
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Softlock Detection for Super Metroid with Computation Tree
Logic

Ross Mawhorter
rmawhort@ucsc.edu

University of California, Santa Cruz
Santa Cruz, CA, USA

Adam Smith
amsmith@ucsc.edu

University of California, Santa Cruz
Santa Cruz, CA, USA

ABSTRACT
Videogame level designs can contain errors called softlocks where
a player traversing the level in an unintended manner can become
permanently stuck. In this paper, we explore the automated detec-
tion of softlocks in the game Super Metroid using Computation Tree
Logic (CTL). Super Metroid distinguishes itself as an example do-
main because of its velocity-based movement and rich item upgrade
hierarchy. These factors can cause softlocks in Super Metroid to be
challenging to detect visually. We contribute a tile-based gameplay
abstraction for Super Metroid, and demonstrate verification of CTL
properties for scenarios based on a segment of the original game’s
level design. CTL can be used to define and test many other game-
play properties (e.g. which bosses can be skipped or which order
items may be collected) and is immediately applicable to other game
designs for which a compact abstraction of their state space can be
enumerated. By making plausible design changes to a Super Metroid
level fragment, we show how highly nonobvious softlocks can be
detected and how the counterexamples resulting from verification
failure can be turned into visualizations that explain the problem.

KEYWORDS
metroidvania, machine playtesting, state abstraction, model check-
ing, formal verification
ACM Reference Format:
RossMawhorter andAdam Smith. 2021. SoftlockDetection for SuperMetroid
with Computation Tree Logic. In The 16th International Conference on the
Foundations of Digital Games (FDG) 2021 (FDG’21), August 3–6, 2021, Mon-
treal, QC, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3472538.3472542

1 INTRODUCTION
Imagine for a moment you are playing through a set of machine-
generated Super Mario Bros [11] levels, and you come across the
Mario level shown in Figure 1. If you make the jump, you can
complete the level by reaching the flag. However, if you fail the
jump, you will be “softlocked,” or permanently stuck. That is, you
are trapped in the gap with no way to make forward progress or
even restart the level by touching an enemy or falling into a pit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’21, Montreal, Canada,
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8422-3/21/08. . . $15.00
https://doi.org/10.1145/3472538.3472542

Your only option is to reset your console and potentially lose a
significant amount of progress. If you get stuck multiple times, you
might become frustrated and give up altogether. It might also be
challenging to know whether you are softlocked because softlocks
can be much harder to spot than a pair of walls that are too high
to jump. This paper introduces the use of Computation Tree Logic
(CTL) to state a formal definition of softlocks and to find potential
softlocks in the level designs of a non-Mario game: Super Metroid.

This paper focuses on detecting softlock conditions that might
arise when making changes to level designs for the one specific
commercial videogame Super Metroid [14]. Although the game
was originally released in 1994, fan-created modifications1 (ranging
fromminor improvements to art or game mechanics to total conver-
sions) are being continually produced decades after the commercial
release. However, this focus is also part of a larger effort to improve
the depth of technical discourse in academic game AI by moving
away from Mario as the default motivating example. In the same
way that Chess was once considered “the Drosophila of AI” [15]
(a model organism to standardize experimental methodologies),
variations and clones of 1985’s Super Mario Bros have anchored
many academic game AI projects [10] including game playing [9],
level generation [8], player modeling [18], design assistance tools
[7], game space visualization [1], and game moment retrieval [28].
Our shift in attention from Mario to Metroid (while still admittedly
offering one aging videogame to stand for in all others) is intended
to break to two assumptions that prevent Mario-based work from
being cross-applied to other games.

Space is time: In Mario-style games (including the vertically-
oriented game Kid Icarus [12]), progress over time in completing
a game level strongly correlates with movement through one di-
rection in space. That Mario’s horizontal position is such a good
proxy for progress leads to an algorithm as simple as A* achieving
competition-winning gameplay performance [24], even exhibiting
super-human finesse (e.g. in wall-jumping). Although the player
is technically able backtrack a bit in Mario levels, it is rarely ever
required. InMetroid-style games, by contrast, the player is asked to
find their way through a world that requires traversing and back-
tracking in all spatial directions. Our focus on Metroid decouples
the roles of time and space while still retaining a focus on level
designs encoded as a two-dimensional grid of tiles (which has been
useful for making connections to the fields of computer vision [26]
or natural language processing [8]).

Tile space is state space: Speed and direction of movement are
important concepts in many platformer games. However, progress
through a Mario level can be modeled well enough without these
concepts, sowe often think of the game as having a two-dimensional
1https://metroidconstruction.com/hacks.php

1

https://doi.org/10.1145/3472538.3472542
https://doi.org/10.1145/3472538.3472542
https://doi.org/10.1145/3472538.3472542
https://metroidconstruction.com/hacks.php

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

FDG ’21, Montreal, Canada,
Ross Mawhorter and Adam Smith

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: A hand-constructed example Mario level that con-
tains a softlock: when Mario falls into the gap between
blocks in themiddle of the scene, he can no longer jump out.
Since there are no enemies or pits, the player has to manu-
ally reset the console to escape.

state space. Some gameplay validators for procedurally-generated
levels, for example, judge a level as playable if a path can be drawn
on the level’s two-dimensional tile grid connecting the start to
the finish tile [4]. In Metroid games (or faster paced platformers
like 1991’s Sonic the Hedgehog [5]), velocity plays a much bigger
role in defining which paths through a level are feasible. Metroid
games (and other games like 1986’s The Legend of Zelda [13]) in-
volve collecting items and abilities over time so that the player
is encouraged to re-traverse the same spaces repeatedly as they
find uses for their new abilities. Adding velocity moves Metroid
gameplay into a four-dimensional state space and consideration for
different combinations of collectable items expands this manyfold.
While themostly two-dimensional nature ofMario games has made
for convenient rendering of figures in papers, a focus on Metroid
forces us to directly confront this higher-dimensional, abstract state
space. Problems with a level design, such as a softlock, might be
associated with particular locations in the game’s two-dimensional
tile grid, but they are not detectable without careful analysis of
non-local properties of the broader abstract state space.

