, systems that accept a wide range of hard constraints as
part of their input while providing theoretical guarantees for the produc-
tion of that content if it is feasible. By treating aesthetic failures (e.g. poor
compositional balance of a puzzle) as equivalent to gameplay failures (e.g.
an unsolvable puzzle), I not only raise the stakes on a question Togelius
et al. [220] identify as a major research challenge in search-based PCG
(How can we avoid pathological failures? ), but provide multiple real-world

2http://warzone2100.org.uk/about.html

15.1. INTRODUCTION 225

 http://warzone2100.org.uk/about.html


examples as answers.

15.2 Related Work

In previous research into automatically generating puzzles, there is often
a search algorithm in the core of systems that works to separate broken or
uninteresting puzzles from those that are well formed and elegant. Colton
[35] identified puzzle generation as a creative task, requiring a designer to
produce an artifact (the puzzle) that would cause the solver (the player)
to make a personal discovery (finding an interesting solution). Much of
the search in Colton’s system is dedicated to ensuring that the puzzle’s
intended solution is derivable from the clues provided and that are no
simpler solutions.

Focusing specifically on the problem of controlling the complexity of a
puzzle’s simplest solution, Ashlock [5] demonstrated an evolutionary al-
gorithm for generating Chromatic and Chess mazes (both are spatial puz-
zles) with preferentially long shortest-path solutions. Oranchak’s Shinro
puzzle generator [160] also used an evolutionary algorithm. However, in-
stead of optimizing solution length, Oranchak’s system optimized a metric
that balanced structural validity (which is non-trivial for Shinro, involving
global agreement of puzzle clues) with closeness to a set of user-specified
parameters that expressed a target number of pieces and solution steps.
Though these measures of a puzzle’s fitness provided informative evolu-
tionary pressure to guide the search process in the direction of desirable
puzzles, they alone do not guarantee eventual generation of suitable puz-
zles by these systems (an inherent property of metaheuristic optimization
techniques [229] that also applies to the feasibility constraints of FI-2Pop
[110]).

Gebser’s Sudoku puzzle generator [81], by contrast, provides strict the-
oretical guarantees. This 38 source-line generator, based on answer set
programming, defines the structural properties of desired puzzles (includ-
ing the minimality of clue sets with respect to ensuring a unique solution)
and then uses an off-the-shelf answer set solver to deterministically enu-
merate all (and only) those puzzles with the required properties.

A number of related systems have explored content generation with the
application of hard constraints. To our knowledge Diorama3 is the only
one to enforce these constraints through search without the need to have
defined a new search algorithm. Tanagra [202] (a platformer level genera-
tor that uses an off-the-shelf numerical constraint solver to enforce reach-
ability for all of a map’s platforms), SketchaWorld [191] (a declarative 3D

3http://warzone2100.org.uk/
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modeling tool for terrains that foregrounds constraints in its user inter-
face), and the layout solver described by Tutenel et al. [225] (rule-based
system for arranging building-interior scenes under layout constraints) are
highly relevant projects whose applicability to a deployed game remains
to be seen.

15.3 Answer Set Programming

While a best-first heuristic search algorithm such as A∗ (“A-star”) is likely
to be familiar to game developers, the search algorithms4 underlying some
of the core tools in our systems are less so. We have made extensive use
of answer set programming (ASP), a logic programming paradigm that
borrows syntax from Prolog and search algorithms from solutions to the
Boolean satisfiability (SAT) problem [7].

Like regular expressions for string matching or structured query lan-
guages (SQL) for retrieval from databases, AnsProlog (the common lan-
guage for answer set solving systems) is a highly declarative language for
solving combinatorial search and optimization problems, not a general-
purpose programming language such as C++ or Java. Most ASP sys-
tems work by translating the programmer-provided problem definition
into a low-level, domain-independent representation through the process
of grounding (also called instantiation). Then a high-performance combi-
natorial search algorithm solves the ground problem.

One of the goals of ASP is to allow programmers to construct solutions
to complex search problems without the need to develop and maintain
advanced combinatorial search infrastructure. The imperative details of
the answer set solver’s underlying algorithm (which are easily reconfigured
with command-line settings) are unimportant so long as suitable outputs
are produced in an acceptable amount of time.

15.3.1 ASP for PCG

In a recent journal article [195], I described the general approach of ap-
plying ASP to PCG problems, offering a tutorial introduction to answer
set programming and a review of four existing applications using the tech-
nique.

Regarding the software engineering practices around using ASP for
PCG, I noted that properties of artifacts produced during the develop-
ment of a generator will often inspire changes to the design space defi-

4The answer set solver we used employs conflict-driven nogood learning (CDNL),
a state-of-the-art, complete, backtracking, heuristic search algorithm very loosely in-
spired by the Davis-Putnam algorithm for Boolean satisfiability [79].
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nition, motivating the need for flexible generation systems which admit
sculpting the space of outputs without an overall redesign of the gener-
ator. Some of these changes involve “zooming in” on content exhibiting
patterns of interest or rejecting content with easily describable flaws.

In contrast with modern multi-paradigm languages (e.g. Python), the
structure of answer set programs is relatively simple. These logic pro-
grams contain two constructs: facts and rules. Facts are statements (akin
to data literals or documents in a data language like XML) that can be
used to describe bulk configuration or the properties of an input problem
instance. Three types of rules control the production of new facts. Choice
rules specify how to guess a description of a candidate solution. Deduc-
tive (Prolog-like) rules specify how to deduce the properties of a guessed
solution. Finally, integrity constraints forbid solutions exhibiting or not
exhibiting certain deduced properties.

For the purposes of high-level design, the programmer can imagine
the answer set solver runs a generate-and-test process, repeatedly guess-
ing solution candidates, deducing their properties, and then testing if
they should be forbidden. In actuality, solvers will propagate constraints
forwards and backwards through the rules in a non-trivial manner that
further includes learning of new constraints (called nogoods) on the fly
from dead-ends discovered by the live search process. Further, whole
spaces of partial solutions that exhibit forbidden substructures are often
eliminated before any are completely assembled. When building a content
generator with ASP, the programmer focuses almost exclusively on how
the content design space is declaratively defined, treating the solver as an
uninteresting black box.

15.4 Refraction Puzzle Design

The premise of Refraction is that the player must arrange devices to form
a network of laser beams that will restore power to animals stranded in
underpowered spaceships. The power of laser sources and the power re-
quired by targets are mismatched, so the player must split and recombine
beams to provide power in the correct proportion, indicated by a fraction.
Figure 15.1 shows an example puzzle and solution.

When play begins, the 10-by-10 grid is clear except for laser sources,
laser targets (animals in spaceships), and blockers (asteroids or other
space debris). The position and orientation of these pieces are fixed.
Additionally, sources and targets are annotated with the fractional power
that they emit or require to be satisfied.

All player-movable pieces (beam manipulating devices with a fixed
rotation) start in the panel on the right. There are four broad piece
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Figure 15.1: Screenshot of gameplay in Refraction depicting a puzzle
solution involving benders, splitters, combiners, and an expander. This
puzzle is used as running example in the rest of this chapter.
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categories. Benders simply apply a 90-degree deflection to a beam with-
out changing power. Splitters consume one input beam and produce two
beams at one half of the input power (or three beams at one-third power
depending on the number of outputs on the splitter). Combiners (which
come in two-input and three-input varieties) produce an output beam
with a power that is the sum of all of the input beams (but only if all
inputs are filled and the input fractions share the same denominator).
Expanders (which do not deflect) facilitate combining of unlike fractions
by multiplying the numerator and denominator by a common factor. Ex-
panders are available with factors of 2, 3, and 5 such that applying a
3-expander to the fraction 1/2 results in the (unreduced) fraction 3/6.

Not all of the pieces provided to a player are necessary to form a solu-
tion. Most puzzles will include extra pieces that are intended to distract
the player. Distractors are not always useless because they may be used
to construct alternate (often more elaborate than necessary) solutions.

The designer’s challenge is to produce a progression of puzzles that
incrementally introduces the player to the spatial and mathematical rea-
soning challenges of the game and eventually prepares them for the game’s
full complexity, requiring fluent use of many types of pieces simultane-
ously. In the context of this progression, it is clear that what makes a
level acceptable (as the product of generation) depends far more on its
relevance to the player’s progress than any simple measure of its solution
length or the like.

The challenge for deployable level design automation in Refraction is
to produce a generator that can recreate levels in the style and complexity
of each point in the current, hand-authored linear progression. Even this
requires generators with highly controllable output sufficient to express
what makes a puzzle appropriate for the very beginning, the very end,
or, say, the first level that introduces expanders. Beyond this, we are
interested in enabling non-linear, player-specific concept and difficulty
progressions.

15.5 Problem Formalization

To make the challenge of level design automation for Refraction more
concrete, we have broken it down into three artifact generation problems.
To structure our puzzle generator, we have adopted Dormans & Bakkes’
[57] distinction between missions and spaces. A mission is a logical or-
der of the goals a player must accomplish to complete the level, and a
space is the actual physical layout of the level. Our first two problems are
concerned with producing missions for Refraction and subsequently em-
bedding those missions in a puzzle grid. The final problem is concerned
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with seeking alternative solutions to existing puzzle designs, regardless of
the mission for which it was originally designed.

15.5.1 Mission Generation

The intent of the mission generation problem is to capture the high-level
design concerns of a Refraction puzzle: Which pieces are active? How
big is the imagined solution? What level of mathematical knowledge will
be involved? Because fractions are integral to the game’s educational
goals, mission generation includes working out which fractions should be
constructed and how the construction might proceed.

The primary input to our mission generators is a set of mathematical
expressions that the player should construct during play. The set { (1/2)+
(1/4), (1/4) + (1/4), (((1/2)/2)/2) } suggests the need for adding twice
(once with the use of an expander to build a common denominator) and
repeated splitting by half. The mission generator is also given a target
number of blockers (24), benders (7), and distractor pieces (7) to modulate
difficulty. These were the inputs to the mission generation process that
eventually resulted in the puzzle and solution shown in Figure 15.1 and
used as a running example in the rest of this chapter.

In the ASP-based mission generator, an upper bound and optional
lower bound on piece counts are specified for all piece types, along with
style constraints affecting the presence or absence of arbitrary mission
subgraphs. These constraints were not expressible in the initial mission
generator (described later) without a major redesign.

The output of mission generation is an annotated directed acyclic
graph (DAG) where there is a node for every piece in the imagined puz-
zle and an edge for every solution-critical laser beam connecting pieces.
Nodes describe a piece’s mathematical type (such as 2-splitter or 5-expander)
but not its spatial type (such as having an input from the west and an
output to the north). Source and target nodes are labeled with the frac-
tion power they emit or require. Figure 15.2 shows an example mission
satisfying the constraints above.

15.5.2 Grid Embedding

In the grid-embedding problem, the intent is to realize a puzzle with suf-
ficient detail to be played in the live game. That is, embedding resolves
the spatial concerns ignored in the mission generation problem. While
the current version of Refraction is played on a discrete, rectilinear, two-
dimensional grid, a version for play on, say, continuous spaces, hex maps,
or three-dimensional grids would not disrupt our high-level problem for-
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Figure 15.2: Mission DAG containing several 2-splitters (S2), benders
(B), 2-combiners (C2), and a 2-expander (E2). Several blockers (x) and
distracting pieces will also be present in any spatial realization of this
mission.

mulation or solution methods.5

The primary input to the embedding problem is the same as the out-
put of the mission generation problem. These mission DAGs may come
from either of our mission generation systems, extraction from the hand-
designed levels, or original human authoring effort. The ASP-based em-
bedder also accepts additional style constraints describing spatial proper-
ties such as symmetry, compositional balance, and piece spacing.

The output of grid embedding is the (x/y) position and (north/-
south/east/west) input/output port configuration of all pieces such that
one example solution is constructed that realizes the input mission DAG.
Figure 15.3 shows an alternate embedding, to the one depicted in Fig-
ure 15.1, for the mission shown in Figure 15.2. Generally, there may be
astronomically many valid embeddings of a mission, but we are concerned
with producing only a single one.

15.5.3 Puzzle Solving

Finally, the intent of the puzzle-solving problem is to simply construct
alternative reference solutions (at the spatial grid level). In addition to
revealing which pieces and patterns are required in a solutions to a puzzle,

5Indeed, in subsequent exploratory design, I have realized variants on the ASP-
based grid embedder for each of these exotic cases. For the time being, the plan is to
stick with the plain and simple 2D grid in the public version of the game.
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Figure 15.3: Embedding of the mission DAG from Figure 15.2 into Re-
fraction’s 10-by-10 spatial grid under no special style constraints.
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a fully automated puzzle solver can be used to provide feedback to players
by telling them if their solution-under-construction can be extended to a
complete solution without removing any piece already placed. This same
type of partial-solution feasibility checking can be used in offline analysis
of recorded game data to track how much time different players spend in
infeasible regions of the game’s state space.

The input to the puzzle-solving problem is a complete definition of
available pieces and their mathematical and spatial configurations (ex-
cepting the positions of player-placed pieces, of course). The ASP-based
puzzle solver also takes additional style constraints as input: requirements
to use or avoid a certain piece or grid cell, to construct or not construct
certain sub-networks of laser flow, and so on.

The output of puzzle solving is simply the position of every piece such
that the resulting configuration satisfies all laser targets or an assertion
that the puzzle has no solution under the additional constraints.

15.6 System Descriptions

In this section I describe the two implementations of each of our three level
design automation tools. I review them in the order they were developed
to help convey the idea that each was a legitimate best-effort research
solution to the stated problems given the knowledge at hand. Each system
was created with the intent of use in a production setting, not specifically
for the purposes of comparison.

