
Answer Set Programming in Proofdoku

Adam M. Smith
amsmith@ucsc.edu

UC Santa Cruz
Department of Computational Media

Abstract
Proofdoku is an AI-based game design that extends Sudoku.
In addition to playing by the rules of the traditional logic
puzzle, players must explain their reasoning. An AI sys-
tem checks this reasoning and provides hints that guide the
player to discover new reasoning patterns for themselves. Co-
developing the game design and the AI system, implemented
using the technology of Answer Set Programming (ASP),
guided us to include features that depend on high-complexity
combinatorial search and optimization. We developed Proof-
doku to better understand the implications of designing and
deploying game systems that depend on ASP for live inter-
action. This paper offers design tradeoffs and makes sugges-
tions for future deployments of ASP-backed game designs.

Introduction
Proofdoku is an extension to the traditional Japanese logic
puzzle Sudoku, developed within the practice of AI-based
game design (Eladhari et al. 2011). The Proofdoku project
aims to uncover new player experiences unreachable without
the affordances of artificial intelligence (AI) systems as well
as to understand how the context of a deployed game pushes
back on those systems.

In Proofdoku, the player works under the traditional rules
of Sudoku with one key twist: they must explain their rea-
soning (and it must be valid). A small AI system, built using
the technology of answer set programming (ASP) (Gebser
et al. 2012) and co-developed with the design of the game,
plays several roles during gameplay including checking the
validity of player arguments and computing hints for the var-
ious phases of play. Through interaction with Proofdoku,
players can learn and generalize new deductive inference
patterns for Sudoku (including those unknown to the design-
ers).

The Proofdoku project was initiated to answer specific
questions about applying ASP: What practical engineering
concerns arise when deploying an ASP-backed gameplay
experience? Which aspects of live play might be enabled
or enhanced using ASP? These questions are answered here
in necessarily game-specific ways. However, the concerns
that arose in design, development, and deployment touch on
much broader issues: maintaining responsiveness of the AI

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

system for players; the level of project-specific engineering;
software licensing; and monetary costs associated with cen-
tralization.

This paper makes the following contributions:

• We describe an AI-based puzzle game in which ASP is
used to enable several aspects of the player experience.

• We show how hinting systems and other feedback mech-
anisms emerge from the architectural surplus of ASP.

• We compare of ASP deployment alternatives in the con-
crete context working within a modern web browser.

• We make suggestions for caching and network architec-
ture that overcome many of the costs associated with pro-
visioning a centralized solving service.

Background
We first review some context for the Proofdoku project.

AI-based Game Design
In introducing the practice of AI-based game design, Elad-
hari et al. (2011) argue that “the development of innovative
artificial intelligence systems plays a crucial role in the ex-
ploration of currently unreachable [game design] spaces.”
AI-based game designs are those that have an AI system
closely integrated into the core mechanics, aesthetics and
story. For example, Prom Week (McCoy et al. 2013) is a
game that intimately depends on the CiF (McCoy et al.
2010) AI system for social physics modeling. In Sarah and
Sally (Černý 2015), an action planning system allows for
cooperative puzzle solving in the context of a single-player
game. In Proofdoku, the player manipulates sets of evidence
(selected cells on the board) that they think will convince
the AI system. In the commercial setting, Third Eye Crime
(Moonshot Games 2014) and The Sims (Maxis 2000) are AI-
based game designs that also revolve around understanding
and manipulating AI-driven character behaviors.

In AI-based game design, co-development of an AI sys-
tem and a game design allows for productive mutual influ-
ence: the affordances of the AI system suggest new game de-
sign options and the context of the game design push back
with new requirements for the AI system. Proofdoku’s de-
sign was shaped through several cycles of this influence.



Answer Set Programming
ASP is a declarative logic programming paradigm oriented
at solving complex (NP-hard) search and optimization prob-
lems (Gebser et al. 2012). ASP technology combines a mod-
eling language used for describing domain-specific prob-
lems with domain-independent algorithms for solving them.
In particular, ASP uses a Prolog-like modeling language
called AnsProlog. Most answer-set solvers rely on the lat-
est algorithms emerging from the SAT/SMT1 literature.

