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Fig. 1. Unconstrained WFC + Neural Decoder outputs. Note the directional transitions between terrain types, units spanning multiple
tiles, and an imperfectly reconstructed building (only one instance of this building is seen in the training input). Top visualizes the
latent tile selected at each location (from a vocabulary of just 12 latent codes) while bottom shows synthesized color images.

We introduce a hybrid neural + symbolic approach to map generation that combines neural discrete representation learning with
symbolic constraint solving methods. In application toWarCraft II and Super Metroid map designs, we show how a vocabulary of
directly manipulable latent tiles can be inferred from the raw pixels of design training data. Despite working with a very small tile
vocabulary, our method is able to express a very large effective set of unique tiles at the level of pixel appearances. This work shows
new ways of combining generative methods, resulting in directly controllable generators for domains that are primarily specified only
by visual design examples.
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Fig. 2. Overview of our neurosymbolic map generation approach. Grid generation can accept additional constraints on the tile grid.

1 INTRODUCTION

Image generation systems based on neural networks have been able to create convincing, high-fidelity images, from
faces [8] to animals [1]. This capability has been of interest to the game content generation community [11]. However,
one common shortcoming of these learning based methods is that they are difficult to control. Simply asking designers
to provide more and more examples of the desired kind of content is not a satisfying alternative [10]. Controllability is
especially important when it comes to generating videogame maps. In order to support specific player experiences, a
generated map must obey hard constraints [13]. Symbolic artificial intelligence (AI) methods such as constraint-solving
offer the ability to directly enforce key properties on the output of a generator [14], but it is challenging to combine
them with neural techniques.

In this paper we introduce a neurosymbolic [4] approach to generating videogame map images in which discrete
representation learning methods (VQ-VAEs) [18] are used to produce a vocabulary of latent tile descriptors. Novel
arrangements of tiles produced by a constraint-based map generator (WFC) [9] are rendered in a context-sensitive
way, allowing the expression of a large effective tileset despite working with a small latent vocabulary. Figure 1 teases
results of applying our method to aWarCraft II map setting.

2 APPROACH: VQ-VAE + WFC

Using the WaveFunctionCollapse (WFC) algorithm (a family of symbolic constraint-solving methods) to generate a
new map image requires a carefully curated tileset. The input map is described using indexes into that tileset and, after
generating a new map of tile indexes, they can be replaced with the corresponding tile image to create a map image.
Our method (sketched in Figure 2) obviates the need for a tileset by learning tiles using a vector-quantizing variational
autoencoder (VQ-VAE). The learned VQ-VAE model provides both a mapping from patches of the original image to the
corresponding tile indices, as well as a (context-sensitive) mapping from the tile index grid back to image pixels.

A traditional autoencoder (AE) learns to summarize input images using a bottleneck representation consisting of a
vector of continuous values. A vector-quantizing (VQ) autoencoder, on the other hand, uses discrete integers as the
bottleneck representation. A trainable codebook supplies the vectors used in the decoder, and encoded vectors are
compressed by assigning them the integer index into the codebook of the vector most similar to them by Euclidean
distance.

In the training phase for our VQ-VAE model (shown in Figure 3), large patches of the training design image are
passed through a convolutional encoder model that reduces the image into a low-resolution grid of high-dimensional
vectors. Each vector on this grid is used to lookup the nearest codebook vector. These quantized vectors are assembled
into a grid the same shape as the input to the quantization process. After this, a convolutional decoder model transforms
the grid into a high-resolution color image. The loss function forces this to resemble the original input. For more detail
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Fig. 3. Overview of our VQ-VAE used to compress continuous latent vectors into a discrete latent tile code vocabulary. The latent tile
codes are then used by the Wave Function Collapse algorithm to generate novel maps.

on the use of VQ-VAE to learn tiles for image generation, the reader should consult the upstream machine learning
literature [18].

Once training is complete, we can use the learned (quantizing) encoder to convert the large training design image
into a tile index grid using the latent tile vocabulary. This grid is used by WaveFunctionCollapse to generate novel tile
index grids. WFC consists of two parts: the adjacency learning, which translates the training data into constraint rules,
and the constraint solver, which generates a new configuration of rules that satisfies the constraints. For adjacency
learning, we used standard overlapping WFC with 2 × 2 tile patterns, which defines the constraint rules as patterns of
tile neighborhoods [9]. The solver then finds a solution that satisfies the rules, generating a new grid of tile indices.
Using the trained (dequantizing) decoder,1 we can synthesize novel high-resolution pixel grids (Fig. 6).