15.6.1 Feed-Forward Mission Generation

Addressing the first problem, that of generating high-level missions, our
initial implementation adopted a constructive approach consisting of a
seven-step pipeline:

1. Expression Translation: Mission graph fragments correspond-
ing to the required input expression trees were generated though
straightforward compiler techniques. For example, {(1/4) + (1/4)}
becomes a three-node graph with one 2-combiner node (to represent
the “+”) linked by edges labeled 1/4 from two untyped nodes.

2. Opportunistic Combination: In a randomized fashion, nodes are
unified so that the output of one required expression could be the
input to another. This process proceeds, avoiding cycle creation,
until exhaustion.

3. Target Completion: To motivate (though admittedly not to guar-
antee) the player to construct the imagined graph so far, target
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nodes are added to consume all laser outputs that are not consumed
by another piece already.

4. Expander Insertion: Expanders are inserted so that the inputs
to combiners all have the same denominator.

5. Bender Insertion: The requested number of bender pieces are
randomly inserted into the graph on paths between sources and
targets.

6. Distractor Selection: A number of randomly typed pieces are
also added to the graph without adding edges.

7. Obstacle Insertion: Similarly to distractors, the required number
of disconnected blocker pieces are added.

By construction, generated mission DAGs will describe feasible solu-
tions to the mission generation problem (at least at the network level)
that involve the required mathematical construction and the requested
number of blockers, benders, and distractors. This system serves as an
example how to guarantee certain properties of outputs through bespoke
algorithm design. Note, however, that the above algorithm is carefully
adapted to just those design requirements known at the time of its cre-
ation.

15.6.2 Grid Embedding with DFS

The problem of grid embedding immediately appeared to us as a highly
constrained search problem (unlikely to be fruitfully addressed with feed-
forward or simple generate-and-test approaches). While the problem
somewhat resembles the place-and-route problem from electronic design
automation (EDA) [211], the particular mechanics of Refraction made a
hand-rolled complete-search implementation seem the most approachable
solution at the time.

Our randomized depth-first search (DFS6) algorithm was configured
as follows:

• States: list of embedded pieces and their positions; graph of re-
maining pieces to be embedded; list of outgoing beams with their
directions

6Note that DFS is complete for search spaces with bounded diameter. In the grid-
embedding problem, no paths have a length that exceeds the total number of pieces in
a puzzle.
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• Successor Function: place a piece with no un-embedded inputs
from the mission somewhere along the beams to which it must con-
nect and assign its input directions as necessary; if the piece has
output directions, then assign them randomly at this time accord-
ing to the piece’s type (ensuring benders deflect the laser, etc.)

• Goal: no pieces remain to be embedded

When our DFS terminates at a goal state, that state necessarily repre-
sents a valid embedding of the mission DAG with respect to Refraction’s
rules. While this implementation is sufficient to solve the problem, we
later back-ported the use of a geometric restart policy (a common tech-
nique for boosting combinatorial search [85]) from our ASP-based embed-
der, resulting in observed performance improvements of up to four orders
of magnitude for realistic problems.

15.6.3 Puzzle Solving with DFS

Based on the initial success with DFS as an implementation strategy for
complete and correct embedding, we decided to address the problem of
producing reference solutions with this algorithm as well. Puzzle solv-
ing involves a similar spatial search to the embedding problem. How-
ever, in embedding, a plausible solution graph (the mission DAG with
fully-resolved mathematical concerns) is given and the piece input/out-
put port configurations are flexible (to be generated). In solving, port
configurations are constrained as part of the input and no solution sketch
is provided, dramatically complicating the search problem.

Our DFS for puzzle solving was configured as follows:

• States: list of pieces placed so far and their positions; list of out-
going beams with their direction and power

• Successor Function: select an unused piece that has an input
port that can accept an existing, unconsumed outgoing beam and
place it somewhere along that beam; decide if the new piece will
produce new beams, and compute their direction and power

• Goal: the simplified sum of beam powers entering every target
matches its required value

As before, correctness with respect to input requirements on success-
ful termination is assured by well-known results for DFS. The geometric
restart policy was also back-ported to the DFS-based puzzle solver after
our experiments with ASP, yielding solutions for previously intractable
puzzles.
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15.6.4 Grid Embedding with ASP

Having assembled and tested the previous three systems and integrated
them into a research version of the game, we identified the existing grid
embedding system as the biggest bottleneck for runtime performance and
expressive control in our plans for a player-adapting revision to the game.
Seeking to replace this system with a simpler (towards better adaptability)
and potentially faster implementation, we adopted the following organi-
zation for our ASP-based grid embedding system.

• Choice Rules:

– Guess absolute (x/y) positions for pieces.

– Guess port configurations based on piece type.

• Deductive Rules:

– Deduce relative (north/south/east/west) positions from abso-
lute positions.

– Deduce free paths from relative positions.

– Deduce realization of beams (embedding for mission edges)
from paths and guessed port configurations.

– Deduce presence of style patterns (compositional balance, sym-
metry of blockers, etc.).

• Integrity Constraints:

– Forbid two pieces overlapping.

– Forbid lack of embedding for mission edges.

– Forbid illegal port configurations (benders must bend, expanders
must not, etc.).

– Forbid violation of style policy (reject if balance or symmetry
not detected, etc.).

Correct enumeration of all and only those embeddings that are valid
is assured by the correctness of the answer set solver. The source code
for our ASP-based embedder did not contain any descriptions of search
algorithms, only a declarative description of the search space, artifact
analysis definitions, and goal conditions.
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15.6.5 Mission Generation with ASP

Success in using the ASP-based embedder as a drop-in replacement for
the previous embedder was enticing, so we next looked at replacing the
mission generator with an ASP-based variant as well.

Thus far, the mission generator and grid embedder had been run with
an overall generate-and-test architecture (because some mission DAGs
are formally impossible to embed, such as those containing triangular
undirected cycles). ASP held promise for the ability to run the mission
generator and grid embedder as an integrated whole under constraints
that jointly bound both phases of generation. With the goal of upgrading
our embedder into a complete puzzle generator, our ASP-based mission
generator was designed as follows.

• Choice Rules:

– Guess which pieces will be active.

– Guess power level for laser sources.

– Guess presence of edges between pieces.

• Deductive Rules:

– Deduce a piece’s emitted laser power from the power of all
edges into it (using a recursive definition).

– Deduce simplified power for all targets.

– Deduce set of pieces that are upstream of active targets.

– Deduce the presence of mathematical or other graph properties
(half_plus_quarter, triple_bending, etc.).

• Integrity Constraints:

– Forbid directed edges above port limits (only one edge into a
splitter, only one edge out of a combiner, etc.).

– Forbid edges to nodes not on a path to a target.

– Forbid presence or absence of particular mathematical and
style patterns.

To simplify the AnsProlog definition of mission generation logic, we
used an auxiliary answer set program to pre-compute a table of all ways
of manipulating beams of different powers. Parts of this program (no-
tably Euclid’s algorithm used in fraction simplification) were expressed in
Lua [97], an embedded scripting language made available for performing
arbitrary transformations of logical terms with imperative code.
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The final ASP-based mission generator can be run standalone, as a
drop-in replacement for the previous mission generator, or it can be com-
bined with the ASP-based grid embedder (by simply concatenating the
source for the two programs) to form a monolithic puzzle generator.

15.6.6 Puzzle Solving with ASP

With the accumulated logical modeling experience of producing the mis-
sion generator and grid embedder, creating a styleable puzzle-solver using
ASP was straightforward.

• Choice Rules:

– Guess piece positions (the player’s only responsibility).

• Deductive Rules:

– Deduce relative positions from piece positions.

– Deduce free paths from relative positions.

– Deduce beam flow from free paths and port configurations.

– Deduce emission fractions from beam flow (recursively).

– Deduce target power from beam entrance.

– Deduce presence of solution-style patterns.

• Integrity Constraints:

– Forbid two pieces overlapping.

– Forbid leaving targets unpowered.

– Forbid incorrectly powering targets.

– Forbid violation of style policy.

In the puzzle solver, a piece’s effect on fractions was again expressed
in Lua. However, no table was pre-computed because, when pieces are
fully specified, a much smaller and puzzle-specific set of fractions is en-
countered.

In addition to correctly reporting whether a puzzle is solvable under
stylistic restrictions (yes or no), this puzzle solver is radically reusable for
online and offline analysis of partial solutions and queries as to whether
a particular piece type or placement is essential to solving a puzzle (re-
gardless of the originally imagined mission for that puzzle).
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15.7 Analysis

Our comparative analysis of the two sets of level design automation tools
breaks down into a quantitative comparison of the software systems and
a qualitative comparison of the inputs and outputs for each tool.

15.7.1 Quantitative Comparisons

When comparing our respective generator implementations side-by-side,
the most apparent difference is in their language distribution and code
size. The original tools consist of a moderate amount of Java code whereas
the newer tools consist of a much smaller amount of code in AnsProlog
and Lua. For the three tools, here are the code size7 distributions:

• Mission Generation: 1,145 Java lines — 194 AnsProlog, 38 Lua
lines

• Grid Embedding: 987 Java lines — 75 AnsProlog,8 no Lua lines

• Puzzle Solving: 988 Java lines — 83 AnsProlog, 61 Lua lines

In another numerical comparison, we looked at the running time of
the tools on a fixed set of inputs derived from the example shown in
Figure 15.1, a high-complexity puzzle in the class of late-game challenges
that involve several pieces from every major piece category. Configuring
the tools as equivalently as possible (applying no style constraints for
the ASP-based tools), we averaged times9 for 1,000 runs with different
random seeds.

• Mission Generation:

– Feed-forward algorithm: < 1 ms. total

– ASP: < 1 ms. search (530 ms. grounding/preprocessing)

• Grid Embedding:

– DFS: 650 ms. search (negligible overhead)

7We counted (non-blank, non-comment) source lines. These line counts are intended
to record all code needed to support each tool assuming the others already existed
(thus, shared utilities such as parsers and printers for the XML level file format are
not counted).

8In a later refactoring of the ASP-based grid embedder, I re-expressed the problem
in an n-dimensional space and added a “#const dimensions=2.” statement at the start
of the program. Unexpectedly, the new program turned out smaller: just 27 AnsProlog
lines.

9Experiments were performed on a 2006-era (“Dempsey”) Intel Xeon CPU at 3.0
GHz. DFS times record search-time for the implementation with restarts.
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– ASP: 110 ms. search (630 ms. grounding/preprocessing)

• Puzzle Solving:

– DFS: did not find solution within 1-hour timeouts

– ASP: 350 ms. search (340 ms. grounding/preprocessing)

Generally, for difficult search problems, the advanced search algo-
rithms of the answer set solver (Clingo 3.0.3 [76]) are better suited than
the hand-rolled search in the original tools (dramatically more so before
the post-hoc addition of a geometric restart policy). In all cases, the ASP-
based solutions spend a significant amount of time on non-search activities
(predominantly in propositional grounding). This grounding cost need
only be paid when input requirements change if the grounded program
is cached. Although the time required for grounding grows with problem
size (our current encodings are cubic in player-controlled piece count), the
fact that Refraction is played on a constant-bounded scale (with no more
than a handful of player-controlled pieces) means this growth is a only
theoretical curiosity so long as results are swiftly found at the scale of
interest. That the solver’s worst case running time is bounded only by an
exponential in the size of the grounded problem is similarly uninteresting
for realistic problems such as ours.

15.7.2 Qualitative Comparisons

Resulting from the target completion phase used in the constructive mis-
sion generator’s pipeline, every mission DAG generated by this implemen-
tation describes a puzzle solution that does not involve laser wasting (the
situation where a beam emitted by one of a piece’s outputs goes unused in
the solution). While (in concert with distractor pieces) players are often
capable of wasting lasers if they choose, this style quirk of the original mis-
sion generator is an interesting secondary effect of attempting to motivate
players to construct a particular network. Knowing of the laser wasting
aversion in the original generator, the ASP-based mission generator in-
tentionally includes hooks for requiring or forbidding the presence of laser
wasting at the mission level. Similarly, the greedy nature of the oppor-
tunistic combination phase meant that mathematical expressions would
only be realized in a subset of all feasible ways, prompting the subsequent
development of arbitrary mission subgraph constraints that could control
how expressions were realized more generally.

In the ASP-based embedder, we found that running the answer set
solver with a fast-but-simplistic heuristic often led to embeddings that
compacted all of a puzzles pieces into a cluster near the one corner of the
grid. Crudely addressing this concern by telling the answer set solver to
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use more randomness in its search or to use a different heuristic was not
a reliable solution. While the compacted embedding was in strict confor-
mance with the definition of the embedding problem, the result was aes-
thetically unacceptable. Analysis of these compacted solutions prompted
us to define a basic model of compositional balance: after deducing ac-
tive hemispheres (e.g. “laser flows through a piece in the west half of
the puzzle”), we forbid configurations that leave any hemisphere inactive.
The pattern of “abutting” (where laser flows between two immediately
adjacent pieces without revealing the beam) could also be controlled to
produce cleanly spaced reference solutions (meaning that players, partic-
ularly novices, would not be required to abut their pieces to complete
the puzzle). Finally, the pattern of “crossing the beams” represented
yet another feature of exactly-controllable output style in the ASP-based
embedder. Figure 15.4 demonstrates driving the embedder in opposite
stylistic directions.

When no style constraints are provided for the ASP-based embedder,
the space of embeddings it might generate is identical to that of the DFS-
based embedder running on the same inputs. Adding style constraints
results in a generative space that is a strict subset of the unconstrained
space. A similar situation applies to adding style constraints to the ASP-
based puzzle solver.