We use the Clingo-5 system,2 a modern ASP system with
support for defining custom search heuristics, externally
checked constraints interleaved with the search process, and
hooks for scripting languages in the service of integrating
the solvers with outside environments. Proofdoku makes use
some key features in Clingo not found in non-ASP systems
such as the SAT solver MiniSat (Eén and Sörensson 2003).
For example, we rely on disjunctive ASP (Gebser, Kauf-
mann, and Schaub 2013) to express a search problem outside
of the complexity class NP when searching over arguments
the player might make. We combine this with optimization
criteria to find the best argument. In hinting modes, we make
use of brave and cautious reasoning modes (Eiter, Ianni, and
Krennwallner 2009) to efficiently access the union and inter-
section of all possible solutions to a puzzle or arguments for
a given conclusion.

ASP in Game Design Applications
ASP is not commonly used in game design applications.
Against this background, proposals for using ASP to an-
alyze game mechanics (Smith, Nelson, and Mateas 2010)
or to model design spaces for procedural content genera-
tion (Smith and Mateas 2011) stand out. Both of these em-
phasize offline applications of ASP that avoid interactive
contact with players, instead yielding design insights or gen-
erating datasets that impact the player experience later on, as
in Infinite Refraction (Butler et al. 2015).

Butler et al. (2013) describe a system built on live inter-
action with ASP-based content generators and gameplay an-
alyzers. However, this mixed-initiative design tool still em-
phasizes design-time use by a single user. Here, responsive-
ness is valued but not critical. Likewise, scalability to many
users on diverse devices and networks is not relevant.

Compton et al. describe Anza Island (Compton, Smith,
and Mateas 2012), an AI-based game design in which the
player interacts with an ASP-driven agent by adding and re-
moving constraints represented by collectible cards. While
Anza Island breaks ground with novel gameplay, it does so at
the level of a prototype. The Proofdoku project brings ASP-
backed gameplay out of the lab where a broader external
context can push back on the design of the AI system.

Game Design
In this section, we describe Proofdoku in game design and
implementation terms, saving details of the AI system for
the subsequent section.

1Boolean satisfiability or Satisfiability Modulo Theories
2https://potassco.org/clingo/

Figure 1: Initial state of a puzzle in Proofdoku. White num-
bers represent clue cells. Empty cells must be filled by the
player by making arguments. Four cells of evidence (black
background) are selected towards arguing for conclusion cell
(green outline). Other background colors visualize local am-
biguity: the number of different values that cell might take
on across all evidence-consistent solutions (ignoring other
clues). These four evidence cells are sufficient to argue that
the conclusion cell must be filled with a 1.

Sudoku Basics
In traditional Sudoku puzzles, the player is faced with a 9×9
grid of cells. The cells will be filled with numbers from 1
to 9. Although many cells start blank, clue cells come pre-
filled, restricting the choices for the blank cells in such a way
that there is one unique way to fill in the blanks. The player’s
job is to fill in the blanks so that each number is used exactly
once in each row, once in each column, and once in each 3-
by-3 sub-grid (sometimes called a cage).

Figure 1 shows the initial state of a relatively difficult Su-
doku puzzle (as visualized within Proofdoku with an opti-
mal opening argument displayed). Of the 81 total cells, 23
are provided as clues and 58 must be filled by the player.

Players access and play Sudoku puzzles in a variety of
media including physical books and newspapers or digital
apps and websites. Proofdoku seeks the attention of players
who play the daily puzzles on websites such as New York
Times3 or USA Today4 using desktop computers and mobile
devices (smartphones and tablets).

Proofdoku Phases and Flow
As a digital adaptation of a traditionally pen-and-paper puz-
zle, play in Proofdoku moves through a number of phases
of interaction with our game website.5 The overall flow be-
tween these phases is visualized in Figure 2.

3https://www.nytimes.com/crosswords/game/
sudoku/easy

4http://puzzles.usatoday.com/sudoku/
5http://proofdoku.com/



Start

Strategy Tactics
Victory

Select a puzzle.
Select a blank cell 
as the conclusion.

Complete an argument 
(only if valid).

Add/remove 
cell from the 
evidence set.

Finish the puzzle 
(only if all cells filled).

Figure 2: Gameplay phases in Proofdoku.

In the Start phase, the player selects a puzzle to play. Our
game currently offers a fixed tutorial puzzle (accompanied
by additional guidance not present on other puzzles) and
fixed easy, medium, and hard difficulty puzzles. These are
complemented with a small set of dynamic (updating daily)
puzzles. We currently offer the daily easy, medium, and hard
puzzles from the New York Times website as well as the
USA Today puzzle of the day.

