
Anza Island: Novel Gameplay Using ASP

Kate Compton
Expressive Intelligence Studio,
University of California, Santa

Cruz
kcompton@soe.ucsc.edu

Adam Smith
Expressive Intelligence Studio
University of California, Santa

Cruz
amsmith@soe.ucsc.edu

Michael Mateas
Expressive Intelligence Studio
University of California, Santa

Cruz
michaelm@cs.ucsc.edu

ABSTRACT
Procedural content generation (PCG) has the potential to
create unique artifacts, levels, and gameplay mechanics. How-
ever, it remains challenging to generate content that satis-
fies gameplay constraints: methods to achieve this include
generate-and-test, search-based generation, and construc-
tive methods. In this paper, we present a prototype, a simple
game, which demonstrates the use of an off-the-shelf logic
program solver, Clingo, as an easy and expressive way to
model these constraint problems, and find solutions that sat-
isfy gameplay constraints. By delegating the difficult search
optimization problem to an external program, we were able
to quickly prototype PCG in a low-effort way by express-
ing the desired content as a set of rules and constraints,
keeping the focus on the designer’s intentions for the gener-
ated content, rather than specific methods used to create or
find it. The expressiveness and versatility of this approach
is demonstrated by applying this technique to two areas of
PCG in the game.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

Keywords
procedural content generation, answer set programming, puz-
zle games

1. INTRODUCTION
Procedural content generation (PCG) is a way of creating
content with automated methods, rather than by hand. Al-
though PCG has potential to add value to games, it can
be difficult to author these methods such that they reliably
produce output that can satisfy the gameplay constraints.
Fortunately, tools for satisfying constraints, even complex
ones, already exist. Our contribution to the field is an ex-
tension of Smith and Mateas’s work on using Answer Set
Programming (ASP) solvers to create PCG levels that sat-
isfy gameplay requirements [3]. ASP is a declarative pro-

Figure 1: A selection of four possible solutions for
the constraints: ”Dark Obelisk can’t be connected
to Monumental Stone Head. Monumental Stone
Head can’t be connected to Hidden Grotto. Bub-
bling Pool must be connected to Hidden Grotto.”

gramming paradigm that allows declaratively describing a
design space. A designer can define their desired PCG in a
readable syntax, and use the solver to generate PCG without
writing search algorithms. We extend this work by applying
it not only to level generation, but creating a new game me-
chanic, logic crafting, which would not be possible without
the use of ASP.

This motivated the development of a new game, Anza Island,
which was created as a sandbox in which to test the versa-
tility of ASP for PCG. In Anza Island, the player creates
logical constraints that can be used to control an AI charac-
ter’s gameplay moves. Creating this new form of gameplay
allows not only an ASP-specific game mechanic, but it makes
the process of constraint-solving the center of gameplay.

2. RELATED WORK

2.1 Types of Procedural Content Generation

Figure 2: A variety of possible islands generated
with a short list of constraints.

PCG is often offered as a potential solution to a number
of game design problems. As Togelius et al enumerates,
these include: storing large quantities of content in small
amounts of memory so that it can be regenerated as needed,
speeding up the process of making content, so that artists
can create larger amounts of content in less time, and finally,
creating new kinds of gameplay by allowing infinitely long
levels, which could never be generated by previous hand-
authored techniques [5].

Smith et al [4] describes a similar list of uses for PCG tech-
niques, but has a more expanded taxonomy of the new game-
play mechanics that PCG allows. They propose that some
uses of PCG provide replayability; that is, they do not cre-
ate new mechanics, but just allow the player to apply the
same mechanics in an endless set of new levels.

They contrasts this with adaptive PCG which takes the
player’s actions as input, and uses that information to guide
the generation of new content. While PCG for replayability
does not create novel game mechanics, as the generator is
not making anything that a human designer couldn’t have
made, adaptive PCG allows mechanics that could never ex-
ist otherwise, because a traditional artist or level-designer
could not respond in real-time to a player’s actions. Al-
though PCG levels that are generated to match a player’s
skill or preferences could be considered adaptive, the player
is not consciously making choices to affect the PCG, so while
it affects the gameplay experience, it does not enable new
mechanics.

Understanding these different categories of PCG informs the
prototype that we have built. If using an ASP solver is to
be expressive enough, it should be able to create examples
of all of these kinds of content.