While the original puzzle solver was primarily intended to produce a
simple (yes or no) answer, the inclusion of style constraints in the input
to our other tools naturally prompted our brainstorming of the potential
alternate uses of an expressively constrainable puzzle solver mentioned
previously. The ability to attach novel constrains to the input of our
ASP-based tools, even when the existing definitions were not designed
with these constraints in mind, represents a major qualitative difference
between our two sets of tool implementations owing to ASP’s architectural
affordances.

15.8 Conclusion

I have described six examples of level design automation systems that
make hard guarantees on key properties of their output. Covering three
diverse level design automation challenges for Refraction, I have demon-
strated that such guarantees can be made for the full complexity of a
popular online game (further, one that was not designed around future
design automation). In achieving this for an initial set of constraints, we
made use of a constructive generator (which guarantees properties of its
output by careful construction) and a familiar complete-search algorithm
(DFS in a bounded space). To quickly produce generators for a wider va-
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Figure 15.4: Two oppositely styled embeddings: the left exhibits compo-
sitional balance, blocker symmetry, beam spacing, and a lack of crossings
while the right exhibits forced imbalance on both axes, asymmetry, piece
abutting and multiple beam crossings.

15.8. CONCLUSION 243



riety of output guarantees, we explored emerging PCG results suggesting
the use of answer set programming to declaratively capture exactly the
design space we required.

These results suggest the developers of procedural content generators
should not shy away from working with hard constraints. By applying
a constraint-focused generator design perspective in depth, it is possible
to not only produce reliably controlled generators with attractive perfor-
mance measures, but to also come to better understand design automa-
tion problems through iterative exploration of constraints and generated
output
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Chapter 16

Rational Curiosity

The previous chapters have operated primarily from the perspective of
design, giving designer-programmers access to new kinds of situational
backtalk. However, exploratory game design can also be engaged in terms
of creativity, of creating artifacts with novelty and value. In this chap-
ter, I synthesize a knowledge-level description of creativity that puts the
practices of exploratory game design to work in the service of artistic
creativity.

Drawing on inspirations outside of traditional computational creativ-
ity domains, I describe a theoretical explanation of creativity in game
design as a knowledge-seeking process. This process, based on the prac-
tices of human game designers and an extended analogy with creativity
in science, is amenable to computational realization in the form of a dis-
covery system. Further, the model of creativity it entails, creativity as
the rational pursuit of curiosity, suggests a new perspective on existing
artifact generation challenges and prompts a new mode of evaluation for
creative agents (both human and machine).

16.1 Introduction

Paintings [116], melodies [42], and poems [90] are familiar domains for ar-
tifact generation in computational creativity (CC), and much established
theory in the field is focused on evaluating such artifacts and the systems
that produce them. In this chapter, I draw inspiration for a new under-
standing of creativity from the less familiar (but no less creative) domain
of game design. In its full generality, game design overlaps visual art, mu-
sic, and other areas where there are many existing results, but where it
stands apart is in its unavoidably deep, active interaction with the audi-
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ence: in gameplay. Crafting gameplay is the central focus of game design
[73]. Play, however, is not an artifact to be generated directly. Instead, it
is a result that emerges from the design of the formal rule system at the
core of every game [176, chap. 12], a machine driven by external player
actions.

Where, in visual art, we might judge the creativity (as novelty and
value) of an artifact on the basis of the work’s similarity to known pieces
and its affective qualities [163], it is not so easy to make direct state-
ments about the properties of the artifacts in game design. Desirable
games are often celebrated for their innovative gameplay or the fun expe-
riences they enable—these are properties of the artifact’s interaction with
the audience, not of the artifact itself. The focus on predominantly pas-
sive artifacts in CC, those which can be appreciated via direct inspection
rather than through interactive execution, has masked what is obvious in
game design: that, in any art form, the desirability of artifacts is in their
relationship to their environment.

Armed with such an understanding, I seek a theoretical explanation of
creativity in game design. Beyond the simpler application of established
design knowledge, I want to understand the rarer experimentation that re-
alizes wildly new forms of gameplay and deeply original player experiences
for which there are yet no conventions or formulae. This theory should
speak to both the artifacts and processes of game design, and do so in a
way that meaningfully explains game design as done by humans as well
as computational means. Towards capturing the richness of existing hu-
man design activity, I am most interested in a theory of transformational
creativity [14] that explains how designers build new conceptual spaces
of game designs and reshape them in response to feedback experiences
observing play.

I introduce a new theoretical model that is amenable to computational
realization that describes creative game design as a knowledge-seeking
process (a kind of active learning). My broader contribution, creativity
as the rational pursuit of curiosity, can provide an explanation of and sug-
gest new questions for applications in traditional CC artifact generation
domains.

In the following sections I review established game design practices,
draw an analogy between game design and scientific discovery, review
and apply Newell’s concept of the knowledge level, and then introduce
my model of creativity. Finally I conclude with a discussion of the impli-
cations of this theory for game design and the larger CC context.
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16.2 Game Design Practices

In a standard text, Salen & Zimmerman [176, p. 168] introduce the
“second-order” problem of game design bluntly:

The goal of game design is meaningful play, but play is some-
thing that emerges from the functioning of the rules. As a
game designer, you can never directly design play. You can
only design the rules that give rise to it. Game designers create
experience, but only indirectly.

Play includes the objective choices made by a player and the condi-
tions achieved in the game, along with the player’s subjective reactions
and expectations. At this point, it is straightforward to adopt the first
tenet of my theory of creative game design: game designers are really
designers of play.

The idea of adopting an iterative, “playcentric” [73] design process,
in which games are continually tested to better understand their emer-
gent properties, is corroborated by others like Schell [179], who further
describes the supreme importance of “listening” in the design process
(being able to process feedback from the player’s experience of candidate
designs). Beyond initial conceptualization of a game idea and tuning and
polish of the final product, the two most important practices of game
design are prototyping and playtesting, both of which are intentionally
focused on providing the designer with a better understanding of play.

Despite the ostensible purpose of game design being the production of
complete, desirable games for play by end-users, the practices of playtest-
ing and prototyping are centered on providing feedback to the designer.
Through processes of exploratory game design, where several prototypes
are created and playtested during a single project, the underlying goal
is to build up sufficient skill and understanding to later produce the
high-quality, final game artifact with the experienced gained. Such a
self-affecting process is simultaneously an instance of Schön’s “reflective
practice” [182] and exactly the “iterative process of guesswork and evalua-
tion” (often mistaken for generate-and-test) that McGraw and Hofstadter
call the “central loop of creativity” [141].

Beneath the surface, the practices of game design are almost exclu-
sively about the collection of design knowledge, knowledge regarding the
relationship between the component elements of a game system and that
game’s potential execution in interaction with a player. Such design
knowledge spans what design patterns to employ, how to assemble them,
and why such an assembly will produce a certain play experience.

Existing design knowledge can be applied to realize familiar, well-
understood play experiences, but creative game design demands a contin-
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uous source of new design knowledge. Thus, the second tenet of my theory
is this: creative game design is about seeking design knowledge.

16.3 An Analogy with Science

To expand on knowledge-seeking in game design, I want to draw an ex-
tended analogy between game design and science. Doing so will allow
me to connect the creative activity in the game design process with the
activity carried out by scientific discovery systems in CC.

For design generally, Dasgupta claims “design problem solving is a
special instance of (and is indistinguishable from) the process of scientific
discovery” [53, p. 353]. While Dasgupta focuses on explaining design
activity specifically in terms of finding a confirmable theory that resolves
a particular unexplained phenomena, my analogy is intentionally softer,
to enable applications in a variety of CC domains that do not immediately
appear as “design problem solving” domains.

16.3.1 Scientific Practices

Roughly, the scientific method is a closed loop with the following phases:
A hypothesis is generated from a working theory, the hypothesis drives the
design of an experiment (usually realized with a physical apparatus), data
from executing this experiment is collected, and conclusions are drawn
which can be integrated into the working theory. A scientist will design
an experimental setup, despite already possessing a theory that makes
prediction about the situation, precisely because there is some uncertainty
about the result. This result, whether matching the prediction or not,
should provide informative detail about the natural laws at play in the
experiment’s environment.

In my analogy, experiment design is prototyping; experiment exe-
cution and subsequent analysis is playtesting. The combination of the
declarative knowledge of natural laws and the procedural knowledge of
operating laboratory equipment is game design knowledge. Finally, the
closed loop of the overall scientific method corresponds to iterative, ex-
ploratory game design.

Making the parallel clearer, Gingold and Hecker [84] talk about how
gameplay prototypes should be informative, answer specific questions,
and be falsifiable. In the philosophy of science, the notion of informative
content (and its relation to falsifiability) guides the evaluation of theories
and experimental designs.

In their capacity to design and execute informative experiments and
produce coherent and illuminating explanations of the anomalous results,
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scientists are clearly creative. In Colton’s terms [37], we can easily per-
ceive this creativity in the skill of precise experimental design, the appre-
ciation of unexpected result in the context of a working theory, and the
imagination of previously difficult to consider alternative theories and the
invention of new instruments. By the analogy above, a scientist’s kind of
creativity can apply to the game designer as well, prompting our third
tenet: designers act as explorers in a science of play, an “artificial
science” in Simon’s terms [190, chap. 5].

16.3.2 Automated Discovery

Though largely distinct from artifact generation, automating discovery in
science and mathematics is an established CC tradition [120][124]. Within
these systems it is common to find subprocesses that generate artifacts
as part of the larger discovery process.

The GT system [69], an automated graph theorist, would periodically
“doodle” random graphs within a specific design space as a means of
generating relevant data which might spark a new conjecture about the
desired area of focus. With my analogy in mind, such doodling is rem-
iniscent of the exploratory, rapid prototyping process sometimes used in
game design (in what Gingold and Hecker call the “discovery” phase of
development). A heuristic to generate new concrete examples of abstract
concepts was even present in the original automated mathematician, AM,
working with number theory [124].

Beyond generating artifacts with only the indirect intention of knowl-
edge gain, more recent discovery systems internally optimize expected
knowledge gain when deciding which experimental setup to test next, re-
alizing an active learning process [24]. Where artifact generation provides
opportunistic benefits in mathematical domains (in which graphs and con-
jectures are non-interactive, static artifacts), discovery systems working
in the physical sciences fundamentally cannot avoid artifact generation
(as experimental design) during active exploration of their domain.

A notion of “interestingness” is the glue that binds the various sub-
processes of automated discovery (artifact generation included) together
into an overall control flow [33]. In many cases, interestingness measures
the likelihood or quality of knowledge expected to be discovered by taking
a particular action (e.g. searching for a counterexample) or focusing on a
particular concept (e.g. looking for new examples of special graphs). A
system’s overall notion of interestingness can be used to induce a measure
of value for artifacts generated in its artifact generation subprocesses, a
measure related to potential for knowledge gain as opposed to aesthetic
value.

Returning to game design, my fourth tenet holds that automated
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discovery systems inspire a computational model of creative
game design that explains the prototypes produced in exploratory game
design as the doodles produced trying to flesh out design theories residing
in the designer’s head, motivated by an interest in designs that have the
potential to reveal new patterns.

16.4 Newell’s Knowledge Level

To complete the image of the creative game designer as a discoverer, I
need some better vocabulary for talking about a designer’s knowledge,
around which the entire discovery process revolves.

Newell [158] describes the knowledge level as a systems level set above
the symbolic, program level. At the knowledge level, intelligent agents
have bodies of knowledge and can take actions in some environment to
make progress towards goals. The actions taken by an agent are said to
be governed by a principle of rationality that states, “If an agent has
knowledge that one of its actions will lead to one of its goals, then the
agent will select that action.” Recall that this sense of rationality is
distinct from decision theoretic rationality in that it does not necessarily
imply that an agent must optimize anything.

While this radically underspecifies an agent’s behavior from a compu-
tational perspective, the constellation of concepts at the knowledge level
is useful for making statements about the game designer. The intention of
knowledge-level modeling is to explain the behavior of knowledge-bearing
agents (be they human or machine) without reference to how that knowl-
edge is represented or observational access to an operational model of the
agent’s mode of processing.

Understanding the game designer, at the knowledge level (see Fig-
ure 16.1), starts with making an assumption about what is known and
what is sought. But from my theory so far, I can safely assume an im-
portant body of knowledge possessed is that of tentative game design
knowledge. This knowledge permits the designer the use of tools such
as paper and trinkets for physical gameplay prototypes (often styled af-
ter board games) and programming languages and compilers for more
detailed, computational prototypes. This same knowledge permits un-
derstanding to be gained from the observation of game artifacts in play,
and suggests a tentative vocabulary for composition of those artifacts (i.e.
knowledge of design patterns for game rules). The creative designer’s goal,
per my analogy with the automation of science, is clearly to gain more
design knowledge.

Given this, I expect the designer to rationally (specifically in the
knowledge-level sense) go about the practices of game design as part of
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Figure 16.1: Knowledge-level view of the creative game designer. This
illustration echoes the illustration Newell used in the article introducing
the knowledge level [158]
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taking actions that lead towards the gain of design knowledge. That is,
game design activity can be explained as the rational pursuit of
design knowledge gain.

16.5 Creativity as Rational Curiosity

The knowledge level lets me talk about a kind of rationality, one that
gives an explanation for why game designers take the actions they do.
But not all game design activity is creative, no more than all scientific
activity is. So where does creativity come in?

The most creative parts of game design, I claim, are the ones where the
designer’s behavior is best explained by the direct intention to gain new
knowledge, to satisfy curiosity. The bulk efforts of game production are a
kind of engineering which applies the knowledge gained in the curiosity-
driven creative mode.

As the motivation to reduce uncertainty and explore novel stimuli
[10], curiosity has long been known to be intertwined with the judgment of
aesthetics [11]. Saunders’ “curious design agents” [178] generate aesthetic
artifacts according to their potential to satisfy an internal measure of
curiosity, doing so in order to learn about an outside environment. This
framework has also been used to drive the behavior of a simulated society
of curious visual artists and even a flock of curious sheep in a virtual world
[142].