Upon selecting a puzzle, the player enters the Strategy
phase. In this phase, the player needs to make a choice about
which blank cell they will fill next. Selecting a blank cell
registers it as the intended conclusion and carries the player
to the next phase. Strategy choices can be made based on
player intuition or guidance from our hint system. No strat-
egy is invalid, but few choices in any given state set the
player up for making an argument of reasonable (small) size.

In the Tactics phase, the player selects filled cells build
the an evidence set—these are cells are the premises in the
players argument. After each change, the game quickly re-
sponds to tell the player if their argument is valid. If so, the
player may complete the argument, resulting in a transition
back to the Strategy phase now with one more cell filled.
Players may also abandon an argument and transition back
to the Strategy phase without filling the conclusion. In this
case, the game remembers the last state of their argument for
the given conclusion so they can recover their attempt later.

Once all cells are filled, no more choices in the Strategy
phase are available. In this case, the player transitions to the
Victory phase where they see a visualization of all of the
cells they have filled in using arguments. They player may
have long forgotten which cells they filled versus were pro-
vided originally, so this reminds them of their achievement.

Evergreen Design and Sustainable Deployment
A key design goal in Proofdoku is evergreen design: the
game should always feel fresh and up-to-date, even years af-
ter initial deployment with no recent developer attention. To
support this, our puzzle selection emphasizes daily puzzles
from outside sources as well as the ability to import puzzles
from new sources that become popular in the future. Addi-
tionally, we aim to make system architecture choices consis-
tent leaving the game deployed with near-zero running costs.

Proofdoku is built on Google App Engine6 (GAE) and pri-
marily implemented as a static webpage that can be served
with zero application server instances. The daily puzzle se-
lection represents a tiny amount of nearly static content

6https://cloud.google.com/appengine/

(changing just once a day) served from a Cloud Storage
bucket. These components of the game can be scalably ac-
cessed by millions of players per day while still falling well
within the free tier of Google’s cloud services.

Outside of the game’s static webpage, additional logic is
needed to keep the game fresh. For a few seconds per day,
puzzle scraping scripts run to fetch the daily puzzles from
remote sites. Beyond this, our AI system (a general pur-
pose ASP web service described later) also runs on the same
cloud platform in a way that fits into the free tier.

Arguments
Arguments for the value of a blank cell are a core concept in
Proofdoku. An argument is defined with respect to a puzzle
board and is composed of an evidence set (a subset of the
filled cells) and a conclusion cell (one of the blank cells).
An argument may be valid or invalid. An argument is valid
if and only if any board configuration consistent with the
evidence set agrees with the conclusion. Amongst valid ar-
guments for a given conclusion, optimal arguments are those
with the least possible amount of evidence (by cell count).

Feedback Mechanisms
In order to help the player share their reasoning with the
game, the game tries to continually share its reasoning with
the player. After each change to the evidence set (in the Tac-
tics phase) we show how much the range of legal possibil-
ities for every other cell was impacted. This can help the
player spot long range implications as well as when adding
a certain cell of evidence has no impact on a cell of interest.

For the conclusion cell, we give the player visual feed-
back as to whether their valid argument is optimal or not.
They may proceed back to the Strategy phase with any valid
argument, or they may continue searching to find an optimal
argument if they like.

Hints
Despite having the same core rules as traditional Sudoku,
Proofdoku’s argument mechanic is generally unfamiliar to
our players. As such, our hinting systems revolve around
guiding the player through the argument making process
rather than underlying Sudoku reasoning. Hints of the style
provided in SquareLogic (TrueThought LLC, 2009) would
compliment the hinting design currently used in Proofdoku.

In the Strategy phase, the player may want guidance for
which cell to use as a conclusion. Our hint system (upon
player request) will add a glinting animation to one of the
blank cells that can be proven with the least amount of ev-
idence (often there are several possibilities). Arguments in-
volving fewer cells of evidence are often conceptually sim-
pler than those that use more, but this is not always the
case. There are a number of size-8 arguments (selecting all
the cells but the conclusion in a row, a column, or a cage)
that feel quite simple despite using more evidence than less
structured size-6 arguments.

In the Tactics phase, we can suggest which cells must be
included in an evidence set in order to be part of an optimal
argument as well as those which should never be selected in



num(1..9).

cage(I,J,((((I-1)/3)*3)+((J-1)/3))+1) :- num(I); num(J).

