
Your Buddy, The Grandmaster:
Repurposing the Game-Playing AI Surplus for Inclusivity

Batu Aytemiz, Xueer Shu, Eric Hu, Adam M. Smith
Design Reasoning Lab

University of California, Santa Cruz
{baytemiz, xzhu54, erjihu, amsmith}@ucsc.edu

Abstract

Advances in artificial intelligence (AI) techniques have re-
sulted in immense breakthroughs in how well we can algo-
rithmically play videogames. Yet, this increased investment
in game-playing AI (GPAI) techniques has not translated into
a tangible improvement in the game-playing experience for
our players. This paper is inspired by the positive impact of
accessibility modes in recent games as well as previous calls
in games research literature to focus on player experience.
Responding to these calls, we propose utilizing GPAI tech-
niques not to beat the player, as is traditionally done, but
to support them in fully experiencing the game. We claim
that utilizing GPAI agents to help players overcome barriers
is a productive way of repurposing the capabilities of these
agents. We further contribute a design exercise to help devel-
opers explore the space of possible GPAI-driven assistance
methods. This exercise helps developers discover types of
challenges and ideate methods that vary in magnitude and as-
sistance type. We first apply this design exercise to explore
the design space of possible assistance methods for the ac-
tion platformer game Celeste. We then implement two of the
discovered methods that target different challenge types in a
Unity clone of Celeste. Through this implementation, we dis-
cover several additional research questions we must answer
before GPAI-driven assistance methods can be truly effective.
We believe this research direction furthers the discussion on
how to utilize GPAI in service of the player experience and
also contributes to the creation of more inclusive games.

Since the mid-2010s, there have been several high profile
victories for game-playing AI (GPAI) techniques. In the
videogames domain, the research community made progress
towards overcoming several difficult problems: an immense
branching factor in Go (Silver and Huang 2016); multiagent
communication in DOTA2 (Berner 2019); working with hid-
den information in poke (Brown and Sandholm 2019); pars-
ing the screen with Atari (Badia et al. 2020); and balancing
low-level control with high-level decision making in Star-
craft 2 (Vinyals and Babuschkin 2019). In all these projects,
the AI agents learned how to play the game very well, often
even beating the best human opponents they faced. Unfor-
tunately, however, this increase in the game-playing compe-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tency of the AI agents has not directly improved the game-
playing experience of human players.

We classify game-playing AI techniques to be any func-
tion that takes in a game state and maps it to an action for
the agent to take. For the purposes of this paper, we are not
interested in the methods used to do the mapping; rather we
will focus on how this mapping can assist the player.

The book AI in Games describes three high-level use
cases for academic AI in Games: Gameplaying, Procedu-
ral Content Generation (PCG), and Player Modelling (Yan-
nakakis and Togelius 2018). Both PCG and Player Model-
ing have had wide adoption from the game industry (Fer-
nandes, Castanho, and Jacobi 2018) (Bakkes, Spronck, and
van Lankveld 2012). However, the recent improvements in
game-playing, especially of learning-based methods, have
not seen a similar level of adoption.

A significant portion of game-playing research is con-
cerned with creating agents that play games optimally (Yan-
nakakis and Togelius 2018). However, this aspiration for op-
timality is not found in the game industry. Commercial game
developers are not interested in creating unbeatable oppo-
nents for their players to face; rather, they are concerned
with crafting an engaging experience. Therefore, the need
for an optimal AI agent as a non-player character (NPC) is
often not very high (Schwab 2011). Most NPC enemies are
alive for a very short time before they are removed from the
game. Simpler techniques are enough to achieve the desired
design goals in this short span of time. Even the opponents
that are expected to put up a good fight can usually do so
through cheating behind the scenes or through clever game
mechanics.

Even when the goal of the AI agent is to be as strong
as possible, there is always an underlying aesthetic con-
straint. The AI agent’s actions must fit the context of the
game. Most of the recent reinforcement learning or evo-
lutionary methods–although effective in maximizing the
given objective–are horrible at being graceful while doing
so (Krakovna and Uesato 2020; Lehman 2018). Even though
continuously jumping might be the optimal way to traverse
a map, it is unlikely that the game designers would be happy
to see their special operations soldier NPC doing so.