The core contribution of this paper is a way of formalizing de-
sign issues (like the existence of softlocks) as CTL properties that
will be evaluated over the game’s entire abstract state space. We
also contribute a tile-based abstraction of Super Metroid to parallel
the tile-based movement modeling often applied to Mario games.
The inclusion of velocity and collected items in our abstraction
of Metroid allow CTL statements to express complex, non-local
properties of game levels.

2 BACKGROUND
This paper builds on prior work applying formal methods to games
research. This section outlines some of the related contributions
in this area, then discusses the mathematical formalisms used for
verifying Super Metroid level designs.

2.1 Prior Work
In this paper we are concerned with verifying properties about
possible gameplay traces in a single-player game. In the technical
games research literature, Lee et. al. recently considered the problem
of defining a platformer game movement model in order to check
reachability, but do not attempt to verify more complex properties
[25]. To do this, they describe a fine-grained game abstraction
which has both position and velocity as well as other discrete state
(such as whether an optional objective has been reached). There
has been other work that focuses primarily on the abstraction of
games to formal spaces without concern for verification. Cook et
al. developed a way to reduce the size of the abstracted state space
without sacrificing fidelity, but they focus on games with much
smaller state space than most platformers [3]. Osborn et al. offered a
(hybrid, discrete-continuous) formal model that considers variables
like position and velocity as continuous variables governed by
differential equations [17]. This technique could be used to solve
reachability problems at high precision, but it limited applicability
of analyses that assume finite state spaces.

The above mentioned work considers abstracted models of ex-
isting games where there might be a gap between what is possible
in a model versus the game that inspired the model. In contrast,
the Ludocore system represented games as logical systems [22],
so that human gameplay corresponded exactly with the formal
system used for analysis. In exchange for closing the modeling gap,
this approach limited the range of expressible games to those with
mechanics specified using logical predicates.

Outside theworld of verification, Silva et al. use AI-based playtest-
ing, and find problematic gameplay scenarios in a board game using
tens of thousands of simulated games [6]. This type of simulation
holds promise for platformer videogames as well, but there are
several challenges. Primarily, developing an agent that can play
the game competently is much more difficult because it needs to
interact with the world frame-by-frame. Additionally, relying solely
on simulation data to fix bugs in level design is problematic. For
example, even if the AI agent never reaches a certain section of
the level, that does not necessarily imply it is impossible (or even
difficult) for a human player to go there.

The systems we have examined so far have mostly been con-
cerned with showing that there exists at least one key gameplay
trace (such as one reaching from start to finish) or ensuring no
single problematic gameplay trace exists (such as one that reaches
the finish in fewer steps than expected). The strategy of logically
quantifying over play suggested in the analysis (and synthesis) of
Refraction puzzle levels [21] foreshadows the mode of analysis pre-
sented in this paper. Critical puzzle design properties can involve
logical quantifiers beyond a single ∃ or∀ quantifier. Since generated
puzzles can be solved in many ways, the authors used formal logic
to ensure that all of the solutions to generated puzzles required
practicing a key concept that the game wants to teach (synthe-
sizing puzzles to satisfy an ∃∀ specification). Although this work
considered all possible puzzles and piece configurations, it did not
consider how the player would come to reach a given configuration
by laying one piece down at a time. In our analysis ofMetroid levels,
the steps on the path leading to a critical state (e.g. one manifesting

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Softlock Detection for Super Metroid with Computation Tree Logic
FDG ’21, Montreal, Canada,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

a softlock) can provide important information about how to change
to the level to eliminate it.

2.2 Kripke Structures and CTL
In this paper, we model gameplay as a Kripke structure[2, a.]:

𝑀 = (𝑆, 𝐼 , 𝑅, 𝐿)
Here, 𝑆 denotes the set of all possible states, 𝐼 denotes the set of

initial states and 𝑅 ⊆ 𝑆 × 𝑆 is the transition relation. 𝑅 defines for
any given a state 𝑠𝑖 , which states 𝑠 𝑗 can be reached directly from
𝑠1. The labeling function 𝐿 : 𝑆 → 2𝐴𝑃 uses a finite set of atomic
propositions (𝐴𝑃) to provide semantic information about each state.
This is essentially a graph of labeled vertices over the underlying
state space of the game.

Computation Tree Logic (CTL) [2, b.] is a branching-time logic
that models properties applying to possible paths within 𝑀 by
using the set of atomic propositions 𝐴𝑃 . CTL has two key modal
operators (along with the usual Boolean connectives ¬ ∧ ∨): 𝐴𝐺
(sometimes written as □) which means “for all states globally” and
𝐸𝐹 (sometimes written as ♢) which means “there exists a path such
that finally”. The property 𝐴𝐺 (𝑝) holds at a state 𝑠 if and only if
𝑝 holds at every point on every path that starts at 𝑠 . The property
𝐸𝐹 (𝑝) holds at a state 𝑠 if and only if there exists some path starting
at 𝑠 such that 𝑝 eventually holds on that path. A property is said to
hold for a system𝑀 if and only if it holds at every initial state 𝑠 ∈ 𝐼 .
𝐴𝐺 and 𝐸𝐹 are not the only modal operators in CTL, but they are
sufficient for examination of softlocks and related phenomena.

