
Crawling, Indexing, and Retrieving Moments in Videogames
Xiaoxuan Zhang

Department of Computational Media
University of California, Santa Cruz

xzhan209@ucsc.edu

Zeping Zhan
Department of Computational Media
University of California, Santa Cruz

zzha50@ucsc.edu

Misha Holtz
Department of Computer Science
University of California, Santa Cruz

mnholtz@ucsc.edu

Adam M. Smith
Department of Computer Science
University of California, Santa Cruz

amsmith@ucsc.edu

ABSTRACT
We introduce the problem of content-based retrieval for moments
in videogames. This new area for artificial intelligence in games
exercises automated gameplay and visual understanding while mak-
ing connections to information retrieval. We propose a number of
techniques to discover the interesting moments in a game (crawl-
ing), show how to compress moments into an efficiently searchable
structure (indexing), and recall those moments most relevant to
a user-provided query (retrieving). We combine these ideas in a
prototype visual search engine and compare it with commercial
visual search engines. Searching within a corpus of moments from
Super Nintendo Entertainment System games using query images
extracted from YouTube videos, our prototype is able to identify
moments that web-oriented search engines rarely see.

CCS CONCEPTS
• Information systems → Information retrieval; • Computing
methodologies → Artificial intelligence; • Applied computing
→ Computer games;

KEYWORDS
Visual Search, Deep Learning, Relevance Feedback, Super Nintendo
Entertainment System, Speedrunning

ACM Reference Format:
Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith. 2018.
Crawling, Indexing, and Retrieving Moments in Videogames. In Foundations
of Digital Games 2018 (FDG18), August 7–10, 2018, Malmö, Sweden. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3235765.3235786

1 INTRODUCTION
Artificial intelligence (AI) and information retrieval (IR) have a long
and entangled past [8, 19]. AI powers multiple facets of commercial
web search engines like Google, Baidu, and Yandex. Although these
services are primarily designed to retrieve hypertext documents

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG18, August 7–10, 2018, Malmö, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6571-0/18/08. . . $15.00
https://doi.org/10.1145/3235765.3235786

based on textual queries, they are increasingly growing into the
domains of visual search (using images as queries). Visual search
can involve sophisticated automated understanding of image and
video content. However, these search engines have no direct ability
to understand the content of interactive media such as videogames.
Modern web crawlers, for example, would not discover and crawl
a webpage that is only mentioned in a credits screen only visible
after playing through a videogame.

We envision a new class of search engines operating in the
domain of content-based retrieval for moments in videogames.
This is a new area for AI in games, and it expands technical games
research by making connections to IR. These search engines could
be used by game scholars to find moments in games that support
their arguments. They could augment tools such as the Game and
Interactive Software Scholarship Toolkit (GISST) [9] by allowing
scholars to locate moments in a game they do not have the time or
skill to reach via interacting directly with a game’s control inputs.
At the same time, this new class of search engines could be used by
other AI systems that aim to develop expert gameplay strategies,
map out the reachable spaces in a design (e.g. Mappy [16]), or
enable new tools to provide feedback in the design process [15].
Speedrunners, designers, and educators could find, create, and share
bookmarks in a game’s state space that could be used to improve
the precision of their technical communication.

This paper takes a first step in realizing this vision by show-
ing how to crawl, index, and retrieve moments in a collection of
over 750 videogames for the Super Nintendo Entertainment System
(SNES). We show how algorithms can be combined with public data
sources to uncover the contents of a game: moments in interactive
play. We show how existing techniques for visual search can be
adapted for use on videogames, capturing them as discrete state ma-
chines deterministically advancing on input from players. We show
how to match indexed moments with user-provided queries, judge
their relevance, and compute search quality metrics for moment
retrieval systems. Finally, we describe a prototype visual search en-
gine capable of interactively retrieving moments from SNES games
given game screenshots from the wild as input, and compare the
results with commercial visual search engines like Google Image
Search and TinEye.

2 BACKGROUND
To our knowledge, there is not yet any academic work on content-
based retrieval for videogames or other inherently interactivemedia.

https://doi.org/10.1145/3235765.3235786
https://doi.org/10.1145/3235765.3235786

FDG18, August 7–10, 2018, Malmö, Sweden Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith

As such, we need to import ideas, vocabulary, and technical methods
from disparate fields.

2.1 Web Search
Web search is the canonical large-scale application of IR ideas [5,
Chap. 1]. In web search, it is typical for the user to provide their
query in the form of a brief text phrase and expect results sorted
from a constantly growing collection of on the order of trillions of
webpages [10].

To automatically ingest information from the Web, major search
engines deploy crawlers (agents) that systematically explore and
download partial copies of the Web graph. In this graph, nodes are
individual pages, and edges represent hyperlinks from one page
to another. Because the users of a search engine are intelligent
explorers themselves, it is not critical that absolutely every node is
visited by the crawler. So long as a large enough fraction of the the
most important nodes are visited, users may answer their queries
with only a little more browsing. In the videogame domain, we
would be happy to crawl just enough of a game’s vast state space
in order to provide useful results for user queries.

The datasets resulting from crawling processes are immense.
To answer a user’s query, it is not feasible to scan through the
downloaded copy of the Web to harvest relevant results. Instead,
IR systems employ an indexing process to produce a compact and
efficiently traversable representation of the crawl results. Given
a query, an index structure helps to quickly identify the very few
results that the user might see on the results page. Preview snippets
for only this tiny result set can be computed by consulting the
full contents of the matched result documents. In the videogame
domain, we associate the content of a moment with the full state
snapshot of a game platform emulator in between frames of anima-
tion. In IR terms, these moments are the documents, and the index
should give us enough clues to reconstruct the full game state data
on demand.

