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Abstract 
We present the design of Tableau Machine (TM), an AI-
based, interactive, visual art generator for shared living 
spaces. TM is an instance of what we call “alien presence”: 
an ambient, non-human, embodied, intelligent agent. From 
overhead video in key public spaces, TM interprets its 
environment, including its human audience, and expresses 
its interpretation by displaying a sequence of abstract 
images of its own design. This paper is a case study in the 
design of an art generator with deep and long-term 
connections to its physical and social environment. 

Introduction    

Tableau Machine (TM) is an interactive, generative art 
installation designed for deployment in shared living 
spaces such a homes or offices (Romero, Pousman, and 
Mateas 2007). Figure 1 shows a scene from a typical 
installation. The system has a bright, color display 
mounted in a prominent area that displays a smoothly-
fading sequence of abstract, visual compositions (style 
inspired by the Russian Constructivists). The display, 
together with an attached printer, conveys an expression of 
the system’s interpretation of the living space as detected 
by its sensors. TM includes several video cameras mounted 
throughout the living space acting as very precise motion 
detectors. Finally, connecting the physical components 
together, a standard PC runs our software controlling the 
complex and adaptive mappings from motion data to 
displayed compositions. The system is complete and has 
been installed in homes where it shares the living space 
with a human audience for approximately six weeks. 
 At the software level, TM uses basic image processing 
and a semantically-motivated data abstraction technique to 
reason about its environment. Next, TM creates visual 
outputs using a set of design grammars. The final images 
are selected on the basis of visual properties described by 
abstract shape-generation rules in the grammars as well as 
emergent visual properties detected by a pixel-level image 
analysis.  
 TM was designed as an alien presence (AP). An AP is a 
non-anthropomorphic social entity embodied by a 
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computer, imbued with AI-based perception, interpretation, 
and artistic output (Romero and Mateas 2005). The main 
purpose served by an AP system is to create a long-term 
interpretive experience for its audience. In particular, this 
experience should engage human meaning-making 
behavior as audience members build theories to describe 
the AP’s behavior. In this paper we will focus on the 
following functional definition of AP: a non-human system 
that expresses its interpretation of its environment over the 
course of a long-term interaction. 
 We cannot, with rigor, claim that TM is truly creative. 
However, as a result of both our design and some technical 
limitations, TM addresses several issues that frequently 
arise in machine-creativity discussions: a generate-and-test 
framework, a search for novelty and value, and exploration 
of a conceptual space. 
 Our main contribution is a complete, non-trivial, 
generative art system, an alien artist in the home, which 
intentionally produces complex images in direct, 
meaningful response to the system’s observations of a 
human audience. Our second contribution is a method for 
gaining expressive control over the output of design 
grammars by using image analysis. 

Related Work 

TM is an interdisciplinary work; in this section we will 
focus on the specific connection between TM and the areas 
of generative art systems and the evaluation of machine 
creativity. 

Figure 1: A scene from a typical installation of TM showing the 
large display and several cameras. 
 



Generative Art 
AARON is a prominent generative art system developed 
by Harold Cohen (1995). AARON uses a large database of 
painting rules to generate images of people and plants.  
AARON uses no human input (other than Cohen’s original 
programming) and has a unique style of its own. 
Interestingly, despite being billed as one of the best 
examples of creative generative art systems, Cohen (1999) 
himself refuses to attribute creativity to the system. 
 In contrast to AARON, the generative art system NEvAr 
(Neuro Evolutionary Art) (Machado and Cardoso 1997) 
does not have a fixed procedure for generating images. 
Instead it uses genetic search to evolve small programs 
composed of a tree of low-level mathematical operations 
that produce abstract output images, often harnessing 
human feedback on sample outputs to tune an artificial 
neural network that guides the evolutionary process. 
NEvAr’s authors refer to the system as a constructed artist 
with an internal, adaptive sense of visual aesthetic value. 
 There are numerous generative art systems but these two 
give sufficient comparative context to TM. Like AARON, 
TM uses pre-programmed rule sets for producing its output 
where the specific rules do not represent a general theory 
for machine creativity. Like NEvAr, TM’s outputs are very 
abstract in nature and are not purely the result of a random 
number generator, but instead are the result of 
programmatic reasoning, by the system, about the pixel-
level appearance of images with respect to a model of 
perception. Unlike other generative art systems, TM’s 
design, as a complete agent sensing the world, 
encompasses more than image generation. Furthermore, 
human interactions with the system take place on a much 
longer time scale than other generative art systems. 

