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Abstract 

Drawing on inspirations outside of traditional computa-
tional creativity domains, we describe a theoretical ex-
planation of creativity in game design as a knowledge 
seeking process. This process, based on the practices of 
human game designers and an extended analogy with 
creativity in science, is amenable to computational rea-
lization in the form of a discovery system. Further, the 
model of creativity it entails, creativity as the rational 
pursuit of curiosity, suggests a new perspective on ex-
isting artifact generation challenges and prompts a new 
mode of evaluation for creative agents (both human and 
machine). 

 Introduction 

Paintings (Colton 2008), melodies (Cope 2005), and poems 
(Hartman 1996) are familiar domains for artifact genera-
tion in computational creativity (CC), and much estab-
lished theory in the field is focused on evaluating such 
artifacts and the systems that produce them. In this paper, 
we draw inspiration for a new understanding of creativity 
from the less familiar (but no less creative) domain of 
game design. In its full generality, game design overlaps 
visual art, music, and other areas where there are many 
existing results, but where it stands apart is in its unavoid-
ably deep, active interaction with the audience: in gamep-
lay. 
 Crafting gameplay is the central focus of game design 
(Fullerton 2008). Play, however, is not an artifact to be 
generated directly. Instead, it is a result that emerges from 
the design of the formal rule system at the core of every 
game (Salen and Zimmerman 2004, chapter 12), a machine 
driven by external player actions. 
 Where, in visual art, we might judge the creativity (as 
novelty and value) of an artifact on the basis of the work’s 
similarity to known pieces and its affective qualities 
(Pease, Winterstein and Colton 2001), it is not so easy to 
make direct statements about the properties of the artifacts 
in game design. Desirable games are celebrated for their 
innovative gameplay or the fun experiences they enable–
these are properties of the artifact’s interaction with the 
audience, not of the artifact itself. The focus on predomi-
nantly passive artifacts in CC, those which can be appre-

ciated via direct inspection rather than through interactive 
execution, has masked what is obvious in game design: 
that the desirability of artifacts is in their relationship to 
their environment. 

Armed with such an understanding, we seek a theoreti-
cal explanation of creativity in game design–not the engi-
neering application of established design knowledge, but 
the rarer experimentation that realizes new forms of ga-
meplay and original player experiences. This theory should 
speak to both the artifacts and processes of game design, 
and do so in a way that meaningfully explains game design 
as done by humans as well as computational means. To-
wards capturing the richness of existing human design ac-
tivity, we are most interested in a theory of transforma-
tional creativity (Boden 2004) that explains how designers 
build new conceptual spaces of game designs and reshape 
them in response to feedback experiences observing play. 

We introduce a new theoretical model that is amenable 
to computational realization which describes creative game 
design as a knowledge-seeking process (a kind of active 
learning). Our broader contribution, creativity as the ra-
tional pursuit of curiosity, can provide an explanation of 
and suggest new questions for applications in traditional 
CC artifact generation domains. 

In the following sections we will review established 
game design practices, draw an analogy between game 
design and scientific discovery, review and apply Newell’s 
concept of the knowledge level, and then introduce our 
model of creativity. Finally we will conclude with a dis-
cussion of the implications of this theory for game design 
and the larger CC context. 

Game Design Practices 

In a standard text, Salen and Zimmerman (2004, p. 168) 
introduce the “second-order” problem of game design 
bluntly: 

“The goal of game design is meaningful play, but play is 
something that emerges from the functioning of the 
rules. As a game designer, you can never directly design 
play. You can only design the rules that give rise to it. 
Game designers create experience, but only indirectly.” 