The IR literature offers many methods for retrieving relevant
documents from a collection (called a corpus) given a query. The
vector space retrieval model [13, Chap. 6] (originally a general-
ization of keyword counts) offers an intuitive setting for retrieval.
Here, an embedding function maps a document (or a query) to
a point in space. Good embeddings will place similar documents
closer together in space and unrelated documents further apart. The
estimated relevance of a document to a query can then be approx-
imated by a distance calculation. Retrieval in this model reduces
to a kind of nearest-neighbor lookup. In sophisticated web search
engine designs, multiple layers of index-accelerated matching, fil-
tering, ranking, and re-ranking systems are applied to compute a
manageably small result set for the user to browse.

2.2 Book Scanning
In 2002, Google initiated “Project Ocean” to scan every book in
the world with the intent to make searchable a vast collection of
content not already represented on theWeb [20]. At the time, digital
library services already offered book search based on traditional IR
methods, but the results of a search worked at the level of whole
books. A user might find that one book is likely relevant to their
query phrase based on previously recorded metadata about that

book. However, in order to find the specific location in that book
(at the level of a page number), one would need to consult the index
at the end of the physical book, if it even included one. Scanning
the world’s books promised the benefits of content-based search
(which drove the previous Web search revolution) for pre-Web and
off-Web documents.

The way we search for videogames now is analogous to this
situation with books. We can search for game titles in Steam1 by
term or tag, but are left hopeless if we want search within a given
game. For sufficiently popular games (as with sufficiently popular
books), the clues can be found in content of blogs or news articles
when they are indexed bymajor web search engines. Perhaps we are
lucky enough to find a walkthrough page with textual instructions
(or gameplay video with an informative text transcript) for how to
reach an interesting point in a game, but this is not enough. Until
2017, we did not even have a notion equivalent to page numbers, a
way to cite a specific moment in a game in one of our papers [9].

Discovering the content of a physical book requires physical ef-
fort to turn and align pages. In the early stages of the book scanning
project, this was done entirely by human experts, but now such
efforts are assisted by robotics.2 We envision a similar trajectory
towards automation to effectively scan the contents of the vast
spaces of play for videogames. Although it is easy to understand
when a book has been scanned to completion (after each page is
finished), we need some other form of measurement in the domain
of videogames to judge the fraction of interesting content covered
by a given crawling procedure.

2.3 Audio and Visual Search
Most commercial Web search engines have simple homepages fea-
turing a large input box which invites the user to enter their search
query in text. Increasingly, these same services are allowing users
to search using images as the query: by dragging an existing image
onto the browser or capturing a new photo with a mobile device.

Audio search engines like SoundHound3 and Shazam4 allow
users to identify the music playing around them by recording a
few seconds of audio. Signal processing techniques are used to
compute a fingerprint of the sound that can be matched against
an indexed database of known musical works [4]. We would like
to recreate this experience for videogames. Because a videogame
might contain many hours of experientially significant gameplay
compared to the few minutes of a pop song, it is important that the
search results for videogames return specific moments (analogous
to specific book pages) rather than just game titles.

Early-generation image search engines, such as the initial release
of Google Image Search,5 allowed users to search for images using
textual queries, fitting into the existing paradigm of web search.
These systems used text features from webpages that embedded
the images as metadata about the images rather than analyzing the
pixels in the images themselves. The “reverse image search” engine
TinEye6 popularized the interaction of searching by an image. This

1http://store.steampowered.com/search/
2https://youtu.be/RdLcrNeWjIs?t=141
3https://soundhound.com/soundhound
4https://www.shazam.com/
5https://images.google.com/
6https://www.tineye.com/

http://store.steampowered.com/search/
https://youtu.be/RdLcrNeWjIs?t=141
https://soundhound.com/soundhound
https://www.shazam.com/
https://images.google.com/
https://www.tineye.com/

Crawling, Indexing, and Retrieving Moments in Videogames FDG18, August 7–10, 2018, Malmö, Sweden

method of image searching allows users to find the original webpage
context of images they have found posted elsewhere. One use of this
interaction model is helping readers identify hoaxes by uncovering
when eye-catching photos aremisused out of their original context.7
We envision image-based investigations being a frequent use case
for game scholars interacting with a videogame moment search
engine.

Current-generation visual search engines such as GrokStyle8
apply deep analysis to image pixel data to recognize objects (such as
furniture items from a catalog) evenwhen they are re-photographed
in different viewpoints, lighting, and surrounding contexts. Rather
than engineering such systems from scratch, deep learning tech-
niques are used to train a neural network that can map raw images
into an embedding space of moderately high-dimensionality (hun-
dreds of dimensions rather than the much higher dimensionality
of raw image pixels). Embedding models are optimized to place
different images of the same object nearby and place images of
similar-looking but different objects at least some distance apart.
Additionally, proxy prediction tasks (such as correctly guessing the
category of an object from just its location in an embedding space)
can provide additional guidance to these learning systems when
related data is available [2]. In the videogame domain, we train
screenshot embedding networks on a proxy task: reconstructing
the contents of game platform memory from the embedding vector.
More details are given in Section 4.1.

2.4 Playing Games Automatically
Several general purpose algorithms are known which can play
some videogames surprisingly well. Even more surprising, these
algorithms are often able to achieve super-human playing perfor-
mance based on analysis of raw screenshot pixels alone (rather than
carefully designed game state abstractions). Deep reinforcement
learning (RL), in particular, has shown excellent results on a variety
of videogames for the Atari 2600 platform [14].

RL requires that an environment, such as a videogame, provide
some kind of reward signal. This reward signal is typically derived
from the game’s score, which is itself derived from inspection of the
game’s memory state. As with Web crawling, crawling the space
of play for videogames requires the ability to usefully explore in
the absence of a predefined reward signal. For example, we want
to crawl a game’s credits screen and options menus despite there
being no score benefit for doing so. Work on intrinsically-motivated
RL suggests that agents generate their own reward signals, often
based on models of novelty and curiosity. Interestingly, augmenting
existing deep RL methods with an exploration bonus has allowed
them to achieve better score performance than algorithms that try
to optimize the score directly [3].