Since we are primarily interested in softlock detection, we can
encode this problem in CTL as follows. First, we add a label 𝑔𝑜𝑎𝑙
to the set of atomic propositions and apply it to the set of ending
states for a level. This set of ending states can be defined by a
certain position, but can also include various other factors such as
having defeated a certain boss. Now we formulate the “no softlocks”
property as:

𝑃 = 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙))
In plain English, this is saying it is possible to reach the goal

state from every reachable state. Working from the inside out, 𝑔𝑜𝑎𝑙
says the current state is a goal. 𝐸𝐹 (𝑔𝑜𝑎𝑙) says it is possible to reach
a goal state from the current state. 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)) says that from
all states reachable from the current state, a goal state is possible
to reach. If 𝑃 holds for all initial states in 𝑀 , we can say that the
game that𝑀 represents is free of softlocks.

To show how it applies, consider the example shown in Figure 1.
We label all states where Mario is touching the flag with 𝑔𝑜𝑎𝑙 . At
the bottom of the pit, the property 𝐸𝐹 (𝑔𝑜𝑎𝑙) does not hold because
there is no path to the flag. The property 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)) does not
hold at the (singular) starting state because it is possible to reach
the bottom of the pit where 𝐸𝐹 (𝑔𝑜𝑎𝑙) does not hold. Thus, 𝑃 does
not hold for the structure𝑀 . From a formal verification perspective,
this system has simply failed verification. From a human design
assistance perspective, however, this is an opportunity to do addi-
tional reasoning to highlight for a designer where this softlock can
occur and which style of play could give rise to it.

This formulation is not the only possible definition for softlocks.
If a game doesn’t have a clear goal, it is also possible to define a

𝑠𝑡𝑎𝑟𝑡 label in a similar way and enforce 𝐴𝐺 (𝐸𝐹 (𝑠𝑡𝑎𝑟𝑡)) to ensure
that the player will not get stuck in a part of the level separated
from the starting point.2 In this paper we focus on𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)) as
an important special case of applying CTL formulas to games. CTL
is flexible, and it can also express many other desirable properties.3

3 LEVEL DESIGN FORMALISM
In this section we discuss a tile-based abstraction of Super Metroid
which can be used for softlock detection. This abstraction is hand-
authored (i.e. not automatically derived from the game’s executable
format or source code), and the techniques used to create it are
also discussed. The code for this project is available at https://github.
com/aremath/sm_rando/blob/master/world_rando/model_checking.
py.

3.1 Motivation for Abstraction
Abstraction is a commonly-used verification technique that reduces
the problem size. For verifying systems formally using CTL, the
usual requirement is that the abstracted system bisimulates the
original system [2, c.]. This means that the original system and the
abstraction will satisfy the same CTL properties. The abstraction
used in this paper does not attempt to bisimulate Super Metroid, and
so the abstract version of a level may not satisfy all properties of
the original level in the base game. It is thus important to motivate
the reasons behind using such an abstraction, and discuss how it
can still be useful despite these shortcomings.

The primary motivation behind constructing this abstraction is
feasibility. In order to verify properties about Super Metroid levels
without abstraction, we would need to verify properties of the
reachable states at the level of the game console hardware state (e.g.
hundreds of thousands of bytes of main memory, various system
clocks, and sundry subsystems such as the audio processing unit).
High-fidelity hardware-modeling emulators for the Super Nintendo
Entertainment System (SNES) exist (e.g. higan4), and local state
space exploration using this level of simulation has been used in
previous work [1, 27]. The CTL formalism, however, is most useful
when the entire state space can be explored. (The SNES has 128
KiB of RAM, making the possible state space preposterously large.)
Even considering just the reachable states, trying to represent this
space in terms of ground truth hardware is completely impractical.
Typical abstraction techniques require building the system before
creating the abstraction, so even creating a bisimulative abstraction
of the true game state is infeasible.

Meanwhile, even if it were possible to represent the entire tran-
sition system of the game, such a system would not be ideal for
verifying properties of videogames played by human players. For
example, by simulating a system that allows frame-by-frame input,

2The 𝑠𝑡𝑎𝑟𝑡 label would probably be defined in such a way as to include all game states
where the player is in the starting location, not just in one specific starting state. It
could be enough that the player can return home, not requiring them to also shed any
special statuses they collected when they were away.
3For example, it is possible to verify that a certain item must be obtained in order
to pass a certain door. To do this, introduce a label 𝑑𝑜𝑜𝑟 and apply it to all states
that have positions immediately past the door. Then introduce a label 𝑖𝑡𝑒𝑚 which
applies to all states where the player has that item. Now we can verify the property by
checking whether the level satisfies𝐴𝐺 (𝑑𝑜𝑜𝑟 → 𝑖𝑡𝑒𝑚) .
4https://higan.dev/

3

https://github.com/aremath/sm_rando/blob/master/world_rando/model_checking.py
https://github.com/aremath/sm_rando/blob/master/world_rando/model_checking.py
https://github.com/aremath/sm_rando/blob/master/world_rando/model_checking.py
https://higan.dev/

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

FDG ’21, Montreal, Canada,
Ross Mawhorter and Adam Smith

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the system could verify reachability properties that require frame-
perfect timing. Concretely, a level might pass softlock verification
only to manifest a softer sense of softlocking where no human hand
is capable of executing the required (and technically feasible) moves
to get unstuck. Hard-to-execute and counterintuitive glitches in the
game would also allow the system to verify reachability properties
using paths that the average player of the game would never even
imagine trying to accomplish. Finding these bugs in the game is a
worthy aim, but it is not necessary in order to detect situations as
in Figure 1.