2.2 Procedural Content Generation for Tile-
based Level Generation

One of the most common types of PCG is terrain generation.
Patel’s meticulously documented process for creating a pro-
cedurally generated island [2] provides a good illustration,
both because it shows the many constraints that are impor-
tant for terrain generation, and how these are maintained in
a feed-forward generation algorithm, but he also identifies
points at which these constraints were hard to satisfy, and
what had to be done to correct it. This is exemplified when
his system creates the elevation of the terrain: though the
generator may have the knowledge of how many mountains
are desirable, the height-creation stage of the algorithm may
create either too few or too many mountains. In that case,
the generator needs to know that it is in this problematic
state, and redistribute the terrain heights to create the de-
sired end condition.

This problem, and its solution, is a common pattern in PCG:
content is generated, and it doesn’t satisfy the constraints
needed, for gameplay or for aesthetics, and some correc-
tive algorithm must be applied. Of course, if many differ-
ent kinds of corrections need to be made, these corrections
become prohibitively complex and might undo each others
work, or create new situations that must be corrected.

Another solution would be to generate many possibilities for
that content, and choose the best one of those [5]. However,
if the search space is sufficiently large and multi-dimensional,
and there are many constraints, the generator may need to
create thousands of examples before it finds a satisfactory
one, and it isn’t guaranteed to find a satisfactory one at all.

In this prototype, we show that similar landscapes could
be created with ASP by just expressing these constraints
directly, and with no post-generation corrections needed.

2.3 Answer Set Solving for Games
This work has been inspired and guided by Smith and Mateas’s
work on using ASP for PCG [3]. He establishes a method in
which a design space is modeled by a logic program, which is
in turn solved by the solver to return answer sets, which can
be interpreted as artifacts. He applies this to the problem of
generating chromatic mazes, with success: this problem is
easy to describe in ASP, and the ASP solver is able to find
solutions. In the taxonomy by Smith et al, this would be
PCG for replayability. ASP generates the same sort of mazes
that a human could have generated, though it would have
been a tedious task for a human designer, but it can generate
many of them. This shows ASP’s potential as for generat-
ing replayability, but does not yet explore the potential of
ASP for any adaptive PCG. This presents an opportunity
for us to apply ASP for replayability, and also to explore
the ways in which ASP enables direct and indirect control
of the PCG.

3. PROTOTYPE
3.1 Gameplay
To effectively demonstrate the versatility of ASP for game-
play, a simple turn-based game was devised that could use
ASP in multiple ways. A human player is playing against
an AI character, Anza, that can control whether or not dif-
ferent zones are reachable by turning on and off the bridges
that connect them. The player must move her pawn to a

number of landmarks in order to win. Each time the player
moves to a new zone, she collects a logic card, which contains
descriptions of the zones, such as ”all beaches”, ”the tower”,
and ”the player’s current tile”, or a phrase describing how
they may be connected such as ”must be connected”, ”must
not be connected”, ”must be connected with no fewer than
3 bridges”. The player will often be prevented from mov-
ing to where she wants: Anza can activate and deactivate
bridges each turn to try to lock the player. So, to create
paths between these landmarks, the player must create con-
straints such that Anza is forced to connect the zones in
a way that satisfies the constraints, and the player creates
these constraints by ”logic crafting”, that is, playing 3 logic
cards such that they make a logical statement: ”All beaches
must be connected to the player’s current time”. Playing
that statement would force Anza to make enough bridges
active so that the player could move freely to any beach.

3.2 Integrating Processing and Clingo
Similar to the color-maze generator by Smith and Mateas,
Anza Island uses ASP to turn a logic program into an answer
set, one answer of which is taken and turned into artifacts.
Only in this case, the answer set program has itself been
generated from the gameplay, so that it can respond to the
player’s input and the changing game state.

We are using Processing, a Java-based programming lan-
guage, for its ease of use and graphical interface, which al-
lows us to create an appealing game world. Processing cre-
ates and stores the information about the game world, and
the constraints that have been played.

For our ASP solver, we are using Clingo [1]. Processing
calls the Clingo executable, feeds it the answer set program
that has been generated, and then parses Clingo’s output
to identify the changes that need to be made to the game
world.

3.3 Terrain generation
ASP is first used to create the terrain layout of the island
on which the game is played. Figure 4 shows the full ter-
rain generation process. First, a distribution of points (Fig
4:1) are used to create a Voronoi mesh of multiple zones
and a Delaunay mesh of potential connections between all
neighboring zones (Fig 4:2). This information is used by
Processing to create a game world of zones and bridges that
are not yet fully specified (Fig 4:3). Information about this
game world, along with some further constraints about is-
land layout, are compiled into a single answer set program
(Fig 4:4) which is given to Clingo to solve, and a single
answer from the set is selected. That answer is parsed, and
the information from it is used to finish specifying the zones
and bridges (Fig 4:5).