Seen this way, efficiently exploring the space of play for classic
videogames might be seen as just a niche technique for optimizing
performance in a testbed for AI algorithms. By contrast, we see
these algorithms potential starting points for automated crawling
procedures that would be run to harvest interesting moments from
culturally impactful interactive media.

7https://www.youtube.com/watch?v=lwHkIrGhhFg
8https://www.grokstyle.com/

3 CRAWLING
Before launching into our own kind of book scanning project, we
need to answer some more basic questions. Which game platform
should we start with? From where will we get the games? How will
we explore those games (how will we turn the pages or prioritize a
crawl queue)?

3.1 SNES Platform
Our project is initially focused on the Super Nintendo Entertain-
ment System (SNES). This platform is known as a 16-bit home
videogame console. We consider this platform a useful midpoint
between the 8-bit Atari 2600 platform used in the latest deep re-
inforcement learning research and the 32-bit Android mobile plat-
form. While the processor executing Atari games has access to just
128 bytes of working memory to define game state, the SNES has
128 kilobytes, and modern Android apps use between 16 and 128
megabytes of memory.

We are also attracted to the diversity of games produced for
the SNES platform. The launch title Super Mario World features
linear platformer gameplay that is well exercised in AI competitions
[21]. Beyond this, there is interaction driven by textual dialogs and
menus in Chrono Trigger. There are three-dimensional graphics
and collision logic in Star Fox. There is open-ended gameplay in
Sim City. There is even mouse-driven interaction with audio-visual
authoring tools in the arguably not-game Mario Paint.

Rather than work with the physical hardware of the SNES plat-
form, we utilized software emulators. In particular, we use a version
of the BizHawk emulator (building on the cycle-accurate BSNES9
emulator core) created by the tool-assisted speedrun community.10
This allows us to step through the moments in a game, frame by
frame (at nominally 60 frames per second), algorithmically selecting
which combination of the twelve buttons to press (4096 possible
actions). From BizHawk, we can extract color screenshots (at a
resolution of 224 by 256 pixels) and platform state snapshots (ap-
proximately 3 megabytes in size) which capture the contents of
(CPU accessible) working memory, video memory, and other sub-
system state. By replaying the same inputs over time from the
canonical boot state (when the platform starts with initially empty
memory), we can reproduce a past state exactly. Unfortunately,
platform snapshots are not portable between different emulator im-
plementations nor are emulators perfectly faithful to the hardware
implementation of the SNES platform.

3.2 Game Sources
Our project utilizes a collection of over 750 games derived from
multiple sources. Many commercial SNES games are available in
public archives.11 Interestingly, these archives seem to have better
coverage for non-SNES game platforms. Homebrew SNES games
or fan-made modifications of commercial games can be found in
ROM hacking communities.12 New games for the SNES platform
are still being released on these sites as recently as 2017.

9http://www.bannister.org/software/bsnes.htm
10http://tasvideos.org/Bizhawk/SNES.html
11https://archive.org/details/Snes_Roms
12http://www.romhacking.net/

https://www.youtube.com/watch?v=lwHkIrGhhFg
https://www.grokstyle.com/
http://www.bannister.org/software/bsnes.htm
http://tasvideos.org/Bizhawk/SNES.html
https://archive.org/details/Snes_Roms
http://www.romhacking.net/

FDG18, August 7–10, 2018, Malmö, Sweden Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith

Unfortunately, not all games are compatible with all emulators,
so our integration with this version of the BizHawk emulator does
not give us full coverage for the SNES platform. On the other hand,
BizHawk can emulate many different game platforms ranging from
the Atari 2600 to the Nintendo 64 (based on a 32-bit processor
connected to approximately 4 megabytes of working memory). As
a result, our approach puts us within reach of platforms similar to
those targeted by the latest Android games.

3.3 Exploration Methods
Crawling a game requires a strategy for how to proceed from one
moment to the next. Here, we consider some basic human, machine,
and hybrid approaches. Each run of a method produces a collection
of moments that we call a corpus.

3.3.1 Speedruns. Sites like TASvideos13 offer up hundreds of
input sequence recordings (called “movies”) for expert gameplay
of SNES games. Some of these exploit glitches and other atypical
gameplay techniques to reach a game’s end as fast as humanly
(or computer-assisted humanly) possible. Others offer a clean (no
mistakes, but also no special tricks) run through “100%” of a game’s
content. The intersection of games with many kinds of speedruns
and speedruns compatible with BizHawk is not as large as we
originally hoped.

The few compatible “100%” speedruns on this site offer a very
valuable external definition of what it means to have seen all of a
game’s content. A one-hour movie (even at 60 frames per second),
represents a very small fraction of a game’s truly reachable state
space. Nevertheless, it is one representation of what a dedicated
community believes the game has to offer. These speedruns will an-
chor our future attempts to quantify the effectiveness of automated
crawling algorithms. Already, they have allowed us to bootstrap our
indexing and retrieval systems in the absence of a robust crawling
process.

3.3.2 Speedrun Branches. With only a small amount of code,
we can begin to explore states off the main path indicated by the
“100%” speedruns. Consider a speedrun of n moments cut into k
equally-sized spans. One way to uncover new and potentially useful
moments is to seek to the start of span i and begin playing back the
original speedrun’s input sequence for a random span j . In a fighting
game for which the player must execute special combination moves
with precise timing, this exploration strategy will occasionally try
those special combinations in new contexts.

We invented this strategy as a simplistic method to get states
with a similar distribution throughout a game like Super Metroid
without having any of them be byte-for-byte identical to those in
the original speedrun.

3.3.3 15-minute Student Sessions. For many games, getting past
the main menu and through the first introductory cutscene can be
difficult for our automatic exploration algorithms. Game screens
that ask the player to enter their name using an on-screen keyboard
can be particularly challenging.

To get wider coverage than speedruns and to hopefully get to
the first moment of core gameplay, we enlisted students in playing

13http://tasvideos.org/Movies-SNES.html

one game after another for 15 minutes at a time, recording their
inputs in a standard BizHawk file format that we could process
similar to a speedrun movie later. We have collected these human
gameplay sessions for over 100 games so far.