These obstacles in using game-playing techniques primar-



ily arise when we assume, as it is traditionally done, that
the AI will drive an opponent behavior to beat the player.
However, there are several different ways our game playing-
agents can assist the player:

• A search-based agent can highlight a good path through
the obstacles in a complicated action-platformer, allowing
the user to concentrate on timing their button presses to
follow the highlighted path.

• A rule-based agent can offer reminders if the player is
consistently using the unintended tool for the job, allow-
ing the player to utilize all the affordances the game pro-
vides.

• A policy-based agent can take control of microing units
in a real-time strategy game, allowing the player to focus
their attention on macro-level strategic choices.

• A value-based agent can pinpoint which action reduced
the player’s chances of winning, allowing them to im-
prove their game-playing skills more efficiently.

Shifting our focus from beating the player to supporting
the player has several benefits. Through assisting, optimality
becomes a valuable trait since we would like the AI to help
the player in the best way possible! Furthermore, depending
on the implementation we choose, we can assist the player
without the need for a physical avatar, which makes shaping
the aesthetic impact of our AI much easier.

Why should we be concerned with providing assistance to
our players? Because doing so makes our games more inclu-
sive, allowing more players to experience our games (Pitaru
2008). Every player is different and might have different
needs to fully engage with a game (Holmes 2018). Some
players might find a game inaccessible due to its difficulty.
Other players might find the same game inaccessible due
to design choices such as color schemes and specific in-
put mappings (Liu 2018). Offering a portfolio of assis-
tance methods can help us reduce the mismatches between
our players and our games. In recent years, games such as
the difficult action platformer Celeste (Matt Makes Games
2018) have started including assist modes. We propose using
AI agents to assist our player as a personalized and effective
extension to preexisting assist modes.

Another reason we should use GPAI to help our players
is that contextual help can potentially increase player reten-
tion, especially in highly complex games (Andersen et al.
2012). One reason why players stop playing games is that
they don’t fully grasp how to play the game itself (Cheung,
Zimmermann, and Nagappan 2014). We can use GPAI to
show players how to proceed whenever they are stuck and at
risk of abandoning the game. It is already common for play-
ers to refer to walkthroughs and wikis when they cannot pro-
ceed, and having a system where the players can seek help
from the game itself will give more control to the designers.

However, it might not be immediately obvious which as-
pects of the game a player might need help with. Addition-
ally, it can be difficult to discern what the different assistance
methods might look like. To help address these challenges,
we present a design exercise to explore the design space of
GPAI-driven assistance methods. This exercise can help us

categorize a game’s challenges and use these challenge cat-
egories to ideate different assistance methods. In this paper,
we apply this design exercise to Celeste to generate a vari-
ety of different assistance method ideas. We then implement
two of them, one responding to the execution challenge and
one responding to the planning challenge. The purpose of
this implementation is to better understand the implications
of using GPAI to assist players by creating a computational
caricature (Smith and Mateas 2011).

In summary, this paper contributes:

1. A reframing to utilize game-playing AI techniques in ser-
vice of player experience and inclusivity,

2. A design exercise to systematically explore the design
space of GPAI-driven assistance methods,

3. An implementation of two different assistance methods
targeting two different challenges in a clone action plat-
former of Celeste.

Related Work
The ability to play games has been a long-lasting goal for
AI systems. In 1959, Arthur Samuel, a pioneer of AI re-
search, used the game of checkers to study machine learn-
ing (Samuel 1959). In the early 1990s, temporal difference
learning was used to play backgammon (Tesauro 1995), and
in 1997, IBM’s chess-playing computer, Deep Blue, beat the
former World Chess Champion Gary Kasparov (Campbell,
Hoane, and Hsu 2002).