1 { fill(I,J, D): num(D) } 1 :- num(I); num(J).

1 { fill(I,J, D): num(I) } 1 :- num(D); num(J).

1 { fill(I,J, D): num(J) } 1 :- num(I); num(D).

1 { fill(I,J, D): cage(I,J,C) } 1 :- num(C); num(D).

fill(I,J, D) :- clue(I,J, D).

#show fill/3.

Figure 3: board.lp defines the rules of Sudoku.

any optimal argument. If there is only one optimal argument
(uncommon), this hinting design will reveal the full details
of that argument. Otherwise, it will focus the player’s atten-
tion away from irrelevant cells on the board.

Formulation in ASP
Our AI system performs several inference tasks in support of
core gameplay, feedback mechanisms, and hinting systems
in Proofdoku. In this section, we describe how these tasks
are formulated in ASP. Each inference task in our system
is resolved by a single execution of Clingo. An execution
involves a program–a combination of a general problem en-
coding and a specific problem instance–and some command
line arguments which alter the behavior of the solver.

board.lp
When the player starts a puzzle the game only knows about
the set of clues that define the puzzle. Before transitioning
out of the Start phase, we verify that the clues imply a unique
solution for the board and record the details of that solution
for later. This is a basic Sudoku solving task.

Our first program simply states the rules of Sudoku: there
are numbers 1 to 9; each number is used exactly once in a
row, column, and cage (where the structure of cages is de-
fined by a formula); and if a cell has a clue, the number filled
in that cell must match the clue. We store this general prob-
lem encoding in a file called board.lp (see Figure 3).

To find the initial solution to the player’s puzzle selec-
tion, we wrangle the puzzle’s clues into logical facts like
clue(2,4,9) which says that the cell on row 2 and col-
umn 4 holds a clue value of 9. These facts define a spe-
cific problem instance. Combining board.lp with this in-
stance, we execute Clingo with command line arguments
asking for two distinct solutions. If the solver returns no so-
lutions, the clue set was invalid. If the solver returns two
solutions, the clue set was ambiguous. If just one solution is
returned, it is because the solver has verified that there is a
unique solution (the most common case).

Later during play in the Tactics phase, we want to check
the validity of the player’s argument as well as to visualize
the ambiguity of every cell. We accomplish this by combin-
ing board.lp with a different problem instance. Instead
of using all of the puzzle’s known cells as clue facts, we in-
clude only those cells marked as evidence. Instead of asking

for two distinct solutions, we as the solver to compute the
union of all possible solutions with brave reasoning. If we
group the resulting outputs for the fill predicate by cell
we can compute the level of ambiguity as the count of dif-
ferent assignments for that cell. Examining the ambiguity of
the conclusion cell, we can quickly see if there was only one
legal possibility (hence if the argument was valid or not).

argument.lp

The program above considered just one given evidence set.
A different approach must be used if we want to reason
across all evidence sets. The first place this occurs is in the
computation of hints in the Strategy phase. Of all possible
valid arguments that could be made in a given board state,
we want to highlight one of the conclusion cells associated
with arguments with a least-size evidence set. The notion
of argument optimality in Proofdoku is defined solely in
argument.lp (not in the interaction and graphics code),
so it could be locally altered to support alternative notions
of simplicity or elegance of arguments.

To model the space of valid arguments, we want to say
that there exists a selection of premises and conclusion such
that for all legal ways of filling the Sudoku grid if the filling
agrees with the premises then it must agree with the conclu-
sion. Effectively, we want to the solver to show the following
where p, c, and f are sets of assignments of cells to numbers
representing the premises, conclusion, and any complete fill-
ing respectively.

∃ p, c ∀ f : Legal(f)→ (p ⊆ f → c ⊆ f)

The general problem of showing the truth of an ∃∀ quan-
tified boolean formula (known as 2-QBF) has complexity
beyond the class NP, and thus it cannot be solved by tools
such as SAT solvers which only cover NP. 2-QBF is in fact
the canonical problem for the class ΣP

2 on the second level
of the Polynomial Hierarchy. Disjunctive answer set solvers
(such as Clingo) can express problems of this complexity,
but only with considerable hassle for the programmer by ap-
plying the saturation technique introduced by Eiter (2009).
Although conventional ASP wisdom suggests avoiding sat-
uration encodings in favor of metaprogramming approaches
as in metasp (Gebser, Kaminski, and Schaub 2011)—also
applied game content generation (Smith and Butler 2013))—
the rules of Sudoku are simple enough to express.