That a level design is free from softlocks is a fact about the
player experience within the level. Thus we want to verify the
set of playable traces, and we use abstraction to define that set.
This abstraction will not model the original game exactly, but it
will still be able to provide useful feedback to level designers. The
abstraction created for this paper was designed by hand; the future
work section discusses the possibility of using actual play data in
order to define the abstraction automatically.

3.2 Abstraction
We begin by drawing a distinction between the fundamental rules
of the game (which are fixed), the particular problem instance under
consideration (which varies across applications of the algorithm),
and the player state within that instance, (which varies within a
single application of the algorithm). Separating the fundamental
rules from the problem instance is important because multiple level
designs for the same game should be analyzed under the same
rules. For platformers, the player character’s position and velocity
are part of the player state, the level design that the player moves
within is a problem instance, and the collision detection rules are
part of the fundamental rules. In a Zelda-like game, the number of
keys obtained and the set of opened doors would be player state
variables since they will alter during a single playthrough of a
problem instance. The placement of the walls and doors is part of
the problem instance because it differs between level designs but
is static within a playthrough. Finally, the rules that prevent the
player from walking through walls are part of the fundamental
rules, which are the same for each level design.

Each state in the Kripke structure corresponds to a player state
from the game. The problem instance and the fundamental rules
together govern which transitions are possible. For example, if
walls cannot be changed by the player (part of the instance rather
than the player state), the set of walls is used to disallow transitions
between states where the player would travel through a wall. In this
way, the level geometry and other aspects of the problem instance
are implicitly encoded in the transition relation. While a complete
model would include enemies and other moving entities we ignore
them here for the sake of simplicity.

Like many platformers, Super Metroid has tile-based level geom-
etry, so we can abstract the player position to a single tile rather
than a pixel or subpixel position. We can also abstract the player
velocity to tiles as well. After running for three tiles, the player has
some internal horizontal velocity. In the abstract, we can denote
this as velocity three. Running right (or left) one tile increases (or
decreases) the player velocity by one, up to a maximum determined
by the in-game maximum running speed. This abstraction ensures

that movements will be consistently possible while also dramati-
cally reducing the set of possible velocities. Since Super Metroid has
multiple physics schemes (for example, if the player is underwater),
we add a discrete variable to the velocity representing what kind
of velocity it is. Two tiles of underwater velocity is treated as com-
pletely distinct from two tiles of velocity gained by running when
the player is in the air. Player velocity and position are the only
two numerical state variables (each represented in-game as 4 bytes
per coordinate, or 8 bytes total). The other player state variables
can be modeled discretely without abstraction. In our model these
are the player pose and the item set.

Pose determines the player hitbox, and whether the player is
currently jumping. In Super Metroid, the player cannot jump again
in mid-air without the Space Jump powerup, so the player state
must keep track of that. The player hitbox can also change from a
1× 3 tile standing pose to a 1× 2 spin-jumping pose, and a 1× 1 ball
pose. This allows the player to access different sizes of passageway
and interact with the level geometry in different ways.

Items are the primary way that players gain abilities to interact
with the game world. Once an item has been picked up, a player
has the corresponding ability forever. These can range from the
ability to destroy new block types, to the ability to jump multiple
times in midair.

The set of possible player states 𝑆 is thus the Cartesian product
of the (discretized) position and velocity with the player pose and
the player item sets. Since CTL properties hold over paths from an
initial state, we can restrict 𝑆 to the set of states reachable from the
initial states 𝐼 without changing which properties will be satisfied.

3.3 Representing Abstract Movement
To formulate a Kripke structure, wemust now build𝑅, the transition
relation. This means constructing a model of how the player moves
through the level. Whether a player can perform an action depends
on both the player state and the problem instance. For example,
using a key to open a door requires both that the player has an
appropriate key, and that there is a door adjacent to the player. A
movement rule can be thought of as a function which maps a set
of input configurations (including both player state and problem
instance) to a set out output states, which are new states the player
can transition to if the conditions are met.

Because the fundamental movement rules for Super Metroid do
not depend on the player position, we can formulate them without
reference to a specific problem instance. Instead, they depend on
only local features of the problem instance (i.e. which tiles are solid
or not near the player) to determine whether an action is possible.

This reduces the problem of creating 𝑅 to one of defining these
movement rules in terms of their domains and ranges. While in the-
ory these can be arbitrary sets of states, they will typically fall into
simpler categories (such as rules that can only be applied when the
vertical velocity is ≥ 0). To this end, we created a Domain-Specific
Language for specifying rule domains and ranges. In general, the
outcome of a rule can depend on different geometries in the domain.
For example, applying a single jump rule can have different results
depending on whether the player would collide with a wall during
the jump.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Softlock Detection for Super Metroid with Computation Tree Logic
FDG ’21, Montreal, Canada,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

JumpRight

Before:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Stand
Items required: None

After:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Jump

Morph

Before:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Stand
Items required: Morph Ball

After:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Morph

MorphStep

Before:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Morph
Items required: None

After:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Morph

Land

Before:
Vertical velocity: ≥0
Horizontal velocity: Run, 0
Pose: Jump
Items required: None

After:
Vertical velocity: 0
Horizontal velocity: Run, 0
Pose: Stand

Figure 2: Four example movement rules which are parsed by the system. Each rule consists of a text description of the non-
spatial domain and range along with an image that describes the spatial aspect of the domain and range. For the image, gray
represents solid tiles, black represents air tiles, and white tiles are unspecified (can be any tile). The starting player position
is outlined in red, and the ending position in green. The gray and black tiles specify the local problem instance domain.