How curiosity-driven behavior can explain the various processes and
artifacts of human creativity at a high level has been demonstrated at
great length [181]. My unique claim, that creativity is a knowledge-level
phenomenon, gains similar explanatory power without reference to algo-
rithmic details (such as the use of reinforcement learning or optimization
procedures) or human psychology, as in Loewenstein’s comprehensive re-
view of research on human curiosity [129].

Looking concretely at curiosity in the domain of game design, consider
the example of speed-runs, gameplay traces that demonstrate a way of
doing something in a game (completing a level or collecting certain items)
much faster than a designer previously expected. Speed-runs are inter-
esting to game designers, from a curiosity perspective, because they often
represent a novel stimulus and quickly increase uncertainty about what is
possible in a game, creating an urge to seek out related gameplay traces
that would illustrate the general pattern by which the run was achieved.
With additional experience, the designer can learn to either design out
such speed-runs by adjusting the game’s rules, or create new mechanics
that entice players to master the skills speed-running requires.

Putting together curiosity about design knowledge with knowledge-
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level rationality, I have the following new definition of creativity: Cre-
ativity is the rational pursuit of curiosity, a knowledge-level phe-
nomenon.

This claim applies to human and machine design agents and gives a
goal-oriented explanation to sequences of design activity that result in
design knowledge gain (clearly including prototyping and playtesting).
Creative game designers makes games, not because that is their function,
but because they want to learn things about play that require experimen-
tation with certain artifacts to illuminate.

I call this theory rational curiosity because it is a knowledge-level
treatment of the concept of curiosity that focuses on how curiosity ex-
plains the selection of actions towards a known goal. It claims that cu-
riosity, applied rationally and resulting in surprise, will realize behavior
recognizable as creative design activity.

16.5.1 Transformational Creativity in Game Design

Consider the model creative game designer over time (imagined visually
in Figure 16.2), producing increasingly complex and refined playable ar-
tifacts that are in line with the complexity of the designer’s currently
operating design theory. That playable artifacts are produced is just an
externally visible byproduct of the more interesting process going on in
the designer’s thoughts: the growth and refinement of design knowledge.

Taking a snapshot at any one time, the designer’s knowledge is fixed.
The present knowledge describes a “conceptual space,” in Boden’s terms,
of game designs and play possibilities. Combinational creativity within
this space would entail the generation of artifacts from known structures
and construction constraints or, perhaps, the enumeration of explanations
of a player’s behavior with respect to known patterns. Taking a series of
steps in terms of the current design theory, producing a new game using a
design pattern of interest, producing a prediction of player behavior, and
then performing a playtest and comparing the results with the prediction
is an example of exploratory creativity in this space. These activities
are weakly creative in the rational curiosity view because, though they
might indeed be motivated by potential knowledge gain, neither realizes
an actual change to the designer’s personal theory.

Transformational creativity in game design, then, is design activity
that results in a redefinition of design theories. Iterative game design, in
which many prototypes are produced in succession in response to feed-
back from playtesting, has the potential to be an intensely transformative
process. Such transformations could include the definition of a new de-
sign pattern which simplifies the explanation of how another designer’s
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Figure 16.2: Rendition of transformationally creative game design, build-
ing to learn to build to learn.
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game was constructed,1 a constraint which limits the use of two patterns
together, or a rule which predicts a certain kind of player’s behavior when
a certain combination of patterns are present.

Not all knowledge possessed and used by a game designer is focused on
directly constructive activities. Partitioning a game designer’s knowledge
into three broad categories, I can distinguish which kind of knowledge
is being transformed by different kinds of discovery processes. Game
level knowledge deals with the structure of concrete games and how those
structures shape the objective (mathematically definable) space of play
possible in that game. Play level knowledge speaks to the linkage between
games and particular individual players or classes of players—it captures
the gap between the smaller spaces of play that are actually expected to
be observed and the larger space of all structurally feasible play. Finally,
design level knowledge captures the linkage between incremental design
moves (adding and removing game elements or assumptions about target
audiences) and the effects on observed play. Design level knowledge is
what enables intentioned design activity, but it is founded on play level
understandings that are in turn based on game level knowledge. These
three categories are visualized in Figure 16.3. An interesting implication
of this layering is that the capacity for a game design assistance tool to
speak of play-level concerns will be gated by that tool’s capacity to talk
about interesting classes of players (i.e. it must support some form of
player modeling).

Examining specific games (via direct inspection of rules and content
or through basic machine playtesting) and self-testing one’s own games
are actions that a designer might carry out with the goal of refining game
level knowledge. But examination and testing, on their own, do not im-
mediately yield transformation. A designer must integrate the results of
their actions in a way that changes how they design to be considered
transformational, and this, in turn, requires that the results that inspire
the knowledge-update to be surprising, to some degree. Likewise, ma-
chine playtesting with hypothetical player models or with other human
players has the potential to result in refinements of play level knowledge.
Finally, the steps taken across a series of prototypes and playtests are
what contribute to transformations in design level knowledge.

1A tool that implemented the automated explanation of how a game was con-
structed given a library of design patterns would realize the idea of design-pattern-
aware decompilers hinted at in Chapter 1.
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Figure 16.3: Three categories of knowledge a game designer may possess.
Rational curiosity will drive a designer to carry out experiments that refine
understanding at each level, broadening the space of games the designer
can create with informed intention.

16.6 Discussion

Having proposed a theoretical explanation of creativity in game design, I
now look at what it entails.

16.6.1 Computational Creativity in Game Design

The theory of rational curiosity in game design can be realized computa-
tionally along two major paths: the development of a game design discov-
ery system, and new, knowledge-oriented creativity support tools. More
generally, however, it suggests new elements that need to be modeled
computationally in support of either path.

Game Design Discovery Systems

Recalling the analogy with scientific and mathematical discovery systems,
I can imagine the design of a new kind of discovery system that would
work in the domain of game design knowledge. This discovery system
would produce games as part of its experiments in exploring play, but
it would also allocate significant attention to decomposing games made
by other designers and producing explanations of observed human player
actions.
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The notion of interestingness in this discovery system would corre-
spond to a symbol-level realization of the agent’s knowledge-level goal:
the satisfaction of curiosity about design knowledge. By selecting actions
(such as the construction of a prototype, the simulation of a playtest us-
ing a known player model, or the analysis of a previously produced game
in light of a refined theory) according to their calculated prospects for
improvement of the working design theory (a library of design patterns,
predictive rules for player behavior, and constraints on play-model con-
struction), the system’s behavior would implement a rational pursuit of
curiosity: creativity in game design.

Constructing such a system would require new research into adapting
symbol-level representations of design knowledge for use in game design,
the development of a task decomposition of creative game design into sub-
goals and actions (such a concrete design methodology which would be
of interest to human designers as well, as an instance of computational
caricature), and the identification of the relevant external tools of game
design (certainly paper prototyping materials and programming environ-
ments are some of these tools, but there is ample room for more).

These avenues of research, thus far largely unexplored, are now much
more feasible given the results presented in this dissertation. With exam-
ples of how to carry out machine playtesting (with and without specific
player models), how to construct code-like content automatically, and how
to mechanize other instances of appositional reasoning that might arise,
the effort to build a game design discovery system much more clearly fo-
cuses precisely on creativity-relevant aspects: implementing a top-level
rational pursuit of curiosity.

Knowledge-oriented Creativity Support Tools

With recognition that design knowledge gain is the designer’s goal, cre-
ativity support tools in game design should focus on easing this process.
In terms of Yeap’s desiderata for creativity support tools, these tools
should focus on ideation and empowerment [230]. In game design, these
translate to the generation of candidate design knowledge for the designer
to consider and then leaving the adoption of the new knowledge up to the
designer (without undue interference). Knowledge-oriented creativ-
ity support tools should attempt to remove bottlenecks in the
discovery process.

The gameplay pattern language and corresponding search tool de-
scribed in “Towards Knowledge-Oriented Creativity Support in Game
Design” [197], which is intended to accelerate the extraction of feedback
about game designs from pre-recorded traces of play, is an example of
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this philosophy in action.2 Neither the system implementing the pat-
tern language nor the Biped system (from Chapter 13 that it integrates
with are themselves creative (in the sense of rational curiosity), but they
are designed to provide new actions to the creative designer for rational
selection in the service of knowledge gain.

Through the process of representing design spaces (in ASP or oth-
erwise), I aim to encourage designer-programmers to produce their own
support tools. Creativity support tools need not come only from the small
population of researchers that are familiar with computational creativity.
The development of project-specific tools can be a part of a designer’s ev-
eryday reflective practice. The Refraction tools (from Chapter 15) are an
example of the co-development of a complex game and design automation
tools for that game.

16.6.2 New Perspective for Computational Creativ-
ity

I have mostly focused on game design, but rational curiosity is inten-
tionally defined so as to apply to other CC domains. In fact, it should
apply even to domains with apparently non-interactive artifacts. Where,
in game design, we were concerned with the implications of game rule
systems on player actions and reactions, in the domain of music we could
explore the implications for sound patterns on audience anticipation and
mood, in visual art the implications for perceptual details on where the
viewer’s eye lingers or flees, and in sculpture the implications of geomet-
ric arrangements on audience interest from particular viewpoints. Such
domains are not as obviously interactive as game design, but they could
be equally deep in the subtlety of how an audience reacts to an artifact—
depth enough to keep the rationally curious artist busy producing exper-
iments for quite some time.

The knowledge-level analysis of creativity suggests new questions to
ask of CC systems: What does this system want to learn? How is knowl-

2This system was originally created as an in-house tool to address one of the bot-
tlenecks that rose in my own discovery process when working with Biped (digging
through archived play traces for additional instances of an interesting pattern that
had just re-emerged in a recent playtest). After the fact, it became clear that the sys-
tem was also a reasonably self-contained example of how to build creativity-support
tools that are centered around accelerating knowledge gain. The details of this system
are not reviewed in this dissertation because the primary technical challenges that the
project involved (developing a miniature Datalog implementation with a focus on in-
teractive queries from a command-line shell) would distract from my primary emphasis
on modeling design spaces. For more information on the late 20th century art form
of Prolog-based meta-interpreters for domain-specific programming languages, see The
Art of Prolog [210, chap. 17] and The Craft of Prolog [159, chap. 7] (preferably in that
order).
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edge represented in this domain? Is the system experimenting with the
affordances of the raw medium or focusing on nuances of audience re-
actions achievable through it? (Both are equally creative assuming the
desired kind of knowledge is gained.)

Consider NEvAr [132], a creative system in the domain of visual art.
Unlike the straightforward interactive genetic algorithm in PicBreeder
[185], NEvAr does not ask its audience for feedback on every artifact it
internally considers. The system summarizes sparse feedback from its
human audience in the form of a neural network that becomes a proxy for
their ratings in an internal evolutionary process. Rational curiosity would
describe NEvAr as a creative system, not because it produces novel and
valuable images, but because, at the knowledge level, the system appears
to be rationally soliciting reactions on believed high-valued images and
incorporating the responses in a way that transforms the space of images
that the system will next produce. That is, it behaves consistently with
the explanation that it is rationally pursuing its curiosity (albeit with
limited design knowledge storage capabilities). If redesigned from scratch
with rational curiosity in mind, the system might incorporate a more
interpretable representation of learned knowledge that is easier to read
as a design theory that improves over time. Alternatively, it might put
more computation into experimental design, reasoning over the expected
knowledge gain from enticing the human audience to provide feedback on
a particular work rather than always trying to display the estimated-best
available artifacts. Orienting the system around active learning, I predict,
would improve the system’s apparent creativity.

From my perspective, it is natural to ask what a system learns as it
runs. Though established techniques in computational visual art such
as design grammars and iterated function systems can, in some cases,
produce very interesting images, the static nature of these techniques
in isolation implies that, over time, our sense of novelty of the kinds
of artifacts these techniques produce will necessarily wane because these
techniques do not learn. While rational curiosity would deem a technique
that merely samples a fixed generative space uncreative, these techniques
are still valuable to us.3 They encode very rich generative spaces that,
upon gaining experience through experimentation, a creative agent can
redefine as part of large-scale experiments.

3Coming out of my own artistic practice (and, to a large degree, procrastination in
grad school), several members of my family have received artifacts derived from design
grammars and iterated function systems as holiday gifts. So, clearly, these techniques
can yield novelty and value.
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16.7 Conclusion

I have followed the clues embedded in the practices of human game de-
signers to a set of building blocks for a theory of creative game design.
To recap:

1. Game designers are really designers of play.

2. Creative game design is about seeking knowledge.

3. Designers act as explorers in a science of play.

4. Automated discovery systems inspire a computational model of cre-
ative design.

5. Game design activity can be explained as the rational pursuit of
design knowledge gain.

This has led me to a new statement about creativity that can apply
to human or machine design agents in any artifact generation domain:
creativity is the rational pursuit of curiosity, a knowledge-level
phenomenon.

I hope this model of creativity will inspire the exploration of discovery
system architectures for artifact generation systems and the development
of a new space of knowledge-oriented creativity support tools.
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Chapter 17

Evaluation

Following a design-of-design approach, the primary contribution of this
dissertation is a designed artifact: a particular practice for mechanizing
game design. Specifically, my contribution is the use of answer set pro-
gramming and related symbolic AI techniques to represent design spaces
of game rules and content, empowering the designer-programmer to de-
velop their own powerfully automated synthesis and analysis tools for
exploratory game design.