In the future, we hope to use transfer learning techniques to port
a human-like mode of exploration (demonstrated in these sessions)
to games no one on our team has yet tried. If nothing else, it should
be easy to use the distribution of input configurations (which but-
tons were pressed in which combinations for how long) to give a
more human-like bias to automated exploration algorithms.

3.3.4 Attract Mode Animations. With 650 games remaining un-
touched by the methods above, we sought a very simple strategy
that could be quickly applied to the remainder of the games. Our
next strategy leans on the fact that many SNES games, inspired
by previously successful arcade games, feature an attract mode.
If the game is left at the main screen with no input for sufficient
time, many games go into a self-demonstration mode that features
snippets of actual gameplay. While nothing is happening with the
control state during this time (each frame we submit to BizHawk
that no buttons are pressed), the memory states are still moving
through patterns similar to those that would be seen during live
human gameplay. Indeed, many attract mode animations are sim-
ply playing back previous recordings of human play by the game’s
original developers.

Not all of our attract mode datasets are interesting, however.
Some games simply sit at the main screen forever. Others show
story teaser cinematics without revealing gameplay. The existence
of these teaser cinematics presents an interesting challenge for au-
tomatic exploration algorithms: to reach them, the algorithm must
account for explicitly pressing no buttons for many thousands of
frames in a row with no visual (and very little in-memory) feedback
that progress is being made towards the new scene.

3.3.5 Rapidly Exploring Random Trees. Can we do better than
pressing no buttons at all? The rapidly exploring random trees
(RRT) algorithm [11] provides one conceptually simple solution.
During an execution of the RRT algorithm, the algorithm repeat-
edly samples a random goal location (a point in some space yet
to be defined), selects the previously-achieved state with a spatial
projection closest to that goal location, and then attempts to make
progress towards to goal by applying a primitive action in selected
state. An edge in the tree is created from the selected state to the
state just reached. Bauer and Popović introduced this technique to
the technical games research community as part of a level design
feedback tool [1].

When developing and debugging RRT algorithms, it is desirable
for the goal space to be a low dimensional (easy to visualize) space.
In initial experiments with Super Metroid, we devised a projection
of game states onto a fan-created 2D map of the first area within
the game14 by using expert knowledge of the memory layout for
this game.15 Unsatisfied with how often the player character got
stuck on the right side of the screen and did not finish jumping
moves (a reasonable outcome for starting in the top-left of the goal
space), we investigated alternate vector space representations. We

14http://www.vgmaps.com/Atlas/SuperNES/SuperMetroid-SpaceColony.png
15https://drewseph.zophar.net/Kejardon/RAMMap.txt

http://tasvideos.org/Movies-SNES.html
http://www.vgmaps.com/Atlas/SuperNES/SuperMetroid-SpaceColony.png
https://drewseph.zophar.net/Kejardon/RAMMap.txt

Crawling, Indexing, and Retrieving Moments in Videogames FDG18, August 7–10, 2018, Malmö, Sweden

got more promising results using the 256-dimensional embeddings
derived from speedrun data discussed in Section 4.1.

Initially, we expanded the selected node in the tree by applying
one of the 4096 control input configurations selected uniformly.
Although this offered a chance to try every possible configuration,
the actions selected were not relevant for making progress towards
the goal (nor, in most cases, relevant to the game at all). In response,
we trained a neural network to guess the relevant action to make
progress by comparing the 256-dimensional embedding of the cur-
rent state and the goal state. The labels for the supervised learning
setup model for this network were taken from the expert speedrun.
We operated under the assumption that the speedrunner was con-
tinuously demonstrating how to get from one state to whatever
state they would be in a few seconds later. This at least got the
exploration to focus on only using the button configurations with
a distribution similar to that found in the speedrun data.

3.3.6 RRT Branches. We have considered but not yet applied
the strategy of initializing the RRT algorithm with the moment
tree from an expert speedrun, speedrun branches, or the 15-minute
student sessions. We hope that this will bypass the disappointingly
slow start of vanilla RRT as well as provide more useful branches
than our naive uniform branching strategy that plays back inputs
from the wrong context.

4 INDEXING
Having temporarily stored the full platform state snapshots (about
3 megabytes each) during the crawling process, we now need to pro-
duce a compact index structure which will enable efficient retrieval
without the need to re-scan the bulk dataset.

4.1 Vector Space Embeddings
Operating in the vector space retrieval model [13, Chap. 6], we
are inspired by systems such as ProductNet [2] that map detailed
images to vectors using deep neural networks. In previous work, we
considered a number of different vector representations of screen-
shot images and memory state, some using techniques as simple
as principal components analysis (PCA) to perform the required
dimensionality reduction [22]. In all cases, we were interested in
vector representations of only moderately high dimensionality (usu-
ally 256).

Training deep neural networks for embedding images to vectors
requires some indirection, as we do not have a dataset of the ideal
vector representations. Our first strategy considers setting up a
supervised learning task in which good prediction performance will
be considered a proxy for good retrieval performance. In particular,
we ask that a relatively simple neural network be able to predict the
contents of the first four kilobytes of memory for a given moment
given only the embedding of screenshot pixels as input. This very
simple strategy yields surprisingly good retrieval results [22].

Fig. 1 describes the architecture of the neural network we used
in the pixels-to-memory proxy task. Embedding vectors are asso-
ciated with the bottleneck layer in this network. Despite being
trained only as an intermediate representation on the proxy task,
this moment vector representation manifests peculiar properties
usually associated with learned word vector representation in nat-
ural language processing. In particular, the manifest support for

reasoning by analogy. Fig. 2 shows two sets of four images (varying
in main character power-up state and location within a level). We
selected these moments to represent the analogy that A is to B as C
is to D. Starting with the vector for moment C, we can add a scaled
difference of vectors for B and A to get a vector Q = C + α(B −A).
In both instances, Q is more similar (by the cosine similarity metric
we use for retrieval) to D than it is to the base image C or the others.
A visual search engine user seeking moment D could search by
vector-algebra analogy with screenshots A, B, and C. The parameter
α controls the strength of the influence of the distinction between
B and A.