Play includes the objective choices made by a player and 
the conditions achieved in the game, along with the play-



er’s subjective reactions and expectations. At this point, it 
is straight forward to adopt the first tenet of our theory of 
creative game design: game designers are really designers 
of play. 
 The idea of adopting an iterative, “playcentric” (Fuller-
ton 2008) design process, in which games are continually 
tested to better understand their emergent (play) properties, 
is corroborated by others like Schell (2008), who further 
describes the supreme importance of “listening” in the de-
sign process (being able to process feedback from the 
player’s experience of candidate designs). Beyond initial 
conceptualization of a game idea and tuning and polish of 
the final product, the two most important practices of game 
design are prototyping and playtesting, both of which are 
intentionally focused on providing the designer with a bet-
ter understanding of play. 
 Prototypes are playable artifacts, working models of a 
game idea that permit asking and answering questions 
about how a game will interact with its environment with-
out requiring the effort to create a complete, polished 
game. The aesthetics of prototypes are very different than 
for complete games: most artwork and sound is stripped 
away from a design idea to produce an artifact that most 
effectively elicits feedback on a designer’s current focus of 
interest (often how the interaction of game mechanics af-
fects the trajectory of play). 
 Prototypes must be set to interact with an audience to 
gain the answers they are designed to provide. Playtesting 
is the practice of playing a game or gameplay prototype 
while observing the choices made, actions taken, or reac-
tions expressed by sample players (the designer, a friend, a 
dedicated tester, or even a member of the target audience). 
Observations made during playtesting can reveal objective 
properties of a game such as unwritten-but-implied me-
chanics, exploits, and alternative puzzle solutions, or sub-
jective properties such as the level of engagement, fun, or 
hesitation expressed by the sample players (Smith, Nelson, 
and Mateas 2009). 
 Despite the ostensible purpose of game design being the 
production of complete, desirable games for play by end-
users, the practices of playtesting and prototyping are cen-
tered on providing feedback to the designer. Through the 
rough generate-and-test process of iterative game design, 
where several prototypes are created and playtested during 
a single project, the underlying goal is to build up suffi-
cient skill and understanding to later produce the high-
quality, final game artifact. Such a self-affecting process is 
exactly what McGraw and Hofstadter call the “central loop 
of creativity” (1993). 
 Beneath the surface, the practices of game design are 
almost exclusively about the collection of design know-
ledge, knowledge regarding the relationship between the 
component elements of a game system and that game’s 
potential execution in interaction with a player. Such de-
sign knowledge spans what design patterns to employ, how 
to assemble them, and why such an assembly will produce 
a certain play experience. 

 Existing design knowledge can be applied to realize fa-
miliar, well-understood play experiences, but creative 
game design demands a continuous source of new design 
knowledge. Thus, the second tenet of our theory is this: 
creative game design is about seeking design knowledge. 

An Analogy with Science 

To expand on knowledge-seeking in game design, we want 
to draw an extended analogy between game design and 
science. Doing so will allow us to connect the creative ac-
tivity in the game design process with the activity carried 
out by scientific discovery systems in CC. 
 For design generally, Dasgupta claims “design problem 
solving is a special instance of (and is indistinguishable 
from) the process of scientific discovery” (1991, p. 353). 
While Dasgupta focuses on explaining design activity spe-
cifically in terms of finding a confirmable theory which 
resolves a particular unexplained phenomena, our analogy 
is intentionally softer, to enable applications in a variety of 
CC domains that no not immediately appear as “design 
problem solving” domains. 

Scientific Practices 

Roughly, the scientific method is a closed loop with the 
following phases: A hypothesis is generated from a work-
ing theory, the hypothesis drives the design of an experi-
ment (usually realized with a physical apparatus), data 
from executing this experiment is collected, and conclu-
sions are drawn which can be integrated into the working 
theory. A scientist will design an experimental setup, de-
spite already possessing a theory which makes prediction 
about the situation, precisely because there is some uncer-
tainty about the result. This result, whether matching the 
prediction or not, should provide informative detail about 
the natural laws at play in the experiment’s environment. 
 In our analogy, experiment design is prototyping; expe-
riment execution and subsequent analysis is playtesting. 
The combination of the declarative knowledge of natural 
laws and the procedural knowledge of operating laboratory 
equipment is game design knowledge. Finally, the closed 
loop of the overall scientific method corresponds to itera-
tive game design. 
 Making the parallel clearer, Gingold and Hecker (2006) 
talk about how gameplay prototypes should be informative, 
answer specific questions, and be falsifiable. In the philos-
ophy of science, the notion of informative content (and its 
relation to falsifiability) guides the evaluation of theories 
and experimental designs. 
 In their capacity to design and execute informative expe-
riments and produce coherent and illuminating explana-
tions of the anomalous results, scientists are clearly crea-
tive. In Colton’s terms (2008), we can easily perceive this 
creativity in the skill of precise experimental design, the 
appreciation of unexpected result in the context of a work-
ing theory, and the imagination of previously difficult to 
consider alternative theories and the invention of new in-
struments. By the analogy above, a scientist’s kind of crea-
tivity can apply to the game designer as well, prompting 



our third tenet: designers act as explorers in a science of 
play, an “artificial science” in Simon’s terms (1996, Ch. 5). 