Kasparov’s reaction to this defeat was very forward-
facing. The following year, in 1998, he announced Ad-
vanced Chess (Kasparov 2017), a fresh take on chess where
each human player uses a computer chess program to ex-
plore the possible results of candidate moves (de Vassal
). Several years later, in 2005, a freestyle chess competi-
tion was organized, and any AI, human, or centaur team
could compete. Surprisingly, the winner was not a grand-
master backed up by a supercomputer; rather, the winners
were a pair of amateur chess players who used three ordi-
nary desktop computers. What had allowed them to succeed
was not their individual chess knowledge, nor the amount of
computation they had, but rather how the pair had utilized
the strengths of their AI (Case 2018). After analyzing this
victory, Kasparov reached the following conclusion: “Weak
human plus machine plus better process was superior to a
strong computer alone and, more remarkably, superior to a
strong human plus machine plus inferior process“ (Kasparov
2017).

In the last decade, there have been several highly publi-
cized results with AlphaGo (Silver and Huang 2016), Ope-
nAI Five (Berner 2019), Atari benchmarks (Badia et al.
2020), and Starcraft (Vinyals and Babuschkin 2019). How-
ever, most of this research, especially deep reinforcement
learning, has been focused on pushing the score benchmarks
instead of on enhancing the player experience. AI agents are
getting stronger and stronger, but the research in creating
different processes to utilize this strength for the gameplay
experience is still ripe for exploration. Using Kasparov’s ter-
minology, this paper attempts to contribute one such process



in how we can utilize game-playing AIs to support player
experience.

We must note, however, that there have already been
many past developments in using AIs in the videogame con-
text for the user experience. Focused research on pathfind-
ing (Abd Algfoor, Sunar, and Kolivand 2015) has allowed
even larger amounts of units to navigate. PCG methods in-
creased the replayability of many games (Shaker, Togelius,
and Nelson 2016) and became a key component of the
roguelike and rogue-lite genres. Interactive storytelling re-
search has resulted in more believable characters and richer
storylines (Lebowitz and Klug 2012). Player modeling re-
search has allowed deeper insights into the way our players
behave (Hooshyar, Yousefi, and Lim 2018).

Some recent games have started including assist modes
to let their players adjust game challenges. The assistance
mode in Celeste is one of the most comprehensive ones and
has garnered a lot of praise (Klepek 2019). With it, the player
can tweak almost every aspect of the game’s difficulty: game
speed, total climbing stamina, the number of allowed dashes,
and invulnerability are among the many options.

The inclusion of assist mode in Celeste, combined with
the release of other difficult games without any sort of as-
sistance, such as Cuphead and Sekiro, sparked a series of
discussions surrounding the design intent and the value of
difficulty in games (Thompson 2019; Kuchera 2017). Chal-
lenge in many games is essential for the design and is
shown empirically to increase enjoyability (Cox et al. 2012;
Petralito 2017). Assist modes do not aim to make games eas-
ier; rather, they make games more accessible. Increasing the
player’s options decreases the likelihood of a mismatch be-
tween the game and the player’s capabilities. While we have
come a long way in improving game accessibility (Fortes
2017), there is still room for improvement.

Outside of accessibility, there are other reasons why play-
ers use techniques that seem to make the games “easier.”
For example, they can change the main mode of gameplay
by using an emulator for Tool Assisted Speedruns (TAS) or
by using trainers (Consalvo 2009).

Specific techniques can also be used to extract additional
information from a game to help make analysis easier. One
such tool is Bob’s Buddy (Segal 2020) for the card game
Hearthstone. In the Battlegrounds mode, this add-on, given a
boardstate, calculates the odds of the player winning, losing,
or tying and is often used by the players to improve their
play.

Tools such as Bob’s Buddy show that players are already
creating tools to help them engage with games on a deeper
level. Additionally, systems such as tool-assisted speedrun
emulators show alternative ways to play. The increasing
prevalence of assist modes, along with the positive reactions
to them, show that making systems more accessible is bene-
ficial in several different ways. In the following section, we
will be describing our attempt at a “better process,” to show
how we can repurpuse GPAI techniques to assist our players.

Design Exercise for Discovering Game-playing
AI Driven Assistance Methods

Although it is easy to state that we should utilize GPAI
agents to help players, it is relatively difficult to formulate
the specifics. First, we must decide on what way the player
will be assisted. Then, we must decide on the magnitude of
the assistance. Most games offer a variety of challenge types,
and not every player will need support in every challenge.
Furthermore, while some players would prefer a bit of as-
sistance, others might benefit from a more comprehensive
solution. In this section, we describe a design exercise that
facilitates the formation of a portfolio of assistance methods
that vary in both assistance type and magnitude.