Figure 2 shows four example transition rules. Each rule is defined
using both an image and text. The image captures the local level
geometry and the relationship between the initial and final player
positions. The text captures the non-spatial aspects of the rule: the
initial and final possible player velocities, poses, and item sets.5 In
these examples, the player velocity is mostly unchanged: for exam-
ple, inMorphStep, the player can achieve maximum rolling speed
across a single tile, so the player velocity is constant even though
this rule represents horizontal movement. In the Land example, the
player position does not change. This rule specifies how a falling
player can lose all of their vertical velocity to land on the ground, as
long as their initial velocity is positive (towards the ground). This
image-based language makes it easy to author movement rules.
We also used this language to encode level geometries and their
start/goal states.

5For more information, refer to https://github.com/aremath/sm_rando/blob/master/
encoding/rules/rules.yaml

After parsing each of the given transition rules, the Kripke struc-
ture can be built. First, we search over application of the movement
rules to find the set of reachable states. In the Kripke structure
𝑀 = (𝑆, 𝐼 , 𝑅, 𝐿) this set of reachable states is 𝑆 . Then, for each reach-
able state, we attempt to use every possible transition and record
the successful transitions as 𝑅. We use the user-provided defini-
tion of 𝐼 as the starting state, and we label all user-specified 𝑔𝑜𝑎𝑙
states, which defines 𝐿. This process will also implicitly encode the
level geometry, since rule application will fail when the local level
geometry is not in the rule’s domain.

4 VERIFYING LEVEL DESIGNS
Once the Kripke structure for a given set of movement rules and
given level geometry has been obtained, we can use an off-the-shelf
model-checker to determine whether the level satisfies properties
in many logics. This section uses a detailed example to show how
this verification works and how the system finds and explains
counterexamples when the desired property is not satisfied.

5

https://github.com/aremath/sm_rando/blob/master/encoding/rules/rules.yaml
https://github.com/aremath/sm_rando/blob/master/encoding/rules/rules.yaml

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

FDG ’21, Montreal, Canada,
Ross Mawhorter and Adam Smith

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: A fragment of level design from Super Metroid. For the purposes of this paper, we model the initial state as standing
on the bottom of the elevator (the yellow pad) with no items. The ending state is entering the door transition at the upper
right (past the pink missile door). To enter the ending state, the player must acquire the morph ball (left). They then travel
to the right and down to obtain the missiles (bottom), then climb back up and destroy the door cap with the missiles. The red
circle indicates a tight passageway where the morph ball must be used before obtaining the missiles.

4.1 Verification Example
To demonstrate how the system works, we focus on a single por-
tion6 of the Super Metroid map shown in Figure 3. In this level,
there are two items, the morph ball at the top left, and the missiles
at the bottom right. The morph ball allows the player to enter small
passageways, and the red circle in Figure 3 shows where the player
must use it (squeezing through a narrow passage) to obtain the mis-
siles. This missile upgrade allows the player to destroy the missile
door (pink) in the top right and reach the 𝑔𝑜𝑎𝑙 . Because the player
state includes the items the player has collected, the shortest path
to reach the 𝑔𝑜𝑎𝑙 state actually starts out by traveling left to obtain
the morph ball. In this example, there is a single 𝑔𝑜𝑎𝑙 state, but in
general many 𝑔𝑜𝑎𝑙 states can be specified.

As in the original game, it is possible to get from the 𝑠𝑡𝑎𝑟𝑡 state to
the 𝑔𝑜𝑎𝑙 state. In the language of CTL, this design satisfies 𝐸𝐹 (𝑔𝑜𝑎𝑙).
In the terms used by past work on Mario level generation, this level
is playable (or, winnable).

Beyond this basic fact, there are many useful properties we can
verify about this level design. For example, it also has the property of
𝐴𝐺 (𝑔𝑜𝑎𝑙 →𝑚𝑜𝑟𝑝ℎ). That is, entering the𝑔𝑜𝑎𝑙 state implies that the
player has obtained the morph ball. Finally, we can verify the “no-
softlocks” property: this level actually does satisfy 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙))
in the abstraction described in section 3. Not only can the player
reach the goal, it is impossible for them to reach a state from which
the goal is unreachable. By contrast, the level design sketched in
Figure 1 would be considered playable despite the potential for
softlocking.

6This portion represents the areas known to the speedrunning community as theMorph
Ball Room, Construction Zone, and First Missile Room. See https://wiki.supermetroid.
run/Morph_Ball_Room

To see how softlocks can be detected, we introduce a plausible
softlock to this level as shown in Figure 4. Figure 4(a) shows one
modification to the original level (allowing the player to explore a
new passageway in the bottom-left while in the morph ball pose).
By editing just six more tiles (opening up the tight passageway
near the missile powerup), we arrive at Figure 4(b). Neither local
change introduces a softlock by itself, but the combined changes do.
Surprisingly, the softlock manifests in the region of the first change
only after a seemingly unrelated and small change is made else-
where. As shown in Figure 5, the player can now find themselves in
the new narrow passageway on the far left having picked up mis-
siles but not the morph ball. Unable to jump up or roll out (in ball
form), they are softlocked. While the second change might be seen
as forgiving or permissive (it allows the player more freedom to
collect powerups in the order they choose), it actually permits them
to get themselves in trouble without hope for recovery. While it is
no surprise that small level design changes can have large impacts
on the player experience, this example demonstrates the elusive-
ness of potential softlocks. Even in a nominally two-dimensional
platformer game, the combinatorial nature of backtracking through
locations with various item combinations can exhaust a designer’s
ability to identify potential softlocks.