3 DEMONSTRATIONS

To show how this method can generate novel levels, we apply it to level images of two tile-based games:Warcraft II

and Super Metroid. A separate VQ-VAE model (encoder + decoder) is trained for each map.

3.1 WarCraft II

Warcraft II is a real-time strategy game released in 1995 by Blizzard Entertainment. Images of Warcraft II levels2 were
used to demonstrate VQ-VAE + WFC. Figure 4 shows the intermediate (quantized) latent tile representation of the
training design image and the corresponding output of the trained VQ-VAE model in reconstructing that data. Although
some of the textured detail of the tiles is missing, the overall image is quite similar to the input. Note how the light blue
“land” tile next to the dark blue “shore” tile successfully renders all needed cases of a coastline.

Figure 1 shows some results of our approach. Contextualized rendering allows many important effects. The different
terrain types blend together with transitions that depend on the surrounding tiles, the direction of the border, and the
neighboring terrain types. Because of this, many different tile images can be represented with only 12 latent tiles.3

Consider the two yellow tiles in Figure 4. Even though they are represented by the same index, they are reconstructed
into different pixel images–one for a “left facing coast” tile and the other a “right facing coast” tile. This capability

1The decoder in an autoencoder works analogously to the generator in GAN models.
2https://vgmaps.com/Atlas/PC/WarCraftII-BeyondTheDarkPortal-Humans-Mission01-Alleria’sJourney.png
3A 3 × 3 grid with 12 possible placement in each location gives rise to billions of possible combinations, some of which are directly supervised by the
training data and others to be covered by the decoder network’s generalization abilities.
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allows us to reconstruct maps that respect tile transitions and unit placements with a comparatively low number of
distinct tile codes.

3.2 Super Metroid

Super Metroid is a platformer released in 1994 by Nintendo. As withWarcraft II, we use a single level image to train
the VQ-VAE network, and the resulting encoded image is used to create the tile sets for WaveFunctionCollapse (see
Figure 5). Fewer latent codes were used in Metroid (8 vs. 12), since the in-game image representation of any given tile
does not depend on neighboring tiles. Figure 6 shows novel level images generated using WaveFunctionCollapse.

However, unlike the Warcraft II examples, these level images were generated under specific constraints that certain
tiles be part of a door or an item pedestal. Given a partial grid of latent tile codes, WFC can correctly complete the
blank regions. To control the output (placing a door or an item in a certain location), a user can first use the encoder on
the original input to find the arrangement of latent tiles for a given feature. Then, the user can provide a partial grid,
with those latent tiles at the desired position. These constraints influence the latent tile grid generated by WFC without
changing the way that the renderer creates the level image.

4 RELATEDWORK

By positioning our approach as neurosymbolic, we contrast it with previous symbolic and neural approaches to map
generation. This section briefly relates our work to these methods.

4.1 Symbolic PCG Methods

Maxim Gumin’s WaveFunctionCollapse (WFC) [5] is an obvious precedent for this work. Karth and Smith [9] interpreted
WFC as an instance of constraint solving methods for PCG, describing a rational reconstruction of WFC on top of the
constraint-programming technology answer-set programming (ASP). Earlier, Smith and Mateas described a general
approach to procedural content generation rooted in symbolic AI. In their paradigm, symbols and rules define a design
space model that declaratively captures the space of all designs that might be appropriate to a scenario. Constraint-
solving methods are then used to sample designs from this space that satisfy all modeled constraints. Where constraints
are used in other PCG systems [3, 7, 15] they relate explicitly defined symbols or predicates operating on them. In this
paper, constraints over the placement of one tile next to another in the grid are handled by WFC.

Fig. 4. The autoencoder model reconstructs colored images after passing them through a
bottleneck of discrete latent codes. Left, original data from WarCraft II map. Middle, the
discrete latent variables in the bottleneck layer of the VQ-VAE. Right, the reconstructed
image from the latent variables.

Fig. 5. Selected segment of the Super
Metroid map. Left shows source pixels
while right shows assigned latent codes
(8 latent codes).
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Fig. 6. Constrained WFC + Neural Decoder outputs from Super Metroid data. One specific grid location has been constrained to have
the appearance of a door tile while the other is constrained to be a power-up pedestal (outlined in red in left image).