As an example, assume that Processing has already output
the bordering information for each zone into the Answer Set
program.

borders(zone32, zone33). borders(zone30, zone33)....

If we want between 20 and 30 zones to be land, this is easy
to express:

Figure 3: Adaptive PCG with ASP: the prototype
responds to a player’s crafted logic statement.

20{ land(Z) :zone(Z) } 30.

Notice that we do not have to write a separate algorithm
to correct it if we get the wrong number of zones of land,
as Patel [2] did. Error correction and constraint satisfaction
are left to Clingo.

Since that was so easy, we can start complicating our gen-
erator:

:- hasTerrain(A, lava), zone(B), borders(B, A),

not hasTerrain(B, mountain).

hasTerrain(A, beach) :- land(A), borders(B, A),

hasTerrain(B, ocean).

This expresses the constraints: if a land zone touches water,
it is a beach, and if there is a volcano, it must be surrounded
by mountains. These constraints were added without having
to consider how they would affect previously defined con-
straints; we could just add them and let Clingo sort through
it. This declarative style of programming enables us to add
and remove constraints, without ever having to modify or
rewrite a search algorithm, enabling extremely fast proto-
typing. Figure 2 shows an example of generated islands.

3.4 Choosing Anza’s Moves
Though ASP can be used to more rapidly prototype content
generation that could be done using traditional methods, it
can also be used to create content and modes of interaction
that would be impossible to create otherwise, such as adap-
tive PCG. The method for creating adaptive content with
ASP is exactly the same as for non-adaptive content, only
the player’s added constraints and Anza’s current goals are
also added on to the list of constraints for Clingo to solve.
Figure 3 shows the cycle for one turn of gameplay.

In Anza Island, the adaptive application of PCG is logic

crafting, a new mechanic enabled by the use of ASP. In
the course of play, the player collects logic cards, each of
which represents a logical concept, such as ”All beaches”,
”The Tower”, or ”Are Connected To”. Once she has collected
a useful set of cards, these can be crafted into a valid logic
statement, like ”All beaches are connected to the Tower”.
In this game, the player is directly controlling the adaptive
PCG by explicitly expressing these demands.

Once the logic cards are crafted into a statement, the player
give this to Anza as a command. Behind the scenes, this
logic statement is converted into a few lines of ASP declara-
tions. These generated lines are appended to the rest of the
program that describes the world. When the solution set
comes back from the solver, it contains which bridges Anza
should activate and deactivate. This information updates
the world and the player can continue moving.

Figure 1 shows a selection of the many possible moves that
Anza could make in response to a given set of constraints.
This allows us to further constrain these sets by giving Anza
a personality, either helpful, or unhelpful, that will add con-
straints to the solutions that Clingo will find. This blurs the
line between PCG techniques and AI techniques: the same
ASP methods are used to generate terrain, and generate the
opponent’s game moves.

4. CONCLUSION
In this paper, we describe a work-in-progress PCG-based
puzzle game using constraint solving as a gameplay me-
chanic, a mechanic that would not be possible without ASP.
In addition, using ASP to create Anza Island allowed us to
easily prototype, modify, or add new kinds of procedurally
generated content, without writing laborious search algo-
rithms for each new kind of content. At the same time, the
constraint solving power of ASP made it easy to ensure that
all the generated content would work with the gameplay re-
quirements. As a prototype, Anza Island demonstrates the
versatility of ASP for game creation.

5. REFERENCES
[1] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,

T. Schaub, and S. Thiele. A user’s guide to gringo,
clasp, clingo, and iclingo. University of Potsdam, Tech.
Rep, 2008.

[2] A. Patel. Polygonal map generation for games.
http://www-cs-students.stanford.edu/ amitp/game-
programming/polygon-map-generation/.

[3] A. Smith and M. Mateas. Answer set programming for
procedural content generation: A design space
approach. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3):187–200, 2011.

[4] G. Smith, E. Gan, A. Othenin-Girard, and
J. Whitehead. Pcg-based game design: enabling new
play experiences through procedural content generation.
In Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM, 2011.

[5] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne.
Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and
AI in Games, IEEE Transactions on, 3(3):172–186,
2011.

Figure 4: ASP for replayability, generating a level