4.2 Visualizing Counterexample Traces
When a model does not meet a verification standard, the usual
course of action is to provide a counterexample that demonstrates
the failure. For many CTL properties, it is not obvious how to show
a counterexample that disproves the property. For example, if we
have the property 𝐸𝐹 (𝑔𝑜𝑎𝑙), a disproof would require showing that

6

https://wiki.supermetroid.run/Morph_Ball_Room
https://wiki.supermetroid.run/Morph_Ball_Room

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Softlock Detection for Super Metroid with Computation Tree Logic
FDG ’21, Montreal, Canada,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: Two modified abstract levels (a) and (b) based on the real level shown in Figure 3. The path on the left (entrances
circled) has been added to illustrate how the system detects softlocks. In each level, the blue arrow points from the 𝑠𝑡𝑎𝑟𝑡 state
to the 𝑔𝑜𝑎𝑙 state. Design (b) is identical to (a) except where circled. Design (a) satisfies 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)), while design (b) does not.
Figure 5 shows why (b) fails this verification. The two item upgrades (missiles and morph ball) are highlighted in orange.

𝐴𝐺 (¬𝑔𝑜𝑎𝑙) (all reachable states do not have the 𝑔𝑜𝑎𝑙 label), which
does not have a simple visual interpretation.

However, for the general property 𝐴𝐺 (𝑝), a counterexample
consists of a sequence of gameplay actions that terminates in a
state where 𝐸𝐹 (𝑝) does not hold. For softlock detection, this means
finding a path to a state where the goal is no longer reachable. By
studying the path, a level designer can learn why the property was
violated, and understand what changes they should make to the
level in order to fix it. Figure 5 is a trace that shows why Figure 4(b)
does not satisfy𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)). In this trace, the player accesses the
missiles before getting the morph ball. Because of the higher ceiling
created by the the edit circled in red in Figure 4(b), the player can
simply walk through to acquire the missiles. After that, they can
jump over the morph ball and enter the passageway that requires
missiles to enter but morph ball to escape, becoming stuck.

In this example, a designer can see that the root cause of the
softlock was enabling access to missiles before morph ball. While
they can fix this by editing the passageway back to the way it was in
Figure 4(a), any other change they make that ensures the player will
have morph ball before entering the lefthand passageway would
also work.

4.3 Computational Efficiency
The efficiency of this system depends on many factors. The size
of the Kripke structure that is used to model gameplay depends
both on the size of the level and the number of transition rules in
the player movement abstraction, as well as other factors like the
number of item upgrades present. Once the structure is built, the
desired CTL property must be verified. This depends on the size
and complexity of the property, as well as the speed of the software
used to verify the Kripke structure. Formally, the algorithm for
checking whether a given Kripke structure𝑀 = (𝑆, 𝐼 , 𝑅, 𝐿) satisfies
a given CTL formula 𝑝 has time complexity 𝑂 (|𝑝 | · (|𝑆 | + |𝑅 |)). For
this system, however, the number of states can be quite large. Since
our abstraction models player velocity and item sets, the number
of states per position could depend exponentially on these other
factors.

Despite these potential problems, the system can verify our exam-
ple levels quite quickly in practice. Table 1 summarizes the running
time information for verifying these examples. All tests were per-
formed on a personal laptop with an Intel i7 processor and 16 GB
of RAM using an unoptimized single threaded Python program
for search. After enumerating the state space and its transitions,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

FDG ’21, Montreal, Canada,
Ross Mawhorter and Adam Smith

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Example level 4(b) and counterexample trace output. The level satisfies 𝐸𝐹 (𝑔𝑜𝑎𝑙) (the player can reach the goal from
the initial state) but not 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)) (they can reach a state from which the goal is no longer reachable). Arrows are placed
between consecutive player states. The color of an arrow signifies where it comes in the trace. Earlier transitions have blue
arrows, shifting towards red later in the trace. This trace shows the player traveling to the right to pick up missiles, traveling
back to the left and jumping over themorph ball power up, then falling into the pit and getting stuck. In 4(a) this is impossible
because the player must pick up the morph ball power up before getting the missiles. Thus, even if they fall into the pit, the
player can use the exit route to leave.

the Kripke structure is quickly assembled and checked using the
pyModelChecking library.7 In the example from Figure 4(a), the
search enumerates 3645 states over a total of 933 total valid tile-level
positions (positions where the player hitbox does not intersect a
wall), for an average of 3.91 states per tile. In Figure 4(b), the search
enumerates 4700 total states, or 5.03 states/tile. This increase in
reachable states is due to newly-reachable states where the player
has obtained missiles without the morph ball.

This process can scale well to larger levels. If the number of
states per position and the number of transitions per state are
constant, then the running time increases linearly with the number
of new positions as the size of the level design increases. However,
adding additional items might increase the number of states at each
position exponentially. Verifying an entire game world with many
items (and other additions to player state such as bosses defeated
or keys) may still be out of reach.

5 GLOBAL STATE SPACE STRUCTURE
Since the Kripke structure represents the state space as a graph, we
can use spectral embedding8 [16] to visualize it as a two-dimensional
diagram. Figures 7 and 6 show the structure of the level design in
Figure 4(b). At the global scale, there are two broad paths from
the initial state to the goal state. On one path, the player picks up
the morph ball and then missiles. On the other, they pick up the
missiles before morph ball, creating the potential for a softlock.

The structure of the embedded graph is locally almost one-
dimensional, and movement is mostly either towards or away from
item upgrade locations. This coincides with progress in the game be-
ing strongly tied to collecting spatially-separated items. Where the
graph embedding shows branches, the player may make a choice

7https://github.com/albertocasagrande/pyModelChecking
8Specifically, we use sklearn.manifold.SpectralEmbedding.

Start State

Goal State Softlock State

Figure 6: Spectral embedding, compare Figure 7.

about which segment to explore. For example, the player can enter
the lower-left passage from the right side before collecting missiles.
However, since the player cannot jump out, they have to leave the
way they came. This gives rise to the short blue spur at the left
of the embedding. In the same way, the small pink loop near the
bottom of the figure exists because the player who has missiles and
morph ball has two ways of traversing the left-side passageway.