Automated Discovery 

Though largely distinct from artifact generation, automat-
ing discovery in science and mathematics is an established 
CC tradition (Langley et al. 1984; Lenat 1976). Within 
these systems it is common to find subprocesses which 
generate artifacts as part of the larger discovery process. 
 The GT system (Epstein 1988), an automated graph 
theorist, would periodically “doodle” random graphs with-
in a specific design space as a means of generating relevant 
data which might spark a new conjecture about the desired 
area of focus. With our analogy in mind, such doodling is 
reminiscent of the exploratory, rapid prototyping process 
sometimes used in game design (in what Gingold and 
Hecker call the “discovery” phase of development). A heu-
ristic to generate new concrete examples of abstract con-
cepts was even present in the original automated mathema-
tician, AM, working with number theory (Lenat 1976). 
 Beyond generating artifacts with only the indirect inten-
tion of knowledge gain, more recent discovery systems 
internally optimize expected knowledge gain when decid-
ing which experimental setup to test next, realizing an ac-
tive learning process (Bryant et al. 2001). Where artifact 
generation provides opportunitistic benefits in mathemati-
cal domains (in which graphs and conjectures are non-
interactive, static artifacts), discovery systems working in 
the physical sciences fundamentally cannot avoid artifact 
generation (as experimental design) during active explora-
tion of their domain. 
 A notion of “interestingness” is the glue that binds the 
various subprocesses of automated discovery (artifact gen-
eration included) together into an overall control flow 
(Colton and Bundy 2000). In many cases, interestingness 
measures the likelihood or quality of knowledge expected 
to be discovered by taking a particular action (e.g. search-
ing for a counterexample) or focusing on a particular con-
cept (e.g. looking for new examples of special graphs). A 
system’s overall notion of interestingness can be used to 
induce a measure of value for artifacts generated in its arti-
fact generation subprocesses, a measure related to potential 
for knowledge gain as opposed to aesthetic value. 
 Returning to game design, our fourth tenet holds that 
automated discovery systems inspire a computational 
model of creative game design that explains the prototypes 
produced in exploratory game design as the doodles pro-
duced trying to flesh out design theories residing in the 
designer’s head, motivated by an interest in designs that 
have the potential to reveal new patterns. 

Newell’s Knowledge Level 

To complete the image of the creative game designer as a 
discoverer, we need some better vocabulary for talking 
about a designer’s knowledge, around which the entire 
discovery process revolves. 
 Newell (1982) describes the “knowledge level” as a sys-
tems level set above the symbolic, program level. At the 

knowledge level, we find agents with bodies of knowledge 
that can take actions in some environment to make 
progress towards goals. The actions taken by an agent are 
said to be governed by a principle of rationality that states 
“If an agent has knowledge that one of its actions will lead 
to one of its goals, then the agent will select that action.” 
This sense of rationality is distinct from decision theoretic 
rationality in that it does not necessarily imply that an 
agent must optimize anything. 
 While this radically underspecifies an agent’s behavior 
from a computational perspective, the constellation of con-
cepts at the knowledge level is useful for making state-
ments about our game designer. The intention of know-
ledge-level modeling is to explain the behavior of know-
ledge-bearing agents (be they human or machine) without 
reference to how that knowledge is represented or access to 
an operational model of the agent’s mode of processing. 
 Understanding the game designer, at the knowledge lev-
el, starts with making an assumption about what is known 
and what is sought. But from our theory so far, we can 
safely assume an important body of knowledge possessed 
is that of tentative game design knowledge. This know-
ledge permits the designer the use of tools such as paper 
and trinkets for physical gameplay prototypes (often styled 
after board games) and programming languages and com-
pilers for more detailed, computational prototypes. This 
same knowledge permits understanding to be gained from 
the observation of game artifacts in play, and suggests a 
tentative vocabulary for composition of those artifacts (i.e. 
knowledge of design patterns for game rules). The creative 
designer’s goal, per our analogy with science, is clearly to 
gain more design knowledge. 
 Given this, we expect the designer to rationally (specfi-
cally in the knowledge level sense) go about the practices 
of game design as part of taking actions that lead towards 
the gain of design knowledge. That is, game design activi-
ty can be explained as the rational pursuit of design 
knowledge gain. 