This assistance method ideation exercise has three steps:

1. Identify the different difficulty types of our game,

2. Construct the design space of assistance methods,

3. Explore this space to formulate a portfolio of methods.

Identifying the challenge types
The first step is to decide on the primary challenges the
player must overcome throughout the game. Challenges can
be deemed primary either through simple reasoning or by
using a pre-existing framework. We suggest using the Tax-
onomy of Failure (Aytemiz and Smith forthcoming) (ToF) to
identify the challenge categories in a game. Subscribing to a
preexisting framework makes this step more systematic, and
using the ToF can help discover unexpected challenge cate-
gories, especially when it comes to accessibility. However,
the user should employ the categorization method that best
fits their game.

The ToF proposes a model of how people play
videogames, focusing on areas where players can encounter
a failure. According to the ToF, there are six classes of fail-
ure. Thus, the players could face a challenge in:

• Encoding Input: Is the player physically capable of using
the game’s controls?

• Decoding Output: Can the player parse the feedback of
the game?

• Discovering Mechanics: Does the player know what they
can do in the game?

• Setting Goals: Does the player know what they should
accomplish in the game?

• Planning: What steps should the player take to accom-
plish their goals?

• Execution: Was the player successful in following the
steps of their plan?

We can analyse the game in question with the ToF to iden-
tify the main categories of challenge. In Celeste, figuring
out what the hardware button mappings are should not be
challenging (encoding input). Parsing the screen and under-
standing what is being displayed is also not one of the de-
sired challenges (decoding output). Similarly, while playing
Celeste, the player has a simple goal: to reach the end of
the level with a limited but expressive skill set of jumping,



dashing, and climbing. Discovering the goal and uncover-
ing new mechanics are not part of where the challenge lies
(discovering mechanics and setting goals). Instead, the de-
signers are interested in challenging “both the mind and fin-
gers” (Klepek 2019); players must decide on the correct path
of each level while also being able to follow that path. The
player must constantly plan their way through each level and
execute said plan by pressing the correct buttons at the cor-
rect timings, meaning the challenges they constantly face are
planning and execution.

Mapping the Design Space
It is important for the assistance methods to vary in the chal-
lenge they target–not every player needs help with the same
difficulties–and in the magnitude of help they offer–not ev-
ery player needs the same degree assistance. Therefore, a
design space of possible assistance methods can be param-
eterized by target assistance type and the assistance magni-
tude. To construct this design space, we create a graph where
each axis represents the increasing magnitude of assistance
in one of the chosen difficulty types.

Typically, one starts with a data set and maps it to selected
axes to explore how the data points are related. In this exer-
cise, we do the inverse by starting with an empty graph, and
working our way back to the data points: We select a point
in the constructed graph and formulate an assistance method
that would map to the selected point. This procedure helps
systematically discover assistance methods that vary in both
targeted difficulty and assistance magnitude. A positive side
effect is that it also surfaces interesting combinations where
both difficulty types are targeted by the assistive method to
varying degrees.

Figure 1 shows our attempt at exploring the design space
of assistance methods in Celeste. This is not meant to be an
exhaustive list; rather, it gives the reader an idea of how we
can use the exercise to pick a point in the space and come
up with a GPAI-driven assistive method that maps to our
selected point. The top right region of the graph represents
how traditional GPAI is used: playing the game by fully re-
sponding to all of its challenges. The bottom region shows
assistance methods that only target the execution challenge,
and the left region shows assistance methods that only target
the planning challenge. The middle region shows assistance
types that target both difficulties.

Below, we give a brief explanation for some of the poten-
tial assistance methods we ideated using this design exercise
for Celeste. The goal is to showcase the range of assistance
methods that can be reached using this exercise, rather than
comprehensively specify implementation details.