As a designed artifact, it is natural to ask just how appropriate the
artifact is to its environment. My particular approach to mechanizing
game design may fail by not being usable on realistic problems, not being
usable by realistic teams, or not yielding any results that could not be
directly had by some easier approach. Unpacking each of these potential
failure modes in turn, I develop specific questions for evaluation. Answers
to these questions come from the interactions between my practices and
the realistic design problems to which they have been applied.

• Does ASP, as realized today and running on todays computing re-
sources, cover realistic design automation problems of interest?

– While ASP provides many representational benefits over lower-
level representations (e.g. SAT), this alone does not imply that
the critical facets of appropriateness in realistic exploratory
game design problems will be natural to express in realistically
authored design space models with ASP.

∗ Can ASP naturally express realistic conditions of
appropriateness for design spaces?

– Nearly all of the computational problems that arise in the kind
of design automation I address are immensely complex (at least

261



NP-hard). Assuming P 6= NP , there will never be algorithms
with attractive (i.e. polynomial) scaling for even the simplest
of these problems. This state of affairs does not immediately
mean that automated synthesis and analysis in game design
are practically intractable; what matters is whether the cost
associated with waiting to get a response for the constant-sized
problems that occur in practice is acceptable in exchange for
the insight gained.

∗ Can informative tools derived from my practice be
made to perform acceptably on realistic problems?

• Can this practice be followed by the designer-programmers it tar-
gets?

– Even if I can successfully use this practice, it does not immedi-
ately follow that others (particularly those designer-programmers
with little to no previous symbolic AI experience) will meet
with success. The amount of symbolic AI expertise may sim-
ply be unreasonable to require.

∗ Does unfamiliarity with symbolic AI traditions block
usage?

– Much of my original research effort has been finding ways to
logically express the concerns of design problems that have
arisen in my own exploratory game design experiences. It
might be the case that my approach is applicable only to
those problems that I have specifically addressed previously
and progress by others is blocked on my own development of
ways of generalizing it.

∗ Are the followers of this practice generally empow-
ered to solve their own project-specific design au-
tomation problems?

• Do my practices unlock exploration of new design territory?

– One reason that my practices might be tractable and usable (in
the senses required above) is that they may be simply a renam-
ing or repackaging of already proven practices in exploratory
game design (PCG, in particular). In order to be able to ex-
plore new territory, my approach must offer something funda-
mentally different than what has come before.

∗ Are there fundamental differences between my pro-
posed practices and those that are already being
used by other designer-programmers?
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– Even if my practices are novel, to gain wider attention, they
need to offer access to new territory. A reduction in required
design effort becomes much more interesting when that reduc-
tion makes entirely new designs feasible.

∗ Are radically new game designs made feasible through
this practice?

17.1 ASP for PCG

The general practice of using ASP as a procedural content generation ap-
proach has grown beyond a pet practice of my own. So far, at least two
graduate level university courses in PCG have adopted ASP-based model-
ing practices into their curriculum (for a single class or lab section each).
Further, ASP now plays a central role in the ongoing design automation
research for students outside of these classes.

In Julian Togelius’ 2011 class on procedural content generation (at
the IT University of Copenhagen), students were introduced to the ideas
covered in my journal article [195] and given access to the example source
code accompanying a blog post1 I wrote for the benefit of this class. While
I do not have access to the breadth of projects that students created for
the mandatory ASP assignment, I do know of one student project that
made it to wider publication.

In “Compositional Procedural Content Generation,” Togelius, along
with Tróndur Justinussen and Anders Hartzen [218] review the idea of
“compositional” generators (where a larger generator is made from co-
operative interaction between smaller generative components). Their ex-
ample system, a dungeon map generator similar to the one given in the
blog post, uses an evolutionary optimization system to tune numerical
parameters exposed by an ASP-encoded design space model. For each
of several artifacts sampled with the problems seventeen numerical pa-
rameters held fixed, they compute the fitness of the artifact by a custom
evaluation function that measures proxies of challenge (a function of solu-
tion length) and skill differentiation (damage taken by informed vs. näıve
simulated players). Although this system largely misses the chance to
use ASP to automate appositional reasoning (to directly synthesize ap-
propriate artifacts), it does provide evidence that students, with minimal
backgrounds in symbolic AI, are able to work with AnsProlog well enough
to create a generator for a new kind of game content.

In Jim Whitehead’s 2012 class on procedural content generation (at
the University of California, Santa Cruz; my home institution), I person-
ally introduced students to ASP using the same materials prepared for

1http://eis-blog.ucsc.edu/2011/10/map-generation-speedrun/
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Togelius’ class along with live demonstrations of iterative program devel-
opment. In this class, students were given more time to complete their
projects, however they would only use ASP if they decided their con-
tent generation project required it. By the end of the class, two students
presented original ASP-based content generation systems. Even though
these projects were developed in the context of a content generation class,
both systems involve modeling design spaces for the purpose of enabling
new gameplay (as opposed to simply generating static artifacts).

John Grey [87] presented a system for role-playing game dialog tree
generation that, quite unexpectedly, embedded dialog trees into a grid-
based map representation. In the resulting spatial-conversational puzzles,
moves on the grid are only allowed if there is a natural flow of conver-
sation between two tiles (a “gossip” tile can be reached from an “ask”
tile while the only tiles reachable from “condemn” are “goodbye” tiles).
In traditional dialog trees, designers may accidentally (or even intention-
ally) encode maze-like puzzles where the player, presented only with a
small number of dialog options, has no intuition for which options to pick
to bring about any particular goal. In Grey’s spatially embedded dia-
log trees, a player can employ their own maze-solving heuristics (such
as trying to move in the general direction of an exit) to help themselves
towards the conversational outcome they desire. Although Grey’s proto-
type is rough, it shows the potential for an entirely new kind of mini-game
design that would be unreasonable to consider if the same kind of spa-
tial embedding logic used in the Refraction tools was not available for
immediate and opportunistic reuse.

Kate Compton presented a prototype for a new game for which one of
the core mechanics was directly enabled by the use of ASP to automate
combinatorial search. Published as “Anza Island: Novel Gameplay Us-
ing ASP” [39], the prototype uses ASP to implement the intelligence of
an adversarial non-player character. Anza, the games antagonist, must
devise ways of altering connectivity between island regions that simulta-
neously thwart the player while also being absolutely consistent with any
constraints the player has constructed by combining game objects in a
mechanic called “logic crafting.” Again, opportunistic reuse of combina-
torial search infrastructure has allowed a student (and commercial game
industry veteran) without previous logic programming experience to re-
alize a game design that, while likely to be realizable via other means,
would not have been conceived in exploratory game design otherwise.

Outside of Whitehead’s class but still at UC Santa Cruz, Ph.D. candi-
date Sherol Chen is pursuing a program of doctoral research in interactive
storytelling that involves reasoning over spaces of variation in the telling
of a story skeleton. In an early prototype produced as part of the re-
search, I assisted Chen in developing a story generator, RoleModel [29],
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that blended the traditionally separated story generation paradigms of
story modeling, character modeling, and author modeling. For a gener-
ated story to be appropriate, it had to satisfy constraints on story struc-
ture (that certain skeletal events always occur), constraints from character
ability and volition (that, for example, dead character’s cannot speak and
non-aggressive characters will never perform actions for which simulated
readers would impute malicious intent) and other author-specified con-
straints (that certain multi-event patterns are required or forbidden or
that certain world-state will always be the result—e.g. someone dies in
every episode).

At the University of Washington, other doctoral students involved in
the Refraction project are continuing to build on the design automation
tools that I developed. For example, Eric Butler has nested the puzzle
generation and puzzle solving tools (described in Chapter 15) in a larger
system that produces levels for which the only solutions are solutions in-
volving the target mathematical concept (posing verified level design au-
tomation as an NPNP problem, within range of disjunctive ASP, instead
of the NP problem used in the original problem formulation). Mean-
while, Erik Andersen is investigating using ASP and related declarative
approaches to combinatorial search to model the level progression design
problem: deciding which requirements to place on a player’s next puzzle
given their performance on previous puzzles.

Finally, at the Georgia Institute of Technology, doctoral student Alex
Zook has reported to have used my research as a starting point to replace
a project-specific genetic algorithm in the player-adaptation component
of in his training game scenario generator [233] with a more concise and
controllable answer set program.

17.2 Applied Systems

In the following subsections, walk through each of my applied systems in
turn, gathering evidence for their impact on the questions above.

17.2.1 Ludocore

The Ludocore system was originally created as a follow-up to Mark
Nelson’s program of modeling game mechanics with the event calculus.
Nelson’s early systems were based on decreasoner,2 a dedicated event cal-
culus planning system. Seeking a programming syntax closer to the stan-
dard Prolog syntax, I discovered that Mueller (proponent of the event
calculus and developer of decreasoner) had also developed an AnsProlog

2http://decreasoner.sourceforge.net/
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encoding of the essential axioms of the event calculus. When I later dis-
covered that many uses of Ludocore’s “structural queries” to generate
game content did not depend on the event calculus axioms, it was natural
to simply delete these axioms and use the raw affordances of ASP (as
offered by the now-obsolete Lparse/Smodels3 answer set solving tools)
in my early, unpublished experiments in generating dungeon maps with
an unstructured graph representation.

In many cases, the appropriateness of an artifact in a design space is
deducible directly from its static form, and no framework for temporal
causality is required to express appropriateness in AnsProlog. However,
when the appropriateness of an artifact hinges on dynamic interaction, the
range of this interaction needs to be expressed in logical rules. Because
building logical encodings of the state of a system over time can be a
difficult and subtle problem (this is exactly the problem the event calculus
was invented to solve!), it is rather convenient that six4 AnsProlog rules
suffice to upgrade a working design space model with a rich model of state
and events over time.

The general design of Ludocore and its extensions to the event cal-
culus (including possible and conflicts conditions expressed independently
of initiates and terminates rules) paved the way for the RoleModel system
in which stories were represented, in effect, by particular gameplay traces.
Ludocore’s flexible use as a gameplay trace inference system trans-
formed into RoleModel’s multiple uses in story generation: “(1) a tab-
ula rasa generator, which takes few or no constraints and autonomously
generates varied narratives from the background theory, (2) a partially
constrained generator, with which the author can specify additional story
constraints on top of the background theory, such as constraints on role
fillers, character traits, and even the appearance of specific events within
the story, without locking down a specific linear sequence of events, and
(3) a highly constrained generator, with which an author can specify a
linear story that the system generates variations and explanations on”
[29].

17.2.2 Biped

Recall that in the Biped system, a single logic program drives both offline
machine playtesting (in Ludocore) and online human playtesting (in
Biped’s player-facing interactive interface). To understand whether au-
thoring game sketches as logic programs was feasible for AI-inexperienced

3http://www.tcs.hut.fi/Software/smodels/
4I have collected the most commonly used axioms from Mueller’s more com-

plex encoding of the event calculus in this small simple AnsProlog library: http:

//adamsmith.as/typ0/ec.ans
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designer-programmers and whether Biped’s language could express game
designs of interest, I engaged two undergraduate students in a quarter of
independent study in 2010.

Vivian Wong (then sophomore) and Erica Woolley (then junior) were
students in the Bachelor of Science game design degree program at UC
Santa Cruz. They were competent programmers with videogame develop-
ment (e.g. implementing collision detection) and videogame design (e.g.
paper and computational prototyping and playtesting) experience. Their
challenge was focused on the human side of Biped, brainstorming new
language features and idioms that might be useful, implementing them,
and performing exploratory game design with them. Together, they iden-
tified and added a number of new language features as well as developed
a number of game sketching idioms that made playtesting prototypes in
Biped more natural.

New Language Features

The original version of Biped labeled visual tokens and spaces in a way
that made their coherence with the abstract mechanics as explicit as pos-
sible. In the example game DrillBot 6000, the abstract location e and the
abstract rock dino_bones were represented with a space labeled “e” and a
token labeled “dino_bones” (the appearance of all spaces and tokens, mod-
ulo label text, was uniform). For Biped to gather feedback from human
play of richer game designs (for comparison against results from offline
testing with Ludocore), Biped’s graphical interface needed to be able
to express richer visualizations of the abstract game state.

Staying within the paper-inspired tokens, spaces, and lines paradigm
on which I founded Biped, Wong and Woolley greatly expanded the ex-
pressiveness of those tokens and spaces. By the final version, they had
added support for a number of new representational rules that they them-
selves could optionally exploit to customize the appearance and function-
ality of their game sketch.

The new ui_token_label(Token,Label) (or ui_space_label(Space,Label)) pred-
icate could be used to hide the underlying symbolic name of a token (or
space) and replace it with a computed name at each logical timepoint. For
example, the token identifier monster(5) (which exposes irrelevant informa-
tion: the monster’s serial number) could be replaced with the computed
label m(hp=2) (which embeds otherwise hidden game state, the monster’s
health, in its displayed label). The most common use of this modeling
primitive was simply to hide the distracting name of tokens and spaces
that could already be understood by their spatial relationship to other
tokens and spaces. For example, hiding the names of every location space
in DrillBot 6000 except for the base space was an obvious improvement
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that reduced visual clutter.

To make certain kinds of tokens (or spaces) more recognizable (e.g.
distinguishing the special token for the mining robot in DrillBot 6000
from the plentiful rock tokens) the new ui_token_color(Token,Color) predi-
cate specifies a non-default background color (an arbitrary RGBA value)
that can vary at each logical timepoint in the game. Now, color conven-
tions could be invented and followed to distinguish clickable spaces used to
represent abstract buttons from those spaces intended to represent physi-
cal locations in the game world. Colors were often used to distinguish the
type of a token in sufficient detail that its symbolic label could be hidden
(e.g. any yellow token is collectable treasure; any red token is a monster
to fight).

Finally, the ui_token_image(Token,ImgUrl) predicate specified an optional,
time-varying mapping from a token (or space) to an arbitrary image on
the web or the local file system. When testing with players who did not
have patience for decoding an abstract depiction of the game world, this
predicate allowed the inclusion of custom art assets.