Creativity as Rational Curiosity 

The knowledge level lets us talk about a kind of rationality, 
one that gives an explanation for why game designers take 
the actions they do. But not all game design activity is cre-
ative, no more than all of science being creative. So where 
does creativity come in? 
 The most creative parts of game design, we claim, are 
the ones where the designer’s behavior is best explained by 
the direct intention to gain new knowledge, to satisfy cu-
riosity. The bulk efforts of game production are a kind of 
engineering which applies the knowledge gained in the 
curiosity-driven creative mode. 
 As the motivation to reduce uncertainty and explore 
novel stimuli (Berlyne 1960), curiosity has long been 
known to be intertwined with the judgment of aesthetics 
(Berlyne 1971). Saunders’ “curious design agents” (2002) 
generate aesthetic artifacts according to their potential to 
satisfy an internal measure of curiosity, doing so in order 
to learn about an outside environment. This framework has 



also been used to drive the behavior of a simulated society 
of curious visual artists and even a flock of curious sheep 
in a virtual world (Merrick and Maher 2009). 

How curiosity-driven behavior can explain the various 
processes and artifacts of human creativity at a high level 
has been demonstrated at great length (Schmidhuber 2010). 
Our unique claim, that creativity is a knowledge level phe-
nomenon, gains similar explanatory power without refer-
ence to algorithmic details (such as the use of reinforce-
ment learning or optimization procedures) or human psy-
chology, as in Loewenstein’s comprehensive review of 
research on human curiosity (1994). 
 Looking concretely at curiosity in the domain of game 
design, consider the example of speed runs, gameplay trac-
es that demonstrate a way of doing something in a game 
(completing a level or collecting certain items) much faster 
than a designer previously expected. Speed runs are inter-
esting to game designers, from a curiosity perspective, be-
cause they often represent a novel stimulus and quickly 
increase uncertainty about what is possible in a game, 
creating an urge to seek out related gameplay traces that 
would illustrate the general pattern by which the run was 
achieved. With additional experience, the designer can 
learn to either design-out such speed runs by adjusting the 
game’s rules, or create new mechanics that reward them. 
 Putting together curiosity about design knowledge with 
knowledge-level rationality, we have our complete theory 
of creativity in game design: 

Creativity is the rational pursuit of curiosity. 
 This claim applies to human and machine design agents 
and gives a goal-oriented explanation to sequences of de-
sign activity that result in design knowledge gain (clearly 
including prototyping and playtesting). A creative game 
designer makes games, not because that is their function, 
but because they want to learn things about play that re-
quire experimentation with certain artifacts to illuminate. 
 We call this theory rational curiosity because it is a 
knowledge-level treatment of the concept of curiosity that 
focuses on how curiosity explains the selection of actions 
towards a known goal. It claims that curiosity, applied ra-
tionally, will result in behavior recognizable as creative 
design activities. 