Our second answer set program, argument.lp (see
Figure 4), uses choice rules to nondeterministically guess
an argument and then a saturation-encoding restatement of
the rules of Sudoku to express the nonexistence of solutions
that would falsify the argument. Additionally, it states opti-
mization criteria: one point of cost for each cell selected as
a premise in the argument.

To compute hints in the Strategy phase, we wrangle
the currently filled cells into clued(I,J) facts and
the contents of the puzzle’s previously-computed solution
into fill(I,J,D) facts. We then execute Clingo with
argument.lp and these facts with command line flags
asking it to emit only solutions that are proven to be op-
timal. Upon entering the Tactics phase, we execute Clingo



num(1..9).

cage(I,J,((((I-1)/3)*3)+((J-1)/3))+1) :- num(I); num(J).

clued(I,J) :- clue(I,J,D).

1 { premise(I,J): clued(I,J) }.
1 { conclusion(I,J): num(I), num(J), not clued(I,J) } 1.

altfill(I,J,D): num(D) :- num(I); num(J).

bot :- altfill(I,J,D); premise(I,J); not fill(I,J,D).

bot :- altfill(I,J,D); conclusion(I,J); fill(I,J,D).

bot :- 2 { altfill(I,J,D): num(D) }; num(I); num(J).

bot :- 2 { altfill(I,J,D): num(I) }; num(D); num(J).

bot :- 2 { altfill(I,J,D): num(J) }; num(I); num(D).

bot :- 2 { altfill(I,J,D): cage(I,J,C) }; num(C); num(D).

altfill(I,J,D) :- bot; num(I); num(J); num(D).

:- not bot.

#minimize { 1,I,J: premise(I,J) }.
#show conclusion/2.

Figure 4: argument.lp defines valid arguments subject
to minimizing of the size of the evidence set.

with a similar setup (now including the known conclusion
as a fact) to find the size of an optimal argument for that
specific conclusion.

Hints in the Tactics phase are computed as the intersection
of all optimal evidence sets. With known cells and conclu-
sion wrangled into facts as before, we execute Clingo with
flags instructing it to perform cautious reasoning over opti-
mal solutions.

Deployment Options
Even with the rest of the game deployed as a static webpage,
there are several options for how to deploy our AI system.
In this section, we explain our reasoning towards our chosen
model: a centralized ASP web service.

Our game is intended to be played inside of a modern web
browser with no additional downloads. We want gameplay
to feel responsive on desktop machines as well as low-end
smartphones. Although we expect our players to have net-
work access, we appreciate that mobile players may not have
reliable connectivity throughout the play session.

In-process
Clingo can be utilized as a software library via either its
Python or C/C++ APIs. Used as a library, the solver would
tightly bind with the rest of our game code running within
the same (operating system) process. In the context of
JavaScript code running in a web browser, we work with
Clingo.js,7 a cross-compilation from the Clingo’s original
C++ code into pure JavaScript using Emscripten.8

Until very recently, Clingo was distributed under the GNU
Public License, a copyleft license that made it impractical to
do in-process deployments of Clingo for commercial games.

7https://potassco.org/clingo/run/
8http://emscripten.org/

As of May 3, 2017,9 Clingo is now distributed under the
much more permissive MIT License.

Executing the solver locally in the player’s browser has
the strong benefit of not requiring any centralized infras-
tructure for solving combinatorial search and optimization
problems. As the game scales in popularity, individual play-
ers pay the cost (mostly obviously in increased battery usage
on mobile devices).

The pure-JS solver does not execute as efficiently as a na-
tive compiled solver. However, for the modest scale of infer-
ence tasks about Sudoku puzzles, we found response times
in desktop web browsers to be reasonable.

Although an in-process deployment strategy is conceptu-
ally the simplest approach, it implies some responsiveness
and stability hazards. While the solver is executing, no other
scripts on the page can run to continue animations or re-
spond to additional player inputs. JavaScript provides no
thread-like abstraction to avoid this blocking while still ex-
ecuting within a single process. Additionally, if the browser
decides to halt the seemingly unresponsive script, it is diffi-
cult for the rest of the game code to recover.