In GridSlasher, a grid-based puzzle game sketch with simplified rogue-
like mechanics, the undergrads added a mechanic the required that certain
monsters could only be attacked from the side, not head-on. Unsatisfied
with trying to represent the current facing-direction of a monster and the
player character with custom text labels, custom images allowed the re-
cycling of a sprite sheet from another game that used a different sprite
for each direction. The resulting visualization was direct and required
no conscious decoding to interpret. Another use of custom images, pi-
oneered in GridSlasher, was the declarative creation of a linked grid of
spaces, all depicted with repeating tile art. Abstractly, navigation on a
regular grid is no different than navigating on an arbitrary graph, but
presenting the grid as a uniform field of tiled background art conveys the
intended concept to the human player much more succinctly.

In one language feature reaching out of the tokens/spaces/lines paradigm,
Wong and Woolley improved the detail text generation system. Previ-
ously, I had exposed a way for designers to express a list of logical symbols
that should be dumped into a movable text box on screen (hard-coding a
blob of text, for example, could be used to display on-screen instructions).
As the demand to express richer game state grew, the undergrads found
it necessary to add logic that could automatically flatten nested lists of
game state text into a single paragraph. This same logic could have been
expressed in the definition of the original ui_details(Symbols) predicate,
but adding pretty-printing to this feature by default greatly reduced the
tedium associated with displaying debugging data in the text panel.

Finally, in a refinement to the event triggering logic, the undergrads
added support for rules like ui_triggers(ui_keypress(Key),PlayerEvent) for
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intercepting physical key press events. For games like GridSlasher, key-
board input provided a natural means for navigating the rectilinear mesh
of linked spaces.

New Sketching Idioms

Along with adding new features to the game sketching language, the un-
dergrads also developed a number of interesting new patterns for using
Biped’s representational primitives.

In the DrillBot 6000 example, clicks on the base space were interpreted
in two ways: if the mining robot was in a nearby space, the click was
interpreted as a trigger for the event of moving into the base; if the mining
robot was already in the base, the click was interpreted as a trigger for
the trade and refuel events. This use (or abuse) of a single space as
both a depiction of a physical location and an abstract button for players
to press was untangled and clarified in the idiom of adding on-screen
controls. In this idiom, an arrangement of extra spaces was coded into
a game sketch with the explicit intent for use as clickable buttons. In
variants of GridSlasher, on-screen controls (for triggering north, south,
east, and west movement events and attacking events) were first placed
on one side of the game board (in an arrangement similar to a D-pad),
later recolored to be distinguished as buttons, and then re-labeled to
signify which keyboard keys could be used to trigger the same events.

A variant on the on-screen controls idiom was the meta-controls idiom
where additional abstract mechanics and visual representations are added
to the game sketch to facilitate exploratory testing. These extra actions,
such as toggling “god mode,” resetting monster positions, or resurrecting
slain monsters, were not intended to be used by players. Instead, these
actions were intended for use by the designer acting as a game master,
steering the trajectory of a playtest in directions that, while inconsistent
with the formal mechanics of the game, were more informative to the de-
signer or made better use of the playtester. If events associated with these
actions are never tagged as player or natural events in the game defini-
tion, the machine playtesting side of Biped would know not to attempt
to use these cheats when inventing gameplay traces that satisfy specified
constraints.

Finally, even though no answer set programming is involved in the
human playtesting side of Biped, the presence of a general purpose Pro-
log interpreter enabled a basic form of procedural content generation. In
DrillBot 6000, a significant fraction of code defining the game sketch is
dedicated to declaring the abstract properties of the game’s map (explic-
itly describing the abstract properties for each underground cavern, the
properties of the rocks initially in it, and where, with floating point num-
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overworld

castle

dungeon

Figure 17.1: Map for a game sketch involving several interacting grid
maps linked by directional portals. This is an example of simple content
generation using deductive rules understandable by both Biped’s machine
and human playtesting sides.

bers, to place the space that represents that cavern). In GridSlasher, the
abstract and visual properties of the large grid map (an n-by-m network)
could be derived from a single assertion, grid_map(N,M), by adding brief
rules that deduced ui_space(Space) and ui_layout(Space,FloatX,FloatY) from
it. Because the map generation idiom existed in the code of a game sketch
and not as a fixed feature of the Biped system, it was a small change to
support multiple grid spaces linked by portals using assertions like the
following (which describes a multi-grid map analogous to the one shown
in Figure 17.1):

grid_map(overworld,8,8).
grid_map(castle,3,3).
grid_map(dungeon,5,2).
portal(cell(overworld,3,3),cell(castle,1,2)).
portal(cell(overworld,7,5),cell(dungeon,1,1)).

Because this map is declaratively expressed by deductive rules under-
standable by both sides of Biped, it is suitable for use in both human and
machine playtesting. As Biped’s language does not allow choice rules (re-
call that it is really just Prolog), this mode of content generation is limited
to simple, deterministic computation (where a single, regularly-structured
artifact is expanded from a compressed and, ideally, more natural to au-
thor representation).
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Summary

Wong and Woolley’s experience carrying out exploratory game design did
not uncover game designs that would not be reachable otherwise—all vari-
ations of GridSlasher could have been realized with other videogame de-
velopment tools. However, it did demonstrate that authoring logical rules
was not unrealistic for these designer-programmers. Between proposing
and implementing new language features and inventing new idioms, they
were empowered to build their own support for the kind of games they
wanted to make.

In their exploration, the undergrads did not encounter the need to
break out of the event calculus (initiates and terminates) formalism for
representing game mechanics. Even though some of their game variants
became, in effect, real-time simulations (using a ui_ticker that fired several
times per second instead of the once-per-musical-beat ticker in DrillBot
6000 ) capable of testing human twitch reactions to wandering monsters
(using keyboard controls, in particular), the core mechanics of the game
retained a representation that was fully amenable to formal analysis in
Ludocore. Whereas real-time games with human hesitation and reac-
tion delays lead to empirical gameplay traces spanning thousands of time-
points, Ludocore’s analytic gameplay traces could usually demonstrate
similar behavior in a much smaller number of logical timepoints.

17.2.3 Variations Forever

As Variations Forever, the game project and the research project, was
primarily developed and tested by myself, I report on its function as a
computational caricature of AI in the game design process (as opposed to,
say, a deployed game). Towards my evaluation questions, I review VF’s
encounters with the conditions of appropriateness, performance concerns,
and its ability to uncover new territory in game design and design au-
tomation.

Appropriateness

At the ruleset level of detail, the VF prototype was able to capture all
of the requirements of interest that arose in exploratory sampling. What
VF most importantly highlighted, however, is that many of the flaws in
the generated mini-games were actually flaws in the fixed game engine—
something out of reach from the ruleset generator. A common example
of this is the situation where the engine decides to spawn key characters
(such as the player character) inside of walls, making instantiations of
otherwise reasonable rulesets impossible to play.
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The ongoing Game-o-Matic project [222] uses a similar level of ab-
straction to represent the rules of the games that it generates to the one
used in VF. That is, the game generator can ensure certain mechanics are
in play in a game, but it cannot (as of the time of this writing) express
the requirements of sane initial conditions for spatial arrangement or rea-
son about how the game unfolds over time. Thus, at the time of writing,
Game-o-Matic suffers from some of the same play-breaking bugs that VF
does.

Because the location walls in VF was only dictated by the rules at
the level of using or not using the “random obstacles” mechanic, the
information necessary to place characters outside of these walls was not
available to use in constraints. A relatively small engineering change
(allowing the ruleset generator to also place walls and character starting
locations) could resolve this situation in isolation, but negotiating the
precise level of abstraction in use between generator and engine is not
an easy problem, nor is it one that is particularly stable with respect
to shifting requirements on how generated games should play. Without
having solved automatic programming (in the sense of generally replacing
human programming effort with machines), there will always be some level
below which the generator cannot be responsible for design choices.

ASP seems ready to generate a much wider array of game-describing
content (Ludocore shows it can be used to reason about game dynamics
under the influence of player models), but new game engines that allow
much more of a game’s mechanics to be specified at runtime are needed
first. In traditional game development cycles, the core mechanics of a
game are worked out well in advance of selecting a game engine. In
expressive game generation, the fact that the core mechanics may vary at
play-time, in response to player input, turns this process on its head. As
of the moment, game ruleset generation is not currently blocked by raw
generation infrastructure, but it is ensnared by integration concerns that
may, in time, place new requirements on generators.

Performance

As formalized, the ruleset generation problem was quite easy for the an-
swer set solver to handle. VF’s ruleset generator could easily generate
artifacts faster than they could be delivered to players over the network.
This should not be surprising, as rulesets are relatively small and sim-
ple artifacts (when compared with Ludocore’s play traces or Refraction’s
puzzle specifications). It seems likely that many of the problems that
will arise in future play-time design automation problems will follow this
pattern: they are nearly trivial to solve, but would be completely unrea-
sonable to consider involving a human game master to support otherwise.
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The performance of VF’s generator says something about the design
space model used: its conditions for appropriateness were too shallow (a
limit imposed by game engine technology, as described above). Ruleset
generation is far from an inherently easy problem (if anything, generat-
ing interactive artifacts should be harder than generating non-interactive
artifacts), and future formalizations of the ruleset generation problem
may tax and even exceed the reasonable limits for acceptable use of ASP.
Currently, it is unreasonable to consider using ASP to model rulesets at
a per-pixel-per-frame level of detail. If the number of interesting time-
points and pixel boundaries can be bounded by small constants, future
developments in ASP (such as Clingcon’s experimental use of a numerical
constraint solver) may allow this.

New Territory

Compared with the game generation system [219] to which VF was de-
signed in response, VF was primarily about defining a space of appropriate
mini-games, not about choosing the best mini-game according to a well-
defined metric. Recognizing the nature of design problems (in particular,
the wickedness of general game design), and knowing that a trusted metric
simply cannot be had, it seems that the use of ASP (particularly in iter-
ative development) was distinctly more appropriate than past game and
puzzle generation system (e.g. Browne’s Ludi [22] or Oranchak’s Shinro
puzzle generator [160]). The ability to invent and inject speculative as-
sumptions and constraints into a generator without designing custom al-
gorithms is the key to flexibly exploring a large and expressive space of
game rulesets.

Follow-ups to VF beyond the reported prototype have not been pur-
sued. Although VF was headed in the direction of new kinds of gameplay
experiences, progress was halted by lack of suitable game development
infrastructure. Nonetheless, interesting and important results changing
this situation may yet emerge from the Game-o-Matic project.

Examining VF as an instance of general, online PCG, it is easy to
see how the ideas first developed in VF paved the way for Compton’s
Anza Island and the future versions of Refraction that will be adapted to
individual players. VF was the first system to deploy ASP-based content
generation in a live, interactive, play experience.

17.2.4 Refraction Tools

Although the development of design automation tools for Refraction is
still an ongoing project, I can report on the preliminary interactions be-
tween my practice of modeling design spaces in ASP and the challenges
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of a complex, pre-existing game design project that could not be altered
to suit the capabilities of ASP.

Appropriateness

The first interaction between Refraction and ASP was in developing a
preliminary spatial embedding solver. Although I was able to quickly
(in one day) produce a functioning embedder, reflective practice with
this first problem eventually pointed me at a better understanding of
the sensitivity of grounding and solving times to problem encoding. I
produced a series of alternate encodings of the embedding problem that
were increasingly less sensitive to the resolution of the game’s grid. One
encoding, which focused exclusively on building consistent patterns of
relative piece positions, was, in fact, independent of grid resolution and
would have been suitable for use on a continuous play space. The best (i.e.
fastest for grounding and solving) encoding for the game’s fixed 10-by-10
grid was one that mixed relative and absolute positioning concerns. This
encoding, later, was particularly convenient for reuse in the puzzle-solving
problem were both absolute and relative position details are required to
express many properties of interest on solution style (e.g. crossing and
abutting).

In interaction with Refraction’s mission generation problem, my ASP-
based practice encountered challenges associated with modeling arith-
metic (including the logic of fraction simplification). After inventing new
idioms for Lua-based metaprogramming and bulk table generation, this
challenge was eventually overcome in a way that yielded new insight into
the game’s design: for a given set of pieces, only a relatively small space
of fractions can be constructed.

Combining the mission generator and spatial embedder into a mono-
lithic puzzle generator highlighted a problem with the initial overall prob-
lem formulation that underlay the project’s original hand-rolled search
tools: the existing tools were focused on generating puzzles that permit-
ted an educationally appropriate solution to a puzzle without requiring
that property of all of the puzzles solutions. Designing interactive arti-
facts (such as a puzzle with many solutions) is naturally a problem with a
higher complexity. Although any NPNP problem is theoretically express-
ible in ASP, so far, only those problems in NP seem natural to encode
in AnsProlog. New language features need to be added to AnsProlog to
assist in naturally expressing these elevated complexity problems that the
underlying solvers can already handle.

So far, we have not attempted a direct encoding in disjunctive ASP
via the mind-boggling “saturation” idiom. The ongoing effort to gen-
erate puzzles with verified properties of all solutions, currently lead by
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Eric Butler while I complete this dissertation, is based on a guess-and-
check (i.e. generate-and-test) architecture that misses opportunities for
the “guesser” solver to learn from failures repeatedly highlighted by the
“checker” solver. As described in § 18.5.1, a key piece of my planned
future work is to address natural encodings of this kind of problem.