Discovered Execution Assistance Methods
Click to Move This assistance style emerged after we asked
what it would look like if the AI fully took care of the exe-
cution challenge in the game. While this assistance method
is active, as its name suggests, the player must solely click
wherever they would like their agent to go, and the AI han-
dles the rest. We imagine execution assistance methods to be
useful for players who might not have the manual dexterity
necessary to execute the complex sequence of actions but

Magnitude of GPAI Execution Assistance

M
ag

ni
tu

de
 o

f G
PA

I P
la

nn
in

g 
A

ss
is

ta
nc

e

Clic
k to

 

M
ove

Fre
e R

un

Execu
tio

n 

CoachEnhance
d 

Forg
iveness

M
ech

anics

Implicit
Waypoints

Contextual
Barks

Explicit
Waypoints

Ghost

Planning
Coach

Traditional GPAI
Fully Playing 

The Game

Full 
Coach

Flow
Path

Discovered Assistance methods in the 
AI Assistance Design Space of Celeste

Flow
Path
Flow
Path

Only Planning
Assistance One Button 

Celeste

???

Only Execution 
Assistance

Figure 1: Each point represents a possible GPAI-driven as-
sistance method discovered by applying the design exercise.
The graph is not descriptive–it does not visualize preexisting
data points. Rather, it is explorative, for it is used to discover
assistance methods that map to points in the design space.

still enjoy the planning challenge. This assistance method
could also be used by players who are exploring optimal
ways to navigate the space.

Free Run Style Assistance In this assistance style, the
player still has to move their character in the direction they
would like it to go, but the AI takes care of jumping over
small obstacles, gaps, and hazards. We were inspired by the
freerunning system of the Assassin’s Creed games in which
the player must direct the character, but the AI system de-
cides which ledge to grab and which corner to step on.

Enhanced Forgiveness Mechanics A lot of platformer
games, and among them Celeste itself, implement a series
of Forgiveness Mechanics (Seth Coster 2020). For exam-
ple, the characters can jump several frames after they leave a
ledge, and if the player presses the jump button before their
character hits the ground, the game recognizes the intent of
the player to jump, thereby makes the character jump the
moment they land. These additions subtly assist the player,
and usually are implemented with simple boolean checks.
If we have an AI that knows–given a goal–how to get there,
we can use this AI system to implement a series of enhanced
forgiveness mechanics that span a wider range of assistance.

Discovered Planning Assistance Methods
Ghost The most comprehensive version of the planning as-
sistance is when the AI system directly displays what the
optimal path from any given point in the map is without
moving the character. Planning assistance methods can be
useful when players consistently fail to find the correct path



to reach the goal, whether due to a cognitive impairment or
otherwise. These methods can also be useful for speedrun-
ners as they attempt to validate the optimal path in a level.

Explicit Way Points In this assistance method, the AI dis-
plays points along the optimal path instead of the full se-
quence of actions. This can be used to show the player which
platform to jump from or at what point to dash towards the
goal without revealing step-by-step instructions.

Planning Coach If we have an optimal path, it takes just
a little more effort–defining a distance metric–to evaluate
other paths against it. We can use this capability to give our
player tips and tricks as to which path to take. When the
AI recognizes that the player is straying too much from the
optimal path, or, more likely, when the player asks for help,
the AI can annotate at which point the player first left the
optimal path.

Implicit Way Points Another way to convey optimal path
information is through the environment. Instead of explicitly
showing way points, we can use subtle environmental cues.
Level designers work hard to guide the player through their
levels. Combining implicit way points with effective level
design would allow that guidance to be dynamic and adapt
to the specifics of the player.

Combining Assistance Methods
Flow Path In this style, we combine both the explicit way-
points and free run assistance. This combination results in an
assistance method in which free run assistance only activates
when the player is on the optimal path towards their goal.
This method would be similar to a game feature that encour-
ages and rewards players for taking the expected route in
lieu of an assistance method.

One Button Celeste In this style, the GPAI agent almost
fully takes over playing the game. The path the character
takes is fully determined by the AI and–similar to the Free
Run execution assistance–the GPAI handles moving through
small obstacles and gaps. The assistance can be set up so that
the player is only in charge of the jumping capabilities of the
character. This means the player can solely engage with the
game by using the jump button. This assistance method can
help players with motor impairment engage with the game
by using switch access control methods.