Out-of-process
In a desktop application (outside of the browser), it would be
natural to address the limitations of the in-process approach
by simply executing Clingo as a child process (by means of
a spawn syscall). Again, no such abstraction is provided
inside of the browser (the local filesystem and native exe-
cutables cannot be touched).

The WebWorker API10 provides the abstraction of an in-
visible background page that can execute JavaScript code
asynchronously from the player-visible page. Workers com-
municate with the main page by passing messages. Clingo.js
can be used from inside a web worker. Indeed, this was the
approached used in the original Proofdoku prototype.

In either the in-process or out-of-process mode of us-
ing Clingo.js, the player must wait for the full 5.22 MB of
Clingo.js to be downloaded before any AI-supported interac-
tions with a puzzle can occur. Over a slow or unreliable mo-
bile network, even this download time could be detrimental
to the critical first moments of player experience.

On these same mobile devices, the responsiveness of the
pure-JS solver is also significantly reduced. Even if we could
hide the longer solving times with distracting animations,
we wanted to avoid unnecessary consumption of battery
resources. Our players should not have to decide between
playing Proofdoku for a few more minutes or saving their
battery for important communication later in the day.

Remote service
If we give up the scalability benefits associated with running
the solver locally, we can regain control over responsiveness
even for our players on mobile devices. Instead of running

9https://github.com/potassco/clingo/
releases/tag/v5.2.0

10https://html.spec.whatwg.org/multipage/
workers.html



the solver on the player’s device, we considered running it
on (virtual) machines in the cloud.

In Proofdoku, we specifically examined using Google
Cloud Functions11 to implement a Clingo web service. In
this design, a native compiled solver runs in response to web
requests made by remote clients.

This approach avoids up-front downloads and allows
much closer to native solving speeds (modulo virtualization
and other overheads of the shared infrastructure). As a com-
mercial service, this design implies per-CPU-second costs
that threaten our intent to leave the game running for several
years. To stay within the service’s free tier as our player pop-
ulation scales up and down, we introduced layers of caches
so that the solver is only run when necessary instead of in
response to every single player action in a puzzle (details
below).

In exchange for requiring the player’s device to be able
to make small, periodic requests to a central service, we are
able offer both desktop and mobile players the same respon-
siveness from our AI system.

Inference Caching
As our game is oriented around a small set of fresh daily
puzzles, most players will be asking our centralized service
to solve the same inference tasks. Even at the scale of an
individual player there is duplication as they explore differ-
ent evidence sets. By caching the results of inference tasks,
we can improve responsiveness over a design that needs to
execute Clingo after every interaction.

Our caching strategy operates at the level of Clingo calls.
In this setup, the caches store key–value mappings where
the key is a combination of the AnsProlog text and com-
mand line flags, and the value is the text output of Clingo.
This makes the system independent of Proofdoku and suit-
able even for non-game interactive ASP deployments.

Local caching
The first layer of caching works locally in the web browser.
This cache provides an instant response when removing ev-
idence returns the player to a previously-seen state in the
Tactics phase or when abandoning an argument returns the
player to a previously-seen state in the Strategy phase.

By nature, the local cache cannot help when the player en-
counters a state that has never been seen on their device be-
fore. Filling the local cache requires a network transaction.
Although this local cache could be primed with the popular
inference results of the day, we did not consider the com-
plexity of this design to be warranted.

We used a Least-Recently-Used cache with 100 slots im-
plemented using a plain JavaScript object as the key–value
store. Most states are either seen again after just a few clicks
or never again, so we selected the cache capacity primar-
ily as a way to avoid unbounded memory usage. Although
we could use the Web Storage API12 to persist the cache

11https://cloud.google.com/functions/
12https://developer.mozilla.org/en-US/docs/

Web/API/Web_Storage_API

across page loads or play sessions, our evergreen design in-
tent leads us to not expect players revisiting old puzzles.

Global caching
As different players independently pass through similar
states while they work through the puzzles of the day, we ex-
pect our solving service to answer many duplicate requests.
Although Google Cloud Functions (GCF) will readily spawn
several copies of Clingo to match the request load, this trans-
lates into costs for us to keep the game deployed. Our intent
is to stay within the free tier of this service even as popular-
ity of the game rises and falls.