Performance

The new, ASP-based tools are distinctly faster than the original hand-
rolled search tools, producing solutions in seconds even for problems on
the difficult end of realistic for expected Refraction puzzles (e.g. those
with enough active pieces and blockers so that the beams flowing between
pieces cover almost all available spaces on the 10-by-10 grid). However,
when the puzzle solver is used in the inner loop of the prototype guess-
and-check system, even one second of computation per solution is an
unacceptable delay for use in a future game system that invents a new
level for a player not long after they have completed the previous one.
Although figuring out how to harness disjunctive ASP will undoubtedly
outperform the current verified generation prototype, it remains to be
seen whether this result performs acceptably well to be used online. If it
is revealed that even disjunctive ASP does not provide acceptable perfor-
mance, either the game’s grid resolution must be reduced, the variety of
potential pieces must be narrowed, or online puzzle selection must be im-
plemented by selection from a smaller pool of pre-verified puzzles (missing
many opportunities for player adaptation).

Accessibility by Designer-Programmers

I did most of the original ASP modeling work for the Refraction tools,
developing a number of new and advanced ASP techniques, but others
are continuing the work I started. In particular, Eric Butler was able to
quickly add constraints on blocker symmetry when he found the style of
unconstrained puzzles unacceptable. He has also gained sufficient fluency
with AnsProlog to orchestrate the current guess-and-check prototype of
the verified puzzle generator (that permits no shortcut solutions for puz-
zles it emits).

New Territory

The new (ASP-based) tools do not commit to the design of a particular
algorithm and are both future-proof and able to exploit a number of ad-
vanced techniques that we did not have the resources to back port into
the previous tools (aside from the geometric restart policy). With current
and future answer set solving systems supporting a variety of parallel and
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distributed computation configurations, this implies the potential for new
ground to be broken in the development of refined design automation tools
for Refraction. Despite the availability of the current design automation
tools within the Refraction development team, the deployed version of
the game still uses hand-authored content because this static content in a
static progression can be trusted. If the current design automation proto-
types prove effective, they will play a central role in a subsequent game,
internally called Infinite Refraction, in which both level progressions and
the specific levels are generated, with generated levels having their edu-
cational constraints automatically verified (a first for procedural content
generation, let alone educational games).

17.3 Recap

I now review my evaluation questions as a whole, looking across appli-
cations. Does ASP, as realized today and running on today’s computing
resources, cover realistic design automation problems of interest? Can
ASP naturally express realistic conditions of appropriateness? Can infor-
mative tools derived from my practice be made to perform acceptably on
realistic problems?

These two questions are best answered by my experience with the
Refraction tools. For a complex and pre-existing game, the entire game,
without approximation or simplification, could be modeled in AnsProlog
and constraints even beyond those we thought needed to be expressed
could be expressed. The solution times were acceptable for the purposes of
the original tools. Where Refraction does point out a weakness of ASP is
in elegantly encoding NPNP problems. The “saturation” idiom required
in this situation was simply too awkward to be immediately applied when
the need for it arose. Future work remains to be done to examine alternate
encodings of this problem that, at least from a theoretical perspective,
should not be unreasonable to tackle.

Can this practice be followed by the designer-programmers it targets?
Does unfamiliarity with symbolic AI traditions block usage? Are the fol-
lowers of this practice generally empowered to solve their own project-
specific design automation problems?

Undergraduate experience with Biped, and, to some extent, my grad-
uate student colleagues experiences with the Refraction tools provide a
response. No, the requisite symbolic AI experience is not unreasonable to
learn, and, yes, people other than myself are empowered to solve their own
problems. To the degree that the Refraction tools are one of the larger
applications of ASP of which I am aware, it is not surprising that a large
body of new techniques had to be devised to make these tools possible.
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Once cataloged as reference material, such leaps will not be required in
the future.

Do my practices unlock exploration of new design territory? Are there
fundamental differences between my proposed practices and those already
being used by other designer-programmers? Are radically new game de-
signs made feasible through this practice?

VF and the future Infinite Refraction provide answers to these ques-
tions. Algorithms coming from search experts will generally trump best-
effort hand-rolled combinatorial search by videogame developers who are
not experts in combinatorial search (with the gap rapidly widening as
problem complexity increases). Exploiting the latest results in search
technology while being insulated from future advancements offers designer-
programmers something qualitatively different than the often custom-
designed algorithms common in procedural content generation. The focus
on a space of appropriate artifacts over the more common approximate
optimization afforded by metaheuristic search solutions makes ASP-based
generators (or, more generally, declarative, solver-based generators) capa-
ble of unlocking entirely new applications that require performant and
trustable play-time design automation.

The practice of modeling design spaces with ASP, it seems, is quite
appropriate to the problems that arise when designer-programmers look
to mechanize their own exploratory game design process. Where ASP is
found lacking, particularly in being able to directly model problems with
complexity beyond NP, is a well-known problem that others working in
symbolic AI are interested in solving for their own purposes outside of
game design.
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Chapter 18

Conclusion

The overarching challenge taken on in this dissertation has been that
of accelerating exploratory design practices with the machine-supported
reasoning of artificial intelligence. Motivated by a desire to expand hu-
man culture-creating ability and an observation that exploration is driven
by curiosity, this dissertation has described a practice that designer-
programmers can follow to build tools that give them powerful new op-
portunities to pursue that curiosity.

Acknowledging that game design has an inherent indirectness (a de-
signer crafts games, but really wishes to shape the experiences of play),
I have shown how to produce mechanized design space models at two
different levels. Design spaces for game rules and game content speak
directly to the artifacts that a game designer manipulates. Meanwhile,
design spaces of play (encoded as sequences of actions) permit exploration
of the interactive possibilities of a given game design and provide an ob-
jective reference against which to compare the empirical observation of
playtesting with human players.

One of the key observations made and exploited in the foregoing chap-
ters is that symbolic AI offers infrastructure for mechanizing logical ab-
duction that can be repurposed for mechanizing appositional reasoning, a
key facet of design thinking. Answer set programming, in particular, of-
fers many desirable properties (e.g. guaranteed termination and the use of
advanced combinatorial search and optimization techniques) as a possible
knowledge representation substrate for modeling design spaces.

In the remainder of this chapter, I review my impact on the three spe-
cific goals of this dissertation and new insights for the fields in my inter-
disciplinary research context. I then reiterate my primary and secondary
contributions, both of which focus on the development of ASP-encoded
design space models. Next, I highlight the impact of the five crosscutting
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strategies that I introduced in § 1.4. Finally, I briefly describe a program
of future work and conclude with my hopes for the broader impact of this
dissertation.

18.1 Goals

Recall, from the first chapter, that I have had three specific goals: ampli-
fying game designer creativity, the development of support for new kinds
of games employing play-time design automation, and the demonstration
of tools that respect the nature of design problems.

18.1.1 Amplify creativity of human game designers

Having revealed what creativity in exploratory game design is after (satis-
fying the thirst for design knowledge that enables intentioned game design
in new territories), I have shown how to produce project-specific design
automation tools that ease bottlenecks in the discovery process. By em-
powering designer-programmers to offload parts of their symbolic rea-
soning burden to AI-supported design tools, these designers may explore
territory for which there are not abundantly available examples for how
to craft games or for how players will interact with those games. Pieces
of games (rules and content) and traces of their play can be synthesized,
and these synthesized artifacts can be compared against sparser and more
expensive hand-authored designs and human playtests to yield new design
knowledge. Although automating the generation of appropriate artifacts
addresses only one facet of creativity (a designer may still struggle with
integrating recent feedback into a working theory of the domain, for ex-
ample), it is one that has deep links to design as it is understood beyond
the design of games.

18.1.2 Support deep, play-time design automation

Some game designs require the involvement of a designer in the loop to
guide play along interesting trajectories and to produce original content
that will be consumed in these player-specific experiences. As involving a
dedicated human game designer in every instances of play for these games
is infeasible (for availability, cost, expertise, or reaction time concerns),
it is natural to look to automated replacements that can carry out the
limited design responsibilities required by a particular game design. The
mechanized design space models that I have shown how to develop pro-
vide what is missing for some of these designs requiring play-time design
automation. The Refraction tools (from Chapter 15), in particular, are
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an important example of the breadth of design processes that can be fully
automated with relatively simple design space models.

18.1.3 Demonstrate tools that respect design prob-
lems

Acknowledging the inherently ill-defined (and potentially wicked) nature
of design problems, I have shown how to develop design-automation tools
on a foundation specifically selected for its ability to support iterative, ex-
ploratory development and to ease problem-framing activities. Although
mechanized design spaces offer automation of only the inner loop of a
designer’s double-loop learning, a reliable oracle for this inner loop al-
lows a designer to focus their own learning and discovery in the outer
loop. Noting, first, that not all of design boils down to optimization, and,
further, that, even where optimization is relevant, satisficing is what is
really desired, I have chosen to found my design space models on sub-
strates that can handle hard constraints: crisp definitions of what counts
as “good enough” (otherwise described by “appropriateness”). The tools
emerging from my practice of modeling design spaces are not simply high-
performance solutions to a stated generation problem; they are pointers
into a space of problem formulations that can be reflectively inspected
and refined.

18.2 Research Context

In building my dissertation in the interdisciplinary space between four
diverse fields, I have gained new perspective and insight that advances
the goals of each of these fields.

18.2.1 Game Design

By linking game design with the vocabulary of design studies, I have
found general precedents for the textbook practices of game design and
broadened our power to describe how games are designed and how they
might be designed in the future. The strategy of developing project-
specific tools to accelerate one’s own exploration is already a standard
practice, at least in the form of building prototypes. Using the practices
described in this dissertation, designer-programmers are now able to build
a broad array of prototype content generators and machine playtesting
tools on a common foundation that does not ask them to become experts
in combinatorial search algorithm design (something that would distract

18.2. RESEARCH CONTEXT 281



them from the project at hand). The availability of new tools at design-
time and technologies for use during play-time both alters how games can
be designed and alters the bounds of the space of designs that can be
realistically realized.

18.2.2 Design Studies

In a significant contribution to design studies, I have provided a defi-
nition of appositional reasoning in sufficiently formal terms for it to be
mechanized by systems that support the required features I described in
Chapter 8. I have shown several examples of doing this using ASP as one
such representational substrate. These ASP-encoded design space models
are examples of a new, computational realization of Darke’s concept of
imposing a primary generator [52].

Broadly applying the vocabulary of design has resulted in new ob-
servations about the nature of several artifact generation systems for
videogames and other computational creativity contexts left unexplored
by design studies so far.

18.2.3 Computational Creativity

Advancing the CC goal of realizing artifact generators in a domain tra-
ditionally dominated by human creators, I have demonstrated several
game content (and game play) generators under a unified programming
paradigm without the invention of any new algorithms. The concepts of
appropriateness used in these systems provide important and practical
examples of what is sought in artifacts outside of those notions of value
more often discussed in CC such as gallery-ready visual appeal or emo-
tional impact. For creativity in game design, these examples demonstrate
that, in many cases for realistic design problems, something other than
player-judged “fun” is sought, and, importantly, we should not overlook
the designer as a judge of novelty and value.

All of my example systems have been applications to game design, but
the techniques advanced in this dissertation are amenable to producing
symbolically describable content in other domains (as evidenced by the
music composition system Anton [15] and the machine code superopti-
mizer Toast [45]).

Examining CC’s other goals of understanding how machines can be
creative and how to discuss human creativity on computational terms, my
theory of rational curiosity is the first to define creativity as a knowledge
level phenomenon. This knowledge-level description of creativity ratio-
nalizes the activity of physical symbol systems that appear to pursue the
gain of design knowledge and suggests specific architectures for future
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systems that desire to be read as mechanizations of the overall creative
process. None of the design automation tools developed in this disserta-
tion are an example of how to mechanize this top-level process. However,
each provides examples of how to mechanize some of the individual ac-
tions that naturally occur as parts of this process (e.g. the development
of experimental designs or the simulation of their results according to a
working model of an environment).

18.2.4 Symbolic AI

The most practical result of this dissertation for the field of symbolic
AI is a number of new applications that stretch the performance and
representational affordances of existing symbolic AI tools (namely answer
set solvers). This work articulates new requirements on future symbolic AI
tools that would better support a mechanization of appositional reasoning
than do the tools available today.

Although AI seeks to understand human intelligence in computa-
tional terms, my example systems that computationally realize facets of
design cognition are not meant as accurate depictions of how humans
reason in game design. Instead, these systems should be interpreted as
intentionally-distorted caricatures of design cognition that are knowingly
built on an alternate, non-human physical symbol system. Nonetheless,
the link between automated logical abduction and a designer’s often-
informal appositional reasoning provides an interesting story for artifi-
cially intelligent design thinkers: they may mentally compute in incom-
mensurate methods, but their goal of synthesizing the description of an
artifact that is well fit, or appropriate, to a working definition of a design
problem remains the same.

18.3 Contributions

In Chapter 1, I introduced the primary contribution of my dissertation as
the development of technical methods for carrying out several exploratory
game design processes with a machine. As these methods, in the form of
developing various forms of design space models, have been well covered
at this point, I should note the applicability of these methods. It is not
enough that I can use these methods to build design automation tools
for myself; it is necessary that designer-programmers are empowered to
build their own tools for practical problems. As Chapter 17 details, when
placed in the hands of designer-programmers with little to no symbolic
AI background, my methods yield systems for a variety of problems that
are usable, performant, and productive of design insight.
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The secondary contribution of this dissertation has been situating
these methods within a larger research context. By linking design space
models back to the concerns of game design, design studies, computa-
tional creativity, and symbolic AI, I have been able to develop the per-
spectives and insights described in the previous section. That is, building
design spaces is not simply a way to accelerate one’s personal exploratory
game design process; it is a way to investigate larger questions in a vari-
ety of fields. For example, the development of computational caricatures
(whether built around a design space model or not) can be used to probe
the ways in which AI can assist game designers, yielding insight for all
four of the fields named above.