Karth and Smith separately interpreted WFC as an instance of machine learning methods for PCG [10]. Under the
assumption that the input was already composed of recombinable tiles, WFC trivially learns which tiles may be placed
adjacent to one another. The idea of using adjacencies observed in the training data to influence adjacencies that will be
observed in generator’s output is also present in the multi-dimensional Markov chain (MdMC) work of Snodgrass and
Ontoñón [16]. By constrast, most work in procedural content generation via machine learning (PCGML) has opted to
use neural learning techniques.

4.2 Neural PCG Methods

A recent survey of deep learning for procedural content generation [11] reviews several neural approaches to example-
driven PCG. Among these, our current work makes useful contrast with past neural approaches toMario level generation.
Whether using a long short-term memory (LSTM) [17] or generative adversarial network (GAN) [20], these approaches
directly trained a neural generator that used continuous representations during the sampling of discrete output tiles.
While these approaches cleanly stayedwithin a single paradigm of AI, they limited the ability to directly and transparently
apply constraints to the desired outputs.

Outside of procedural content generation for games, the larger computer graphics and computer vision communities
are increasingly adopting discrete neural representation learning methods [18]. Even though image pixel data might be
considered continuous, transforming it into inherently discrete representations allows methods originally developed for
natural language processing (such as transformer networks [19]) to be cross-applied. In light of recent high-resolution
image generation models that use learned discrete tile representations [2, 12], the use of WFC in our work shows
constraint-solving methods as a symbolic alternative to the reasoning implicitly happening inside of transformer
networks.
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5 FUTUREWORK

Among a number of diverging next steps for this work, we wish to highlight two that tighten the integration between
the neural and symbolic parts.

Improving manipulability and recombinability of symbols: In the history of AI [6], symbols were associated
with representations that could be manipulated and recombined according to explicit rules, without consideration
for the symbols’ semantics. In the future, we might make the tile adjacency validity matrix (which functions as a
nondeterminstic ruleset for WFC) be a trainable part of the neural model and use specific neural architectures or losses
to encourage the matrix to have certain kinds of regularity or sparsity. We also might incorporate ideas from generative
adversarial networks (GANs) to make sure that unseen-but-legal arrangements of latent codes produce rendered outputs
that are similar to those seen in the training data. The goal is to make it so that any arrangement of symbols allowed
under the extracted constraints leads to plausible renderings.

Richer symbol grounding: Beyond asking the autoencoder network to reconstruct an image of a game map design,
we can ask the network to reconstruct additional data associated with the map (e.g. the precise tile data used by game
engines, presence and properties of game objects on the map, historical player behavior data, etc.). This may allow
reasoning about properties we want to constrain (such as reachability) using only the latent tile representation. We
imagine these additional signals to be presented to the autoencoder model as additional feature channels beyond the
red/blue/green pixel brightnesses currently modeled. By customizing the architecture of the decoder network (e.g.
changing the receptive field of certain outputs), we can express that some inherent features of a tile should be decodable
without any context whereas others might only emerge in consideration for broader regions. By grounding the latent
symbols in a richer semantic frame, the resulting generator might also be able to output a high-level interpretation of a
map design alongside the low-level data structures needed to represent that map in a target file format.

6 CONCLUSION

By training a VQ-VAE we can learn mappings for large source images, translating them into a latent representation.
The latent representation is used as input into WFC’s adjacency learning, defining the constraint rules that the solver
satisfices. Once the solver has come up with an acceptable solution, we translate the new configuration of latent tiles
back into the original pixel map via the VQ-VAE decoder, producing a context-sensitive rendering to the pixel image.

Constraint-based procedural content generation using symbolic methods has the advantage of being relatively easy
to control, especially when the desired uses have hard constraints that can be specified as rules. In contrast, deep neural
networks have demonstrated amazing generative abilities, but are difficult to control. This makes them much less useful
in a production environment, particularly for videogames, in which many content types have constraints: an amazing
level generator is not useful if the player cannot reach the end of the level. We demonstrate that a neurosymbolic
approach, combining discrete representation learning methods with a constraint-based generator, allows the expression
of large effective tilesets while offering enhanced controllability.
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