We also consider manifold learning techniques that attempt to
learn embedding models that smoothly map images of adjacent
points in gameplay time to nearby points in space. Using a triplet
loss model, we simultaneously apply the same embedding model
to three images Q, A, and B (Q representing a query image while A
and B represent potential retrieval results). We add a penalty term
to the learning problem’s optimization so that the cosine similarity
between Q and A is higher than the cosine similarity between
Q and B. For each moment Q in our training corpora, we pair it
with a moment A randomly sampled from within a few seconds of
gameplay (in a speedrun) while B is randomly sampled from the
rest of the corpus.

Speedruns provide us with one more kind of data not used in
the above techniques: control input data. We also consider models
where the inputs associated with a moment must be reconstructable
given the embedding of the current moment’s screenshot image
and the embedding from a moment a few seconds later. We con-
jecture that control information may reveal useful visual structure
related to play affordances. We leave comparative evaluation of
these strategies and their combinations to future work. Unless oth-
erwise specified, our work proceeds using the embeddings trained
on the simple pixels-to-memory proxy task.

A typical method for visualizing data in high-dimensional spaces
such as ours is the t-distributed stochastic neighbor embedding
(tSNE) algorithm [12]. A tSNE visualization of three of our corpora
is visible in Figure 3. In this visualization, we found that screenshots
taken from the same room or level in the game tended to be part of
the same cluster while structure within clusters sometimes echoed
the structure of gameplay possibilities (such as when the player
has multiple distinct routes to achieve a goal).

4.2 Moment Trees
Because very few crawled moments will ever be requested by users,
we would like to optimize storage of moment data outside of the
index. We would not like to pay the full 3 megabyte cost for each
moment in a corpus. By exploiting the deterministic nature of our
selected emulator and the availability of the control inputs used
in the crawl, we can achieve significant compression of a corpus.
Figure 4 shows an example of our compressed tree representation.

The key idea is to explicitly represent the full platform snapshot
data for just a singlemoment in the corpus.We call this the root state
(and typically it is equivalent to the platform’s clean boot state). All
other moments are represented by the sequence of inputs needed
to apply each frame to reach that state. An integer value from 0 to
4095 represents (in binary) the state of the primary controller’s 12

FDG18, August 7–10, 2018, Malmö, Sweden Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith

3@224x256 16@112x128 32@56x64 64@28x32 64@14x16 256 4@4096 64@4096

Conv2D
BatchNorm
ELU
Dropout

Conv2D
BatchNorm
ELU
Dropout

Conv2D
BatchNorm
ELU
Dropout

Conv2D
BatchNorm
ELU
Dropout

Flatten
Dense(256)
BatchNorm
ELU
Dropout

Dense(16384)
BatchNorm
ELU
Dropout
Group(4096)

256@4096

Dense(64)
BatchNorm
ELU
Dropout

Dense(256)
SoftMax

Screenshot input Memory outputEmbedding

Screenshot encoder model Memory decoder model

Figure 1: Architecture of our deep neural network for predicting memory contents from screenshot pixels. The top row illus-
trates data representations (by tensor shape) while the bottom row represents data transformations (by layer type). All Conv2D
layers apply 3x3 filter kernels in 2x2 strided convolution. Dropout layers replace 20% of outputs with zeros during training
only to improve robustness. After training, the memory decoder model is discarded and the screenshot encoder model is kept
for future use.

Figure 2: Left-to-right, images A, B, C, and D from Super Metroid and Super Mario World were selected to express the analogy
that A is to B as C is to D. Surprisingly, linear operations on the vector representations of these moments is sufficient to
construct a query vector Q = C + α(B −A) that is closer to D than it is to C (verified for α = 1).

buttons during that animation frame. If we think of a graph formed
by the nodes discovered in our various crawling approaches, that
graph always forms a tree. From a given parent moment, we apply
just a few frames worth of input over time to reach a child moment.
Speedruns form long chains, speedrun branches form spindly trees
consisting of chain segments, and RRT produces very bushy trees
in which some moments have many many children.

For a typical corpus (consisting of a few thousand moments),
the amortized storage cost per moment is approximately one kilo-
byte. To facilitate visual inspection of a moment before trying to
reconstruct the full platform state, we also store a losslessly com-
pressed (PNG) representation of the screen at the time of each
moment. Because of repeating pixel patterns resulting from the
SNES’s sprite-driven graphics system, these images compress quite
well (usually to low tens of kilobytes each).

5 RETRIEVING
Having collected and indexed a large number of videogamemoment
corpora, how can we retrieve those moments that are best matched
to a user’s query?

5.1 Queries
We imagine that users of future videogame moment search engines
will most often search by image, using screenshots of gameplay. One
source of these images is by direct interactive play of the game of
interest. If the user does not have access to the game, does not have
the time or skill to play it, or simply does not know how to proceed
in the game, they may use existing search engines to find gameplay
videos from other players. These videos can be skimmed to find
examples of the moment of interest. Meanwhile, screenshots might
be found in existing documents (e.g. research papers, webpages,

Crawling, Indexing, and Retrieving Moments in Videogames FDG18, August 7–10, 2018, Malmö, Sweden

Figure 3: A tSNE visualization of embeddings for approximately 10,000moments from speedruns for Super MarioWorld, Super
Metroid, and ActRaiser (left). Detail for a cluster ofMario moments where different paths in a level are visible (right).