Ending with One Button Celeste, we described nine as-
sistance methods. Not all of these would be effective when
implemented in the game. Instead of specifying one or two
robust assistance methods in detail, our goal in this section
was to convey that there are a lot of opportunities and diver-
sity in the ways we can repurpose GPAI to assist our players,
and show how designers can go through this exercise for the
games they are working on. However, in order to start test-
ing the validity of these potential ideas, implementing them
in context is necessary.

Implementing Assistance Methods
Staying in the ideation phase is not sufficient if the goal is
to explore the potential design of an assistance method. In
this section, we describe how we implemented our game-
playing AI for a simplified clone of the game Celeste and

used it to prototype different assistance methods. In order to
exemplify our solution in this project, we use the Computa-
tional Caricature (Smith and Mateas 2011) methodology. A
computational caricature exaggerates the salient aspects of
the game design process while downplaying all other points.
A computational caricature has claims (to be quickly recog-
nized and understood) and oversimplifications (to be over-
looked). With our following prototype, we:

• Claim that game-playing AI methods can be used to assist
our player and prototype several different instantiations of
assistance to target different challenges.

• Simplify level design and performance constraints. More
importantly, we oversimplify the means in which the as-
sistance becomes available to the player in addition to the
limits of said assistance, both of which are crucial com-
ponents in the gameplay experience that requires further
research.

To put our assistance methods into practice, we built upon
the open source code base of André Cardoso’s recreation
of Celeste in Unity1. This implementation uses the default
Unity physics engine to move the character. Inspired by (To-
gelius et al. 2013), we decided to use A* to drive our as-
sistive AI. We parametrized the game space with a seven-
dimensional state description: The x and y positions of the
character, the x and y velocities of the character, and flags
that denote whether the character can jump, dash, and walk.

Within this space, we used the actions walk, jump, and
dash to do the search. We used a simple euclidean distance
heuristic between the player’s character and the goal to guide
the search. To run the actual search, we instantiated a sep-
arate Unity physics scene where we can manually set the
physics timestep to be much smaller. We also implemented
fuzzy tile matching, which allowed us to do the search more
efficiently and within acceptable timeframes. Using this ca-
pability, we implemented two of the discovered assistance
methods: Ghost to assist with planning challenges and Move
to Click to assist with execution challenges.

Ghost Implementation Details
With the Ghost (fig 2.) assistance method, the player presses
the P key to start the search. When the search is complete, a
copy of the character with a grayscale sprite (a.k.a the Ghost)
travels directly to the goal. The Ghost shows the optimal
path without directly interacting with the player. Thus, the
Ghost acts as a guide without taking away player agency.

We realized that Celeste already uses a similar technique
in a simplified manner. Instead of doing a search from the
player’s position to the goal, the Ghost in Celeste is sim-
ply embedded into the level and keeps looping, showing the
player what to do2. This visual guide’s limitation, however,
is its attachment to that specific place in that specific level.
For example, if the player takes a break from the game for
several months, and cannot remember specific moves when
they return, the Ghost embedded in the level would not be
helpful. In contrast, having access to the Ghost assistance

1https://github.com/mixandjam/Celeste-Movement
2https://youtu.be/E1Ox37N1efQ?t=979



Figure 2: Our implementation of the Ghost planning assis-
tance. When a player asks for help, we spawn a copy of the
player, and it takes necessary actions to reach the goal. It is
up to the player to repeat those actions.

Figure 3: Our implementation of the Click to Move execu-
tion assistance. The player clicks anywhere within the radius
and the AI handles the execution challenge by moving the
player character to the target location.

method helps guide the player regardless of their progress
in the game. While this assistance seemed to be effective, it
was not clear what the limitations of using it should be, or if
using it should be even limited in the first place.

Move to Click Implementation Details
While implementing the Click to Move assistance method,
we decided on a maximum distance of automated movement
to be searched. In this implementation we wanted the player
to click on the path they would like to take, and as such, we
decided to limit the radius where the AI would be active. It is
important to note, however, this is one possible implementa-
tion of this assistance mode, and the assistance would have
worked without a radius limit as well. In order to use our
assistance method, the player clicked within a small radius
for the AI to find the path there.