Transformational Creativity in Game Design 

 Consider our model creative game designer, over time, 
producing increasingly complex and refined playable arti-
facts that are in line with the complexity of their currently 
operating design theory. That playable artifacts are pro-
duced is just an externally visible byproduct of the more 
interesting process going on in the designer’s thoughts, the 
growth and refinement of design knowledge. 
 Taking a snapshot at any one time, the designer’s know-
ledge is fixed. The present knowledge describes a “concep-
tual space”, in Boden’s terms, of game designs and play 
possibilities. Combinational creativity within this pace 
would entail the generation of artifacts from known struc-
tures and construction constraints or, perhaps, the enume-
ration of explanations of a player’s behavior with respect 

to known patterns. Taking a series of steps in terms of the 
current design theory, producing a new game using a de-
sign pattern of interest, producing a prediction of player 
behavior, and then performing a playtest and comparing 
the results with the prediction is an example of exploratory 
creativity in this space. These activities are weakly creative 
in the rational curiosity view because, though they might 
indeed be motivated by potential knowledge gain, neither 
realizes an actual change to the designer’s personal theory. 
 Transformational creativity in game design, then, is de-
sign activity which results in a redefinition of design theo-
ries. In iterative game design, where many prototypes are 
produced in succession in response to feedback from play-
testing, is an intensely transformative process. Such trans-
formations can include the definition of a new design pat-
tern which simplifies the explanation of how another de-
signer’s game was constructed, a constraint which limits 
the use of two patterns together, or a rule which predicts a 
certain kind of player’s behavior when a certain combina-
tion of pattern is present.  

Discussion 

Having proposed a theoretical explanation of creativity in 

game design, let’s look at what it entails.  

Computational Creativity in Game Design 

The theory of rational curiosity in game design can be rea-
lized computationally along two major paths: the develop-
ment of a game design discovery system, and new, know-
ledge-oriented creativity support tools. More generally, 
however, it suggests new elements that need to be modeled 
computationally in support of either path. 

Game Design Discovery Systems   Recalling the analogy 
with scientific and mathematical discovery systems, we 
can imagine the design of a new kind of discovery system 
that would work in the domain of game design knowledge. 
This discovery system would produce games as part of its 
experiments in exploring play, but it would also allocate 
significant attention to decomposing games made by other 
designers and producing explanations of observed human 
player actions. 
 The notion of interestingness in this discovery system 
would correspond to a symbol-level realization of the 
agent’s knowledge-level goal: the satisfaction of curiosity 
about design knowledge. By selecting actions (such as the 
construction of a prototype, the simulation of a playtest 
using a known player model, or the analysis of a previous-
ly produced game in light of a refined theory) according to 
their calculated prospects for improvement of the working 
design theory (a library of design patterns, predictive rules 
for player behavior, and constraints on play-model con-
struction), the system’s behavior would implement a ra-
tional pursuit of curiosity, creativity in game design. 
 Constructing such a system would require new research 
into adapting symbol-level representations of design know-
ledge for use in game design, the development of a task 
decomposition of creative game design into subgoals and 



actions (such a concrete design methodology which would 
be of interest to human designers as well), and the identifi-
cation of the relevant external tools of game design (cer-
tainly paper prototyping materials and programming envi-
ronments are some of these tools, but where are the CAD 
systems for games?). 

Knowledge-oriented Creativity Support Tools     
With recognition that design knowledge gain is the design-
er’s goal, creativity support tools in game design should 
focus on easing this process. In terms of Yeap’s desiderata 
for creativity support tools, these tools should focus on 
ideation and empowerment (2010). In game design, these 
translate to the generation of candidate design knowledge 
for the designer to consider and then leaving the adoption 
of the new knowledge up to the designer (without undue 
interference). Knowledge-oriented creativity support tools 
should attempt to remove bottlenecks in the discovery 
process.  
 We created a gameplay pattern language and corres-
ponding search tool which is intended to accelerate the 
extraction of feedback about game designs from pre-
recorded traces of play (Smith and Mateas 2011). The sys-
tem is also capable of compiling patterns into a lower-level 
form that can be used to search for additional evidence of 
gameplay patterns with the machine playtesting tools in-
cluded in the BIPED early-stage computational prototyping 
tool (Smith, Nelson and Mateas 2009). Neither of these 
systems are themselves creative, but they are designed to 
provide new actions to the creative designer for rational 
selection in the service of knowledge gain.  
 In another project (Smith and Mateas 2010), we cap-
tured a design space of mini-games in a logic program and 
used model-finding techniques to automatically generate 
artifacts from the described space. Use of the logic pro-
gramming tools automates a small slice of game design 
(the literal construction of artifacts) and provides a conve-
nient symbolic representation for some types of design 
knowledge. While this project automates combinational 
creativity in game design, the design space representation 
and sampling tools are intended to support an external de-
signer’s transformational creativity in the realization of 
new forms of gameplay through rapid exploration and ex-
pressive redefinition of the mini-game design space. 