Game 42

Tree A Tree B

Moment
A1

Moment
A2

Moment
A3

Moment
A4

Moment
B1

Moment
B2

Moment
B4

Moment
B3

Game 42
Name: "Super Metroid"
ROM data: {about 3MB of data}

Tree A
Game: {reference to Game 42}
Root snapshot: {about 3MB of data}

Moment A1
Tree: {reference to Tree A}
Parent: null
Control path: empty
Screenshot: {about 10KB of data}

Moment A2
Tree: {reference to Tree A}
Parent: {reference to Moment A1}
Control path: {input sequence to reach A2 from A1}
Screenshot: {about 10KB of data}

Figure 4: Two moment trees for a single game. Tree A is a
branchy tree as might result from an automatic exploration
algorithm. Tree B is a linear chain tree as might result from
playing back an expert speedrun input sequence.

etc.). When trying to locate moments in a fan-created modification
of an existing game, screenshots from the original game might also
prove useful queries.

After the user has selected a query image, we can apply the
same embedding model used to index the outcome of a crawl. This
will result in a query vector that lives in the same space as those
used in the indexes. If the user selects multiple images to use as

a query (or selects a video snippet from which we can sample a
representative set of individual frames), one simple strategy is to
average the vectors associated with each individual query image.
Although we expect few users to search by memory state (they
must have a platform snapshot in hand), it is still useful to think
of memory embedding vectors as possible (components of) query
vectors. See Section 6 for the treatment of multiple query images
and memory embedding vectors in our example search engine.

5.2 Relevance
Given a query vector and archives of moments indexed by their
vectors, how dowe estimate how relevant a moment is to the query?
Many different distance metrics are reasonable to apply, but we
have focused our initial experiments on using the cosine similarity
metric (related to the dot product between normalized versions of
the document and query vectors).

Much past research has gone into developing algorithms and
systems that accelerate nearest neighbor lookup (including in the
cosine-similarity sense). A recently released open source library
from Facebook uses distributed processing on multiple GPUs to
quickly answer queries over billions of images [7]. At the current
scale of our datasets, it takesmore time to apply the deep embedding
model to a single query image on the GPU than it does to perform a
naïve linear scan on the CPU for the thousands of moment vectors
in each of our corpora.

In our search engine, we simply rank (sort) all of the moments
in a given corpus by their cosine similarity to a query. In more
sophisticated search engine designs (such as the Maguro system in
Microsoft’s Bing search engine [17]), multiple layers of re-ranking

FDG18, August 7–10, 2018, Malmö, Sweden Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith

systems are applied to more carefully sort and prune successively
smaller lists of documents by more and more complex criteria. Re-
ranking is an excellent technique for addressing both scalability and
search quality in Web-scale IR systems, but we leave exploration of
this in our domain to future researchers.

5.3 Evaluation
How can we say if one version of a search engine is better than
another or if one’s model of relevance better captures the sense of
relevance that a user intends when they form their query? Precision
and recall are well established metrics for evaluating IR systems
[13, Chap. 9]. These metrics (and others derived from them) require
a sense of ground truth: a signal from outside the system being
evaluated that says whether (or how much) a document is truly
relevant to a query. Human evaluation is one source, but proxy
measures that make use of extra information are also useful.

To evaluate our videogame moment retrieval systems, we have
applied the mean average precision (mAP) metric [13, Chap. 9].
Informally, mAP computes the density of truly relevant results near
the top of the result list, averaged over a set of test queries and the
results that the search engine yields for them. To judge the ground
truth relevance of a moment to a query, we have constructed exper-
iments based on speedrun data from games with a known memory
layout and scene structure (Super Mario World and Super Metroid).
In one time-oriented proxy for ground truth relevance, we say that
one moment in a speedrun is relevant to all others within a fixed
time threshold (e.g. 60 seconds). In a space-oriented proxy, we say
that one moment in a speedrun is relevant to all others that happen
in the same room or level (using memory layout knowledge for spe-
cific games to decode the location from the memory state). Despite
the time and space-based proxies capturing very different notions
of relevance, our screenshot and memory state embeddings based
on deep neural networks yield surprisingly consistent performance.
In our previous work [22] we found that embeddings based on the
pixels-to-memory proxy task yield a typical mAP score near 0.5 for
a variety games and relevance definitions.16

Future work, ideally in contact with game scholars and other
potential users, should attempt to identify senses of moments and
moment relevance that are useful for answering realistically posted
queries. For example, is it important that the system provides intu-
itive results for black-and-white or low-contrast screenshots? Do
users want to search by hand-drawn sketches?

6 A VISUAL SEARCH ENGINE
Combining all of the above techniques for crawling, indexing, and
retrieving moments from over 750 SNES games, this section de-
scribes our prototype visual search engine.

6.1 Technical Design
Our initial prototype was implemented as a static webpage (no
server-side logic) leveraging the KerasJS17 library for applying pre-
trained deep neural networks in the browser environment. Our
image embedding models and the corresponding indexes resulting

16Searching with access to complete memory state information yields a mAP of about
0.7 while a random baseline scores <0.1 on the same games/tasks.
17https://github.com/transcranial/keras-js

Figure 5: Prototype visual search engine. Searching within a
Metroid speedrun corpus, two screenshots were used as ini-
tial input and three images were tagged from the initial re-
sults list as positive and negative examples of relevant mo-
ments. The red graph on the right indicates retrieval score
(cosine similarity) as a function of time within the input
recording. The timeline indicate that this querymost resem-
blesmoments in a specific brief scene that appeared near the
start of the speedrun (the game’s tutorial level).

from applying them to our corpora were implemented in the Python
(with Jupyter Notebook).

From a fixed list, the user first selects a specific corpus of mo-
ments they want to search within. This causes the system to load
both the bulk data of corresponding index of the corpus and the
Keras image embedding model that was used to generate the index.

Next, when a user drags one or more images onto our page, the
system applies the embedding model to the each image to yield an
averaged query vector. The cosine similarity between this vector
and the indexed vectors is used to compute a top-list of search
results. For each result, we display a thumbnail of the moment’s
screenshot, an estimated relevance score (simply the cosine simi-
larity in the prototype), and an identification number. This number
is sufficient for separately recreating the full game state using the
moment tree representation.