We created a thin wrapper around the GCF Clingo ser-
vice using Python running on GAE. This wrapper tries to
answer requests out of a global memcache13 service before
handing the requests to the GCF Clingo service. The focus
on daily puzzles ensures that relatively few keys are active
each day (compared to the number seen during the whole
deployment).

Although we do not have sufficient data to report infor-
mative cache hit rate statistics, we can report one interesting
qualitative phenomenon resulting from the use of the global
cache. Certain inference tasks (particularly computing the
Strategy hints for a hard puzzle) can take even the native
solver a few seconds to compute rather than a few tens of
milliseconds to serve from memcache. Even if the global
cache only manages to serve responses for queries about the
initial state of a puzzle, the use of a centralized service with
a global cache contributes significantly to game’s feeling of
responsiveness in the very first moments of interaction with
a puzzle compared to uncached or decentralized inference.

Conclusion
Proofdoku is an AI-based game which draws out the other-
wise unseen implications of building and deploying interac-
tive systems based on ASP. Although many of the design de-
cisions we made in the deployment of our game are specific
to project and the intended player experience, the questions
we faced in making those decisions are very general.

With the software license associated with a state-of-the-
art answer set solver having recently changed to MIT (from
GPL), a number of different modes of integrating ASP into
commercial applications has just opened up in 2017. We
hope the exploration of Proofdoku’s design choices sparks
informed conversations about how ASP can be deployed in
games and other interactive media applications in the future.

Acknowledgements
The author would like to thank Nicholas Warren and Mason
Reed for their game design and software engineering contri-
butions to Proofdoku, the Potassco team at the University of
Potsdam for providing Clingo liberally licensed and free of
charge, and Google, Inc. for providing a generous free tier
for the Google Compute Platform products.

13https://cloud.google.com/appengine/docs/
standard/python/memcache/



References
Butler, E.; Smith, A. M.; Liu, Y.-E.; and Popovic, Z. 2013.
A mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology, UIST ’13, 377–
386. New York, NY, USA: ACM.
Butler, E.; Andersen, E.; Smith, A. M.; Gulwani, S.; and
Popović, Z. 2015. Automatic game progression design
through analysis of solution features. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Com-
puting Systems, CHI ’15, 2407–2416. New York, NY, USA:
ACM.
Černý, M. 2015. Sarah and sally: Creating a likeable and
competent ai sidekick for a videogame. In Experimental AI
in Games: Papers from the AIIDE 2015 Workshop, EXAG
2. AAAI.
Compton, K.; Smith, A.; and Mateas, M. 2012. Anza is-
land: Novel gameplay using asp. In Proceedings of the
The Third Workshop on Procedural Content Generation in
Games, PCG’12, 13:1–13:4. New York, NY, USA: ACM.
Eiter, T.; Ianni, G.; and Krennwallner, T. 2009. Reasoning
web. semantic technologies for information systems. Berlin,
Heidelberg: Springer-Verlag. chapter Answer Set Program-
ming: A Primer, 40–110.
Eladhari, M. P.; Sullivan, A.; Smith, G.; and McCoy, J.
2011. Ai-based game design: Enabling new playable ex-
periences. Technical Report UCSC-SOE-11-27, UC Santa
Cruz, Baskin School of Engineering.
Eén, N., and Sörensson, N. 2003. An extensible sat-
solver. In Giunchiglia, E., and Tacchella, A., eds., SAT, vol-
ume 2919 of Lecture Notes in Computer Science, 502–518.
Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. Complex
optimization in answer set programming. Theory and Prac-
tice of Logic Programming 11(4-5):821–839.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2013. Advanced
conflict-driven disjunctive answer set solving. In Proceed-
ings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IJCAI ’13, 912–918. AAAI Press.
McCoy, J.; Treanor, M.; Samuel, B.; Tearse, B.; Mateas, M.;
and Wardrip-Fruin, N. 2010. Authoring game-based inter-
active narrative using social games and comme il faut. In
Proceedings of the 4th International Conference & Festival
of the Electronic Literature Organization: Archive & Inno-
vate (ELO 2010).
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. y. 2013. Prom week: Designing
past the game/story dilemma.
Smith, A. M., and Butler, E. 2013. Quantifying over play:
Constraining undesirable solutions in puzzle design. In In
Proceedings of ACM Conference on Foundations of Digital
Games.

Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3):187–200.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludo-
core: A logical game engine for modeling videogames. In
Proceedings of the IEEE Conference on Computational In-
telligence and Games (CIG 2010).