18.4 Approaches

Chapter 1 named five crosscutting strategies or approaches that I have
adopted in the research supporting the ideas advanced in this dissertation.
In this section, I look at how each approach fared.

18.4.1 Design Spaces

My emphasis on design spaces (over specific artifacts) has led to per-
formant content generators that are able to use constraint learning to
automate learning in the inner loop of double-loop learning. This kind
of learning is left untouched in strict generate-and-test architectures for
generative processes and is only approximately implemented in contingent
generation architectures (such as in genetic algorithms) that maintain a
constant-sized archive of promising candidate solutions. Given that con-
straint learning is a relatively advanced combinatorial search technique,
it would normally be out of the reach of most designer-programmers who
are not experts in search algorithm design. However, because the practice
of developing design space models produces a declarative (vs. procedural)
definition of a generation problem, advanced algorithms can be brought
to bear on that problem without the programmer’s understanding or even
explicit knowledge.

Another impact of focusing on declarative definitions of design spaces
has been explicitly raising the question of “what makes an artifact appro-
priate?” In constructive content generators that produce artifacts that
are (to some approximation) appropriate by construction, what makes an
artifact appropriate may easily go unconsidered. Part of reflective prac-
tice, however, is iterating on one’s understanding of what a design prob-
lem demands. When a design space is only implicitly defined through
a procedural definition, a designer must keep track of this design space
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mentally as they perform exploratory modifications to a generative pro-
cedure. When the design space is reified with an explicit and declarative
representation, this level of indirection is removed.

18.4.2 Computational Caricature

In the design of computational systems that model some natural or cul-
tural process, some degree of exaggeration and oversimplification is un-
avoidable. The practice of computational caricature gives a name and a
purpose (specifically, improved recognizability) to the intentional uses of
these distortions in making concrete systems. In the context of game de-
sign, computational caricature points out an interesting and independent
use of prototypes: per tradition, they answer specific questions about a
specific game design project; and, as caricatures, they make statements
about the nature of game design and how future design practices might be
structured. In these terms, computational caricature is an effective prac-
tice in a design-of-design approach to design studies (i.e. it is a design
research practice).

18.4.3 Target Audience: Procedurally Literate Designer-
Programmers

Having a clear target audience has placed requirements on my choice of
mechanization techniques, but it has also allowed me to make simplifying
assumptions. Targeting practicing designer-programmers means that the
modes of mechanization I suggest must not require someone to be an
expert in combinatorial search algorithm design (or the willingness to
become one). However, it is safe for me to assume that these individuals
can read and write symbolic program code and perform the necessary
tasks to integrate the output of an answer set solver into a live game (if
play-time design automation is required). As Chapter 17 describes, these
requirements and assumptions have fared well in use by individuals other
than myself.

The strategy of targeting designer-programmers leaves out not only
the large population of non-programmer designers but also non-designers
who nonetheless wish to generate game content and playtest tentative
game designs. Empowering novice designers should serve to expand our
creative reach as a culture, however this strategy has not been pursued
in this dissertation. As systems like Diorama (the highly-parameterized
ASP-based real-time strategy game map generator) demonstrate, it seems
possible that the techniques described in this dissertation could fruitfully
serve as an efficient and maintainable foundation for high-level tools that
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can be operated by individuals who neither are nor perhaps aspire to be
expert designer-programmers.

18.4.4 Automating Logical Reasoning

My emphasis on logical reasoning has allowed me to focus on just those
potential bottlenecks in the game design process that might become lim-
ited by tedious inference: namely twiddling the combinatorial details of
a piece of game content/rules to bring about a well-defined outcome or
selecting sequences of hypothetical player actions that bring about inter-
esting and edge-scale behaviors of a previously defined interactive artifact.
Even within the space of logical reasoning, I have only hinted at the possi-
bilities (e.g. in § 6.1.2) of automating inductive inference in game design:
automating the learning of patterns that fit or explain a bulk of empirical
data.

Although using design space models to automate a portion of the cycle
between designers and quality-assurance testers in a traditional game de-
velopment process has the potential to be very valuable, this is a result of
exploiting just one type of abundance offered by today’s computational
resources. The design-assisting possibilities of exploiting, for example,
mass storage or high-speed communication remains to be explored.

18.4.5 Artifacts as Communication

Finally, the artifacts-as-communication strategy has been a foundation
of my example systems: all are machines (potentially including humans
in the loop) that produce artifacts. This strategy provides a very wide
channel of information flow from a design scenario back to the designer
(as opposed to offering a smaller, pre-summarized report). Acknowledg-
ing learning in the outer loop of double-loop learning as a fundamental
and unavoidable process of design thinking, I have shown this strategy
regularly provides the backtalk that inspires new formulations of a de-
sign problem that account for experience gained in inspection of those
artifacts.

Iteratively re-framing a designer’s best understanding of a design sce-
nario in the form of a design space model, a designer creates a sequence of
well-defined search and optimization problems that can be automatically
solved by today’s available infrastructure for single-loop problem solving.
That is, in a reflective conversation with a design scenario, a designer
speaks with tentative problem formulations and listens for artifacts. Suc-
cessful examples of this outer loop have been given again and again in
the multiple programming and modeling tutorials of Chapter 10 and the
example systems of Chapters 12 through 15.
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18.5 Future Work

Having introduced the practice of modeling design spaces in ASP and situ-
ated this practice with respect to the concerns of several related fields, my
program of research is not exhausted: the mechanization of exploratory
game design is far from complete. In this section, I outline four spe-
cific directions for future work that will continue to advance the goals of
this dissertation: development of two-level design space models, improved
infrastructure for using ASP-encoded design spaces in larger projects,
building a broader base of example design space models, and exploring a
mechanization of the outer loop of double loop learning in game design
via the development of a game design discovery system.

18.5.1 Two-level Design Spaces

In terms of the projects reviewed in this dissertation, I would like it to be
possible for a ruleset generator, such as the one in Variations Forever, to
reject rulesets that admit gameplay traces demonstrating exploits, such
as those detectable using Ludocore. That is, I want to combine design
space descriptions at two different levels in a way that lets the appropri-
ateness of artifacts at the upper level (say, of rules and content) depend
on both the existence or the non-existence of certain appropriate artifacts
at the lower level (that of potential interaction with the rules and content
under consideration).

Recall from Chapter 8 that one of the requirements of a satisfying
representational substrate for design spaces was that it should support
the expression of universal constraints. This kind of constraint expresses
the idea that all solutions to a puzzle solve it in an interesting way, not
just the one or small number of example solutions generated at the same
time as the puzzle itself. The need for this type of constraint was high-
lighted in Refraction where it is not enough that a player can practice a
mathematical concept of interest, we demand that, in certain generated
puzzles, the player must practice that concept.

This kind of constraint is an instance of a general pattern in the design
of interactive artifacts. We want to be able to express that “we want an
artifact X so that for all interaction traces Y, p(X,Y) is true. Reasoning
over all interaction traces can be partially addressed with basic ASP via
encodings like that used in the maze generation examples (where a pred-
icate player_at(X,Y,T) recorded the potential end state for every possible
interaction trace). However, in general (particularly for almost anything
but mazes), the space of possible interaction traces is vastly larger than
the space of basic artifact descriptions (immensely so when the artifact is
a ruleset). Thus, some more efficient (in terms of designer attention and
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computational resources) encoding is required.

Naturally encoding the concerns of universal constraints gives rise to
a kind of two-level design space model for which generating artifacts is a
problem in the complexity class NPNP (problems in NP for a Turing ma-
chine with access to an oracle for problems in NP). This kind of problem is
equivalent to a certain kind of two-player game played for one turn. The
first player, representing the designer, makes a move that represents the
construction of an artifact (perhaps a puzzle). The second player, repre-
senting a malicious playtester, attempts a response (perhaps a sequence of
actions that form a solution to that puzzle) that results in designer regret
(evidence of inappropriateness in the artifact’s design). An appropriate
artifact is one that allows a designer to force a win for the first player
in this game—one for which there are no possible interaction traces that
they would regret seeing realized with that artifact.

Although disjunctive answer set solvers are quite capable of solving
problems at this elevated level of complexity [60], how best to encode
this kind of problem in AnsProlog is an area of active research in which
I am already engaged. In future work, I will refine the mechanisms for
specifying this kind of problem (which naturally arises in the concerns
of almost any interactive artifact design problem) and produce exam-
ple design space models. These examples will communicate the relevant
representation idioms to other designer-programmers whose criteria for
artifact appropriateness hinge on similar concerns.

18.5.2 Integration infrastructure

Current answer set solvers are primarily designed around a batch compu-
tation workflow: a complete AnsProlog program is read from static files
and the resulting answer sets are printed to standard output. To both bet-
ter support play-time design automation and enable a new generation of
tools that respect design problems, I will develop reusable infrastructure
for integrating interactive ASP-based artifact generators with the larger
games and tools that require those artifacts. The web-service I created to
support Variations Forever and the Java-based template used by Chen’s
RoleModel [29] and Compton’s Anza Island [39] are two examples of rudi-
mentary integration infrastructure. In the future, I will investigate the
use of reactive ASP systems [74] (such as oclingo1) and the potential need
for languages which declaratively script the interaction between answer
set solvers and the larger systems with which they must communicate.

1http://www.cs.uni-potsdam.de/wv/oclingo/
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18.5.3 Broader base of modeling examples

In addition to the two-level design spaces mentioned above, I plan to de-
velop design space examples that demonstrate how to make use of emerg-
ing developments in ASP as they become available. In § 10.3 I offered a
single example of how to work with numerical constraints for the problem
of generating Golomb rulers. As these tools move out of the experimental
stage, I would like to create examples of how to model design spaces that
are insensitive to the scale of key parameters (such as in the experimental
grid embedders for Refraction that were insensitive to the resolution of the
game grid). Incremental encodings that, following an iterative-deepening
strategy, permit solutions whose time and space requirements scale with
problem difficulty (as opposed to the scale of the largest possible solution)
also deserve attention.

My future modeling examples will also convey important debugging
information. While questions like “why is this program slow?” or “why
did/didn’t you generate this artifact?” can be answered by detailed inves-
tigation of a particular answer set solver’s internals, this kind of answer
is inappropriate and undesirable for the kind of designer-programmers
I have been targeting. I plan to develop a clear set of examples that
strive to provide insight that helps programmers avoid egregious slow-
downs while still abstracting over the details of solver-specific algorithms
(which are subject to change). Further, for explaining the generation (or
non-generation) of specific artifacts, the ANTON music composition sys-
tem has demonstrated that, backed by ASP, this kind of diagnosis can
be surfaced as a user-facing feature of a content generator. In the future,
I will further investigate the use of automated abduction (logical expla-
nation forming) over design space models in a way that yields insight to
designer-programmers and offers them building blocks for exposing these
explanations to end users.

Finally, in the same vein as the graph visualization system used in
several of my example systems, I intend to develop a broad array of flex-
ible visualizations that can be used and refined along with a main design
space model. Instead of the universal visualization strategy pursued in
ASPViz,2 I will make a variety of small, scope-limited visualization sup-
port tools (following the Unix philosophy: do one thing and do it well).

2http://www.cs.bath.ac.uk/~occ/aspviz/
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18.5.4 Automating discovery of design knowledge

Returning to the ideas that originally inspired this body of research,3 I
would like to explore the development of a game design discovery sys-
tem. This system would not seek to replace human game designers at an
industrial scale. Instead, like many of the systems presented in this dis-
sertation, it would function as a computational caricature of the top-level
processes in game design, pointing out what they might be, sketching a
means for their automation, and (perhaps most importantly) highlighting
our misconceptions about these top-level processes.

Where my strategy so far has been to automate efforts in the inner
loop of double-loop learning in an effort to ease exploration on the outer
loop, a game design discovery system would intentionally perform these
outer loop responsibilities itself. This requires the proposal of tentative
formalizations of the problem framing problem, the process of reflective
practice, and a means of assembling primary generators in the face of
incomplete problem definitions. Importantly, however, this project does
not require a formalization of the aesthetics of game design, as my theory
of rational curiosity suggests a sufficient (though perhaps skewed) sense
of value will arise from the thirst for new design knowledge alone.

Unlike my other directions of future work that target the practicing
designer-programmer, this direction intends to advance the work of de-
sign studies following the design-of-design paradigm. It would further
explicate the nature of exploratory game design and sketch what it might
become with deeper mechanization.

18.6 Epilogue

It is my hope that attaching my work to the four widely spaced fields
linked together in Chapter 7 brings useful structure and insight to ex-
ploratory game design, an otherwise highly informal practice. I intend to
offer not another prescriptive formula for how to explore, but an array of
newly available actions that game designers may opt to select as part of
exploring in a different way than they have in the past. By supporting
deeper and wider exploration in game design, I hope to materially expand
our ability to create human culture.

The focus of this dissertation has been on game design, an inherently
interactive art form. However I wish that the technology and practices in-
troduced in this dissertation afford a deep reevaluation of other art forms,
operating from an all art is interactive perspective. While it is possible

3Reading about the rare successes of early discovery systems like AM and EU-
RISKO [123] are part of what drew me to artificial intelligence research in the first
place.
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to address automation in game design in a way that sweeps interactiv-
ity under the rug (e.g. evaluating rulesets and content via functions over
a small number of interaction traces), acknowledging that the space of
play is, first, unavoidably existent and, second, almost inconceivably vast
prompts a fundamental shift in perspective. This shift should have rip-
pling implications for how we look at mechanization of exploratory design
for other forms of art that do not expose their interactive aspects so freely
as does game design.

18.6. EPILOGUE 291



292 CHAPTER 18. CONCLUSION



Bibliography

[1] Ernest Adams. Fundamentals of Game Design. New Riders, 2010.
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