Figure 5 shows a screenshot of our initial prototype system in
action. A video of this prototype is available online.18

In the next iteration of our prototype, we are adding significant
server-side logic that should reduce the amount of data that needs
to be loaded into the user’s browser (making it much more like
the visual search offering in Google Image Search) and supporting
multi-corpus search.

6.2 Relevance Feedback
In a textual search engine, it is relatively easy for a user to edit
their query string in response to patterns they see in initial search
results. Perhaps they fix their spelling or add a disambiguating
keyword. For visual search, editing one’s query image is not so
easy. Finding related or disambiguating screenshots could require
18https://drive.google.com/open?id=1eGkx1mh_Nry1hHP2S4j0p4HVL2pMCzTy

https://github.com/transcranial/keras-js
https://drive.google.com/open?id=1eGkx1mh_Nry1hHP2S4j0p4HVL2pMCzTy

Crawling, Indexing, and Retrieving Moments in Videogames FDG18, August 7–10, 2018, Malmö, Sweden

interaction with a different visual search engine or even additional
skillful game playing effort. In an effort to support more fluent
interaction with our search engine, we implemented a relevance
feedback mechanism based on the classic Rocchio algorithm [18].

In relevance feedback, users can browse the initial results of a
search to mine positive and negative examples of relevant results. A
classic example of this interaction would be in a text-driven image
search engine where the user has searched for the term “bike.” Upon
seeing various visual results, the user might select a motorcycle
image a negative example if their true goal is to find images of
bicycles.

In our search engine, the user can re-submit their original query
augmented with any number of positive and negative examples
selected from the previous results. In the Rocchio algorithm (op-
erating within the vector space retrieval model), a modified query
vector is formed by a weighted average of the original query vector,
the vectors associated with documents (moments) form the positive
and negative example sets. Negative results are intuitively weighted
negatively. This can be interpreted as exploiting vector analogies
in the embedding space [6].

Because individual screenshots can be highly ambiguous, rele-
vance feedback offers a way for the system to leverage its under-
standing of memory states. Imagine forming the vector representa-
tion of a moment by concatenating the 256-dimensional embedding
of a screenshot with the 256-dimensional embedding of its mem-
ory state. In initial query vectors computed from user-submitted
screenshots, we can fill in all-zero values for the memory compo-
nents of this vector. However, upon tagging positive and negative
examples from initial results, the Rocchio algorithm will produce a
modified query vector with non-zero disambiguating values in the
memory components of the vector. In a game like Super Metroid
where which powerups a player has already collected is not easily
discerned by inspecting an individual screenshot, this ability to
reason about unobserved game state is important.

6.3 Experiment: Chozo Statue Battle
To demonstrate our search engine and qualitatively compare its
behavior to commercial visual search offerings, consider two im-
ages in Figure 6. These two images were extracted from a YouTube
video19 of gameplay for Super Metroid. The images are blurry, con-
tain motion and video compression artifacts, and are imprecisely
cropped. The two images depict moments related to a surprising
battle with a hostile Chozo statue. Chozo statues are typically inan-
imate, usually holding beneficial items for the player to collect.

Using the current (March 2018) public version of Google Image
Search on the first image yields impressive results. It offers “super
metroid chozo statue boss” as a text approximation of the query, and
three of the top ten “visually similar” images appear to come from
the statue battle scene, four show Chozo statues from elsewhere
in the game, and the remaining three show Chozo statues in other
Metroid titles (for platforms released later than the SNES). How can
Google do so well? This iconic view of the Chozo statue battle is
very similar to screencaptures created by fans of the game to post on
game tutorial websites or manually selected as the thumbnail image
for videos of this battle scene. This moment in the game is culturally

19https://www.youtube.com/watch?v=yB317FOcU0Y

Figure 6: Two frames extracted from a YouTube video show-
ing a battle with a Chozo statue (known as the Bomb Tor-
izo). The first frame is an iconic depiction of this battlewhile
the second, less distinctive view comes from just before the
Chozo chamber is first entered.

important enough for it to have crept out of the interactive media
of videogames into the text and image formats that search engines
like Google understand. Google’s emphasis on text explains why
related scenes from other Metroid titles appear in the results. By
contrast, all of the top ten results from TinEye (which does not
consider text) are from the desired battle scene in Super Metroid
(perfect precision).

Using Google Image Search on the second image—from a mo-
ment just before the player enters the room where the Chozo statue
battle occurs—yields much less impressive results. It offers “action-
adventure game” as the text approximation of the query, and none
of the top ten “visually similar” results are from any Metroid game
title. TinEye manages to produce just one result for this less in-
teresting moment, however it is a very close match. The result
image is an automatically generated thumbnail for a video posted
by the@WatchSpeedruns Twitter account. For either search engine,
precision is very low.

Using our search engine yields the results in Fig. 7. Just a single
image is used here and no examples are provided to the relevance
feedback mechanism. Querying with the first image, nine of the
top ten results show the desired Chozo statue battle. Querying with
the second image, three of the top ten show the door entering into
the Chozo chamber (as in the query image) while three more depict
the room that would contain the battle itself (which the search
engine as deemed to be a similar moment despite the iconic Chozo
not visible in the query image). Upon careful manual inspection of
this particular moment corpus for Super Metroid (derived from a
different playthrough than the one in the YouTube video) we found
that the search engine had successfully returned all three represen-
tations of the door outside the Chozo chamber (perfect recall). The
search engine returns no results showing the statue actually attack-
ing because the speedrun data we used interestingly demonstrated
the difficult “Bomb Torizo skip” technique20 (in which the sleeping
statue is never wakened). Considering that the query images show
moments that are only similar to but not exact matches for any in
the indexed corpus (from a single speedrun), our search engine is
producing a dense collection of reasonably relevant results.