Click to Move created a cycle where the player would
click where they would like to move, wait for for the AI to
take the required actions, and then find the next position they
would like to reach. This cycle resulted in a more staggered
play experience. Sometimes the player would try to move

up a platform, but the platform would be out of the clickable
radius. When the player clicked the closest point possible,
usually in the air, the agent would reach that point and fall to
the ground before the player could click on the next point.

Discussion and Future Work
Implementing the assistance methods showed us that before
GPAI assistance methods can be claimed as elective, several
further research questions need to be answered:

First, simply picking the assistance method is not enough,
and much more thought must go into implementation details.
While our implementation of the Ghost assistance method
seemed to have fulfilled its purpose, the initial design of
Click to Move subtracted from the game-playing experi-
ence. An iterative process that finetunes the limitations and
strengths of the methods is crucial. What are the best prac-
tices in designing GPAI-driven assistance methods?

Second, a more comprehensive look into designing the
most effective way to introduce these assistance methods is
needed. A study conducted by Anderson et al. found that de-
pending on the complexity of the game, adding a help but-
ton could harm engagement (Andersen et al. 2012). It is not
entirely clear whether locking these assistance methods be-
hind the options menu is the best option or if there is any
way to actively recognize and suggest assistance methods
without overstepping boundaries. What are the most effec-
tive ways of introducing GPAI-driven assistance methods
to the player?

Finally, there still needs to be an empirical evaluation
of the effects of these different types of assistance on the
player’s experience. While assist modes in general have been
received positively by those who use them, it is important to
test whether the added complexity and diversity of the assis-
tance methods actually translates into enhanced play experi-
ences, and makes games more accessible. How effective are
specific GPAI-driven assistance methods in improving the
gameplay experience?

Conclusion
In this paper, we described how repurposing GPAI capabili-
ties to assist the player can enhance the game-playing expe-
rience and help make games more inclusive. To assist with
the ideation of assistance methods, we proposed a design ex-
ercise with two steps: first, we suggest using the Taxonomy
of Failure to discover the types of challenges that exist in the
game. Second, we show how to use these types of challenges
to delineate the design space of assistive methods. We then
applied this design exercise to Celeste to generate several
assistance methods. We implemented two of the discovered
methods, Ghost and Click to Move, to further explore this
process. Through our implementation, we discovered sev-
eral additional research questions that must be answered be-
fore GPAI-driven assistance methods can be confirmed as
effective. We believe this research direction furthers the dis-
cussion on how to utilize GPAI in service of the player expe-
rience. We hope crafting our GPAI agents to be supportive
buddies to our players, instead of hostile enemies, will con-
tribute to making videogames more inclusive.



References
Abd Algfoor, Z.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology 2015.
Andersen, E.; O’Rourke, E.; Liu, Y. E.; Snider, R.; and oth-
ers. 2012. The impact of tutorials on games of varying
complexity. Proceedings of the.
Aytemiz, B., and Smith, A. M. forthcoming. Proceedings
of the 15th International Conference on the Foundations of
Digital Games.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, D.; and Blundell, C. 2020. Agent57:
Outperforming the atari human benchmark.
Bakkes, S. C. J.; Spronck, P. H. M.; and van Lankveld, G.
2012. Player behavioural modelling for video games. En-
tertain. Comput. 3(3):71–79.
Berner, C. e. a. 2019. Dota 2 with large scale deep rein-
forcement learning.
Brown, N., and Sandholm, T. 2019. Superhuman AI for
multiplayer poker. Science 365(6456):885–890.
Campbell, M.; Hoane, A. J.; and Hsu, F.-H. 2002. Deep
blue. Artif. Intell. 134(1):57–83.
Case, N. 2018. How to become a centaur. Journal of Design
and Science.
Cheung, G. K.; Zimmermann, T.; and Nagappan, N. 2014.
The first hour experience: how the initial play can engage
(or lose) new players. In ACM SIGCHI symposium on HCI
in play, 57–66. dl.acm.org.
Consalvo, M. 2009. Cheating: Gaining Advantage in
Videogames. MIT Press.
Cox, A.; Cairns, P.; Shah, P.; and Carroll, M. 2012. Not do-
ing but thinking: the role of challenge in the gaming experi-
ence. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, 79–88. New York,
NY, USA: Association for Computing Machinery.
de Vassal, T. Advanced chess. http://www.ficgs.com/wiki
en-advanced-chess.html. Accessed: 2020-6-2.
Fernandes, L. V.; Castanho, C. D.; and Jacobi, R. P. 2018.
A survey on game analytics in massive multiplayer online
games. In 2018 17th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), 21–2109.
Fortes, R. P. M. e. a. 2017. Game accessibility evaluation
methods: A literature survey. In Universal Access in HCI.
Design and Development Approaches and Methods, 182.
Holmes, K. 2018. Mismatch: How Inclusion Shapes Design.
MIT Press.
Hooshyar, D.; Yousefi, M.; and Lim, H. 2018. Data-driven
approaches to game player modeling: a systematic literature
review. ACM Computing Surveys (CSUR) 50(6):90:1–90:19.
Kasparov, G. 2017. Don’t fear intelligent machines. work
with them.
Klepek, P. 2019. The small but important
change ’celeste’ made to its celebrated assist mode.