In Mario it was convenient imagine that the state space was
roughly two-dimensional. However, this view ignores some of the
most salient structures in Super Metroid.

6 CONCLUSION AND FUTUREWORK
In this paper we used model checking to detect softlocks in Super
Metroid. Underlying those specific contributions are broader ideas
that should be considered in future research. The playability of a
specific level design is more than just reachability of a goal location.

8

https://github.com/albertocasagrande/pyModelChecking

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Softlock Detection for Super Metroid with Computation Tree Logic
FDG ’21, Montreal, Canada,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Search to Enumerate States Adding Graph Edges Checking 𝐴𝐺 (𝐸𝐹 (𝑔𝑜𝑎𝑙)) Total

Figure 4(a) 3645 states in 3.24s
(1125 states/sec)

15344 edges in 3.02s
(5081 edges/sec) 0.45s (Property is True) 6.72s

Figure 4(b) 4700 states in 4.07s
(1155 states/sec)

19625 edges in 3.99s
(4919 edges/sec) 0.60s (Property is False) 8.67s

Table 1: Summary of wall-clock time used in the verification examples in Figure 4. Times are averaged over 5 trials.

Start State

Goal State

Softlock State

{}
{Morph}
{Missiles}
{Morph, Missiles}

Figure 7:Hybrid spectral embedding of the level design in Figure 4(b). Each state is colored by which items the player has when
in that state. Three important states are shown larger: The red state is the starting state, the pink state is the goal state, and
the green state is the softlock state found in Figure 5. State positions are based on both the game world position and a spectral
embedding of the state graph shown in Figure 6.

In Mario, many of these complex properties are hidden because of
the simple gameplay mechanics. As mentioned earlier, a softlock
in a Mario level will always be spatially near the design element
that causes it. In order to generate playable levels for games with
complex mechanics, we must peel back certain assumptions that
apply only to Mario and Mariolike games. This paper takes a key
step in that direction by focusing on a game where all directions of
movement are relevant, and consideration of game state beyond the
obvious two-dimensional tile grid is critical for analyzing playabil-
ity. Having no softlocks is just one example of the many critical or
desirable properties of playable levels. Developing a rich set of for-
mal properties that collectively express playability is an important
direction for future work.

There are also a two main concrete unsolved problems in apply-
ing our approach to new games. One is the problem of creating
an accurate movement model, the other is solving the problem of
scaling. First, the movement model used for verification here was
hand-authored, and may not fully describe the range of possible
behaviors in the game. To ensure that the abstraction is sufficiently

grounded in reality, this model should be validated by comparing it
to actual gameplay. One way to do that would be to use the Reveal-
More algorithm [1] together with a gameplay trace from the actual
game to generate sequences of real states. By converting those real
states to abstract states and checking whether the movement model
is consistent with those movements, the abstract movement model
could be validated. This method might also be used to generate a
movement model from a gameplay trace. Game designers could
then generate an accurate abstracted movement model for their
game just by playing it, rather than carefully maintaining the hand
authored abstraction as the design changes. The emerging litera-
ture on learning-based testing (LBT) offers some guidance in this
direction [20].

Second, while our technique is efficient for small example levels,
there are still too many possible states to allow practical verification
of the entirety of Super Metroid. Scaling this idea to verify entire
game worlds can be done by analyzing their individual components
in a modular fashion. To do this we must efficiently combine sub-
verifications for level components into a verification for the entire

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

FDG ’21, Montreal, Canada,
Ross Mawhorter and Adam Smith

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

game. The idea of modular verification is well known in the formal
methods literature [19], but it must be adapted to the distinct kind
of modules relevant to level designers. It is not yet clear how to
retrofit methods that combine proofs for local functions in software
source code to combine proofs for local regions in a game world.

Finally, level design is a great domain for applying model syn-
thesis techniques. Given a partially-designed or even a completely
blank level, the unspecified parts can by synthesized while guaran-
teeing certain CTL properties over the entire space of play. This
could be used to create a gameplay-aware level design assistant
which guarantees more than simple goal reachability. Applying
CTL techniques to mixed-initiative design could be used to create
a system like Tanagra [23] for designing Metroid-like games. This
system might be able to suggest the design in Figure 4(a) from a
user-input 4(b).

All of these ideas stem from the concept that playable levels
follow certain unspoken rules. By exploring the space of these
principles, we can make level design and analysis systems that can
reason about playability, and see hidden flaws in levels that could
be missed by human designers.

REFERENCES
[1] K. Chang, B. Aytemiz, and A. M. Smith. 2019. Reveal-More: Amplifying Human

Effort in Quality Assurance Testing Using Automated Exploration. In 2019 IEEE
Conference on Games (CoG). https://doi.org/10.1109/CIG.2019.8848091

[2] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem.
2018. Handbook of Model Checking (1st ed.). Springer Publishing Company,
Incorporated. a. Section 2.2.1, p.30, b. Section 2.4.1 p.53, c. Section 13.3, p.394.

[3] M. Cook and A. Raad. 2019. Hyperstate Space Graphs for Automated Game
Analysis. In 2019 IEEE Conference on Games (CoG). https://doi.org/10.1109/CIG.
2019.8848026

[4] Seth Cooper and Anurag Sarkar. 2020. Pathfinding Agents for Platformer Level
Repair. Proceedings of the Experimental AI in Games (EXAG) Workshop at AIIDE
(2020).

[5] Sega Corporation. 1991. Sonic the Hedgehog.
[6] Fernando de Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017.