20http://deanyd.net/sm/index.php?title=Bomb_Torizo#Bomb_Torizo_Skip

https://www.youtube.com/watch?v=yB317FOcU0Y
http://deanyd.net/sm/index.php?title=Bomb_Torizo#Bomb_Torizo_Skip

FDG18, August 7–10, 2018, Malmö, Sweden Xiaoxuan Zhang, Zeping Zhan, Misha Holtz, and Adam M. Smith

Figure 7: Top ten results from our prototype visual search engine for the iconic (top) and less distinctive (bottom) images from
Figure 6. Results are taken from a speedrun corpus distinct from the gameplay session that yielded the query images.

7 CONCLUSION
In this paper, we have introduced the problem of content-based re-
trieval for moments in videogames, and we have shared a collection
of techniques for crawling, indexing, and retrieving those moments.
We combined these ideas into a prototype visual search engine
and tested it on in-the-wild query images and games. We invite
a new generation of AI and IR researchers to develop algorithms
that can efficiently harvest the most interesting moments in games
by automatically playing them, ideally taking the opportunity to
transfer play and design knowledge between previously indexed
games. We invite technical game researchers to refine visual un-
derstanding models from computer vision and extend them with
notions of agency that result from relating how a player can act to
what they can observe during play. We also invite game scholars to
demand better tooling that will assist them in carrying out digital
humanities research.

ACKNOWLEDGMENTS
We would like to thank Yash Dua and Zijie Zhang for their assis-
tance in producing 15-minute recordings of gameplay for over 100
SNES games. Playing games on a schedule is harder than it sounds.
The idea of quickly getting attract-mode data for the full 750 game
collection is due to Joël Franusic. Verification of the vector anal-
ogy property for our moment vectors was performed by Barrett
Anderson.

We would also like to acknowledge the essential contributions of
publicly available interaction data from the tool-assisted speedrun-
ning community (TASvideos.org) and memory layout information
from the ROM hacking community (RomHacking.net).

REFERENCES
[1] Aaron Bauer and Zoran Popović. 2012. RRT-Based Game Level Analysis, Visu-

alization, and Visual Refinement. In Proc. of the AAAI Conference on Artificial
Intelligence in Interactive Digital Entertainment.

[2] Sean Bell and Kavita Bala. 2015. Learning visual similarity for product design
with convolutional neural networks. ACM Transactions on Graphics (TOG) 34, 4
(2015), 98.

[3] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic
motivation. In Advances in Neural Information Processing Systems. 1471–1479.

[4] Vijay Chandrasekhar,Matt Sharifi, andDavid ARoss. 2011. Survey and Evaluation
of Audio Fingerprinting Schemes for Mobile Query-by-Example Applications..
In ISMIR, Vol. 20. 801–806.

[5] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 283. Addison-Wesley Reading.

[6] Gregory Finley, Stephanie Farmer, and Serguei Pakhomov. 2017. What analogies
reveal about word vectors and their compositionality. In Proceedings of the 6th
Joint Conference on Lexical and Computational Semantics (* SEM 2017). 1–11.

[7] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[8] Karen Sparck Jones. 1999. Information retrieval and artificial intelligence. Artifi-
cial Intelligence 114, 1-2 (1999), 257–281.

[9] Eric Kaltman, Joseph Osborn, Noah Wardrip-Fruin, and Michael Mateas. 2017.
Game and Interactive Software Scholarship Toolkit (GISST). (2017).

[10] John Koetsier. 2013. How Google searches 30 trillion web pages, 100 billion
times a month. Venture Beat (March 2013). https://venturebeat.com/2013/03/01/
how-google-searches-30-trillion-web-pages-100-billion-times-a-month/

[11] Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path
planning. (1998).

[12] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[13] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[15] Mark J Nelson. 2011. GameMetricsWithout Players: Strategies for Understanding
Game Artifacts.. In Artificial Intelligence in the Game Design Process.

[16] Joseph Osborn, Adam Summerville, and Michael Mateas. 2017. Automatic map-
ping of NES games with mappy. In Proceedings of the 12th International Conference
on the Foundations of Digital Games. ACM, 78.

[17] Knut Magne Risvik, Trishul Chilimbi, Henry Tan, Karthik Kalyanaraman, and
Chris Anderson. 2013. Maguro, a system for indexing and searching over very
large text collections. In Proceedings of the sixth ACM international conference on
Web search and data mining. ACM, 727–736.

[18] Joseph John Rocchio. 1971. Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing (1971),
313–323.

[19] Linda C Smith. 1976. Artificial intelligence in information retrieval systems.
Information Processing & Management 12, 3 (1976), 189–222.

[20] James Somers. 2017. Torching the Modern-Day Library of Alexandria. The
Atlantic (April 2017). https://www.theatlantic.com/technology/archive/2017/04/
the-tragedy-of-google-books/523320/

[21] Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis.
2013. The mario ai championship 2009-2012. AI Magazine 34, 3 (2013), 89–92.

[22] Zeping Zhan and Adam M Smith. 2015. Retrieving Game States with Moment
Vectors. (2015).

https://venturebeat.com/2013/03/01/how-google-searches-30-trillion-web-pages-100-billion-times-a-month/
https://venturebeat.com/2013/03/01/how-google-searches-30-trillion-web-pages-100-billion-times-a-month/
https://www.theatlantic.com/technology/archive/2017/04/the-tragedy-of-google-books/523320/
https://www.theatlantic.com/technology/archive/2017/04/the-tragedy-of-google-books/523320/

	Abstract
	1 Introduction
	2 Background
	2.1 Web Search
	2.2 Book Scanning
	2.3 Audio and Visual Search
	2.4 Playing Games Automatically

	3 Crawling
	3.1 SNES Platform
	3.2 Game Sources
	3.3 Exploration Methods

	4 Indexing
	4.1 Vector Space Embeddings
	4.2 Moment Trees

	5 Retrieving
	5.1 Queries
	5.2 Relevance
	5.3 Evaluation

	6 A Visual Search Engine
	6.1 Technical Design
	6.2 Relevance Feedback
	6.3 Experiment: Chozo Statue Battle

	7 Conclusion
	Acknowledgments
	References