https://www.vice.com/en us/article/43kadm/celeste-assist-
mode-change-and-accessibility. Accessed: 2020-5-8.
Krakovna, V., and Uesato, J. e. a. 2020. Spec-
ification gaming: the flip side of AI ingenuity.
https://deepmind.com/blog/article/Specification-gaming-
the-flip-side-of-AI-ingenuity. Accessed: 2020-5-18.
Kuchera, B. 2017. When is exclusion a valid design
choice? https://www.polygon.com/2017/10/4/16422060/
cuphead-difficulty-exclusion. Accessed: 2020-6-2.
Lebowitz, J., and Klug, C. 2012. Interactive Storytelling for
Video Games. Taylor and Francis.
Lehman, J. e. a. 2018. The surprising creativity of digital
evolution: A collection of anecdotes from the evolutionary
computation and artificial life research communities.
Liu, Y. 2018. Disabled Gamers: Accessibility in Video
Games. Ph.D. Dissertation, Carleton University.
Matt Makes Games. 2018. Celeste. Windows PC version.
Petralito, S. e. a. 2017. A good reason to die: How avatar
death and high challenges enable positive experiences. In
Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, 5087–5097.
Pitaru, A. 2008. E is for everyone: The Case for inclu-
sive game design. MacArthur Foundation Digital Media and
Learning Initiative.
Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM J. Res. Dev. 3(3):210–229.
Schwab, B. 2011. Turing tantrums: Ai developers rant!
Game Developer Conference.
Segal, J. 2020. Introducing bob’s buddy. https://articles.
hsreplay.net/2020/04/24/introducing-bobs-buddy/. Ac-
cessed: 2020-6-2.
Seth Coster. 2020. Forgiveness mechanics: Reading minds
for responsive gameplay.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games. Springer, Cham.
Silver, D., and Huang, A. e. a. 2016. Mastering the game
of go with deep neural networks and tree search. Nature
529(7587):484–489.
Smith, A. M., and Mateas, M. 2011. Computational cari-
catures: Probing the game design process with AI. In Work-
shops at the Seventh AIIDE Conference.
Tesauro, G. 1995. Temporal difference learning and TD-
Gammon. Commun. ACM 38(3):58–68.
Thompson, C. 2019. Sekiro: Accessibility in games is about
far more than ’difficulty’ - IGN.
Togelius, J.; Shaker, N.; Karakovskiy, S.; and Yannakakis,
G. N. 2013. The mario ai championship 2009-2012. AI
Magazine 34(3):89–92.
Vinyals, O., and Babuschkin, I. e. a. 2019. Grandmaster
level in StarCraft II using multi-agent reinforcement learn-
ing. Nature 575(7782):350–354.
Yannakakis, G. N., and Togelius, J. 2018. Artificial Intelli-
gence and Games. Springer, Cham.