AI-Based Playtesting of Contemporary Board Games. In Proceedings of the 12th
International Conference on the Foundations of Digital Games (Hyannis, Mas-
sachusetts) (FDG ’17). Association for Computing Machinery, New York, NY,
USA, Article 13, 10 pages. https://doi.org/10.1145/3102071.3102105

[7] Andrew Hoyt, Matthew Guzdial, Yalini Kumar, Gillian Smith, and Mark O Riedl.
2019. Integrating Automated Play in Level Co-Creation. Proceedings of the
Experimental AI in Games (EXAG) Workshop at AIIDE (2019).

[8] Summerville Adam J. and Mateas Michael. 2016. Super Mario as a String: Plat-
former Level Generation Via LSTMs. In Proceedings of the First International
Joint Conference of DiGRA and FDG. Digital Games Research Association and
Society for the Advancement of the Science of Digital Games, Dundee, Scotland.
http://www.digra.org/wp-content/uploads/digital-library/paper_129.pdf

[9] Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. 2014. Monte Mario:
Platforming with MCTS. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. 293–300.

[10] Pearson Jordan. 2015. Why Artificial Intelligence Researchers Love ’Super Mario
Bros.’. Motherboard (Oct 2015). https://www.vice.com/en/article/8q84zz/why-
artificial-intelligence-researchers-love-super-mario-bros

[11] Nintendo Co. Ltd. 1983. Super Mario Bros.
[12] Nintendo Co. Ltd. 1986. Kid Icarus.
[13] Nintendo Co. Ltd. 1986. The Legend of Zelda.
[14] Nintendo Co. Ltd. 1994. Super Metroid.
[15] John McCarthy. 1990. Chess as the Drosophila of AI. In Computers, chess, and

cognition. Springer, 227–237.
[16] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering:

Analysis and an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESS-
ING SYSTEMS. MIT Press, 849–856.

[17] J. C. Osborn, Brian Lambrigger, and M. Mateas. 2017. HyPED: Modeling and
Analyzing Action Games as Hybrid Systems. In AIIDE.

[18] Chris Pedersen, Julian Togelius, and Georgios N Yannakakis. 2009. Modeling
Player Experience in SuperMario Bros. In 2009 IEEE Symposium on Computational
Intelligence and Games. IEEE, 132–139.

[19] L. Pick, G. Fedyukovich, and A. Gupta. 2020. Automating Modular Verification
of Secure Information Flow. In 2020 Formal Methods in Computer Aided Design
(FMCAD). 158–168. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_23

[20] Muddassar Sindhu. 2013. Algorithms and Tools for Learning-Based Testing of
Reactive Systems. Ph.D. Dissertation. KTH Royal Institute of Technology.

[21] Adam M. Smith and Eric Butler. 2013. Quantifying over Play: Constraining
Undesirable Solutions in Puzzle Design. In In Proceedings of ACM Conference on
Foundations of Digital Games.

[22] A. M. Smith, M. J. Nelson, and M. Mateas. 2010. LUDOCORE: A Logical Game
Engine for Modeling Videogames. In Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games. 91–98. https://doi.org/10.1109/ITW.2010.
5593368

[23] Gillian Smith, Jim Whitehead, and Michael Mateas. 2011. Tanagra: Reactive Plan-
ning and Constraint Solving for Mixed-Initiative Level Design. IEEE Transactions
on computational intelligence and AI in games 3, 3 (2011), 201–215.

[24] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. 2010. The 2009
Mario AI Competition. In IEEE Congress on Evolutionary Computation. IEEE.

[25] Nathan Partlan Vivian Lee and Seth Cooper. 2020. Precomputing Player Move-
ment in Platformers for Level Generation with Reachability Constraints. Ex-
perimental AI in Games (Oct. 2020). http://www.exag.org/papers/EXAG_2020_
paper_13.pdf

[26] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebas-
tian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolutional
Generative Adversarial Network. In Proceedings of the Genetic and Evolutionary
Computation Conference. 221–228.

[27] Zeping Zhan, Batu Aytemiz, and Adam M. Smith. 2018. Taking the Scenic
Route: Automatic Exploration for Videogames. CoRR abs/1812.03125 (2018).
arXiv:1812.03125 http://arxiv.org/abs/1812.03125

[28] Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M Smith. 2018. Crawling,
Indexing, and Retrieving Moments in Videogames. In Proceedings of the 13th
International Conference on the Foundations of Digital Games.

10

https://doi.org/10.1109/CIG.2019.8848091
https://doi.org/10.1109/CIG.2019.8848026
https://doi.org/10.1109/CIG.2019.8848026
https://doi.org/10.1145/3102071.3102105
http://www.digra.org/wp-content/uploads/digital-library/paper_129.pdf
https://www.vice.com/en/article/8q84zz/why-artificial-intelligence-researchers-love-super-mario-bros
https://www.vice.com/en/article/8q84zz/why-artificial-intelligence-researchers-love-super-mario-bros
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_23
https://doi.org/10.1109/ITW.2010.5593368
https://doi.org/10.1109/ITW.2010.5593368
http://www.exag.org/papers/EXAG_2020_paper_13.pdf
http://www.exag.org/papers/EXAG_2020_paper_13.pdf
https://arxiv.org/abs/1812.03125
http://arxiv.org/abs/1812.03125

	Abstract
	1 Introduction
	2 Background
	2.1 Prior Work
	2.2 Kripke Structures and CTL

	3 Level Design Formalism
	3.1 Motivation for Abstraction
	3.2 Abstraction
	3.3 Representing Abstract Movement

	4 Verifying Level Designs
	4.1 Verification Example
	4.2 Visualizing Counterexample Traces
	4.3 Computational Efficiency

	5 Global State Space Structure
	6 Conclusion and Future Work
	References