New Perspective for Computational Creativity 

We have mostly focused on game design, but rational cu-
riosity is intentionally worded so as to apply to other CC 
domains. In fact, it should apply even to domains with ap-
parently non-interactive artifacts. Where, in game design, 
we were concerned with the implications of game rule sys-
tem on player actions and reactions, in the domain of mu-
sic we should explore the implications for sound patterns 
on audience anticipation and mood, in visual art the impli-
cations for perceptual details on where the viewer’s eye 
lingers or flees, and in sculpture the implications of geome-
tric arrangements on audience interest from particular 
viewpoints. Such domains are not as interactive as game 
design, but they could be equally deep in the subtlety of 

how an audience reacts to an artifact – depth enough to 
keep the rationally curious artist busy producing experi-
ments for quite some time. 
 The knowledge-level analysis of creativity suggests new 
questions to ask of CC systems: What does this system 
want to learn? How is knowledge represented in this do-
main? Is the system experimenting with the affordances of 
the raw medium or focusing on audience reactions achiev-
able through it? (Both are equally creative assuming the 
desired kind of knowledge is gained.) 
 Consider NEvAr (Machado and Cardoso 2002), a crea-
tive system in the domain of visual art. Unlike the 
straightforward interactive genetic algorithm in PicBreeder 
(Secretan et al. 2008), NEvAr does not ask its audience for 
feedback on every artifact it internally considers. The sys-
tem summarizes sparse feedback from its human audience 
in the form of a neural network which becomes a proxy for 
their ratings in an internal evolutionary process. Rational 
curiosity would describe NEvAr as a creative system, not 
because it produces novel and valuable images, but be-
cause, at the knowledge level, the system appears to be 
rationally soliciting reactions on believed high-valued im-
ages and incorporating the responses in a way that trans-
forms the space of images that the system will next pro-
duce–it behaves consistently with the explanation that it is 
rationally pursuing its curiosity (albeit with limited design 
knowledge storage capabilities). If redesigned from scratch 
with rational curiosity in mind, the system might incorpo-
rate a more interpretable representation of learned know-
ledge (for which it is easier to read as a design theory that 
improves over time) and put more computation into expe-
rimental design, reasoning over the expected knowledge 
gain from enticing the human audience to provide feedback 
on a particular work rather than always trying to display 
the estimated-best available artifacts. Orienting the system 
around active learning, we predict, would improve the sys-
tem’s apparent creativity. 
 From our perspective, it is natural to ask what a system 
learns as it runs. Though established techniques in compu-
tational visual art such as design grammars and iterated 
function systems can, in some cases, produce very interest-
ing (valuable) images, the static nature of these techniques 
in isolation implies that, over time, our sense of novelty of 
the kinds of artifacts these techniques produce will neces-
sarily wane because these techniques do not learn. While 
rational curiosity would deem a technique that merely 
samples a fixed generative space uncreative, these tech-
niques are still valuable to us–they encode very rich design 
spaces that, upon gaining experience through experimenta-
tion, a creative agent can alter as part of large-scale expe-
riments in the design of these generative spaces. 

Conclusion 

We have followed the clues embedded in the practices of 

human game designers to a set of building blocks for a 

theory of creative game design. To recap: 

1) Game designers are really designers of play. 

2) Creative game design is about seeking knowledge. 



3) Designers act as explorers in a science of play. 

4) Automated discovery systems inspire a computational 

model of creative design. 

5) Game design activity can be explained as the rational 

pursuit of design knowledge gain. 

This has led us to a new statement about creativity that 

can apply to human or machine design agents in any arti-

fact generation domain: creativity is the rational pursuit of 

curiosity, a knowledge-level phenomenon. 

 We hope this model of creativity will inspire the explo-

ration of discovery system architectures for artifact genera-

tion systems and the development of a new space of know-

ledge-oriented creativity support tools. 
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