Machine Creativity 
In the interest of brevity, we only touch on some high-level 
issues in machine creativity. In “Evaluating Machine 
Creativity”, Pease et al. (2001) assert that while there is no 
clear agreement on what it means for something to be 
creative, repeated concerns in the literature define a 
creativity space (supporting questions of the form “Where 
does x lie in creativity space?”). A central idea is that 
novelty and value are necessary conditions for  creativity. 
The presence or amount of novelty and value can be 
measured from a variety of perspectives by several means. 
The most common method discussed for procedurally 
defining novelty and value involve a generate-and-test 
process. Ideally, the generation phase synthesizes novel 
artifacts and the testing process selects only those artifacts 
that are valuable, resulting in creative outputs. Using these 
outputs as inputs for another round of generate-and-test is 
commonly called the “central loop of creativity” and 
illustrates the requirement that something is always 
produced in a creative process (though it may be abstract). 
TM uses a generate-and-test process, and is designed so 
that its outputs might be perceived as novel and valuable. 
However, organized as a pipeline, TM never consumes any 

of its outputs and thus cannot use them for the basis for 
new generation. 
 Many creative processes can be seen as harnessing a 
source of randomness for use in a deterministic process. 
TM makes use of software-generated random numbers in 
several ways; however its nondeterministic, real-world 
inputs play a far more important role in its behavior. 
 Finally, internal reflection, metacognition, or thinking at 
the meta-level about the process being executed is 
sometimes considered a necessary condition for creativity  
(Buchanan 2001). Buchanan argues that, so far, attempts at 
building creative computer programs fall short of 
achieving their goal because “(1) they do not accumulate 
experience [regarding their own internal processes], and, 
thus, cannot reason about it; (2) they work within fixed 
frameworks, including fixed assumptions, methods, and 
criteria of success; and (3) lack the means to transfer 
concepts and method from one program to another.” TM 
fares no better than other programs along this dimension of 
analysis. 

Goals 

As TM was originally motivated by research in expressive 
AI (Mateas 2001), human-computer interaction, and 
generative art, we have several goals for TM. 
 First, the system should be an unfamiliar presence with 
non-anthropomorphic agenthood. Non-anthropomorphic 
systems are not expected to “understand” the 
idiosyncrasies of human behavior, but may be expected to 
“understand” much more general physical or statistical 
patterns. The design flexibility that a non-anthropomorphic 
system affords its designers is of interest in expressive AI. 
 Next, the system should form an interpretation of its 
environment (specifically the human audience), and 
express this interpretation via its visible output. That is, the 
system should be a participating occupant of the living 
space to the level that its physical design allows. The way 
in which the system affords building explanations (correct 
or not) of the system’s behavior is relevant to human-
computer interaction. 
 Finally, the system’s output should be visually 
interesting, both in the sense that it has aesthetic value and 
is relevant to the situation in which the output arises. The 
generative art concern here is with the size and ease of 
exploration of the generative space of outputs as well as 
the ability for the system’s authors to expressively shape 
the space. 

Tableau Machine as an Agent 

The design of TM is driven by an intelligent agent 
perspective. Agents are embodied systems consisting of 
clearly defined input and output interfaces connected by a 
mapping called the agent function. 
 TM has several low-level inputs (percepts, means of 
sensing). The system is aware of the time of day, a live 



sequence of video frames showing wide-angle, overhead 
views of several locations in the living space, and a 
human-designed map of the physical space in which the 
system resides. 
 Next, TM’s low-level outputs (effectors, means of 
taking action) are focused on the display. The agent 
function formally outputs a specific image along with a 
delay time (before selecting a new image), effectively 
forming an infinite animation. 
 Finally, the agent function is structured in terms of the 
AP-dictated interpretation and expression pipeline. 
Interpretation can be though of as a lossy compression 
process, a many-to-few mapping of the space of all inputs, 
to a smaller space of models that loosely explain the input. 
Alternatively, interpretation can be thought of as an 
abstraction process, describing properties of inputs while 
forgetting their concrete details. Expression can be thought 
of as partial expansion process, a few-to-many mapping 
between models and detailed output data. Similarly, we can 
think of expression as a de-abstraction or grounding 
process that makes concrete artifacts from general 
requirements. In this way, a particular model may be 
expressed in a variety of ways. In the following sections 
we will describe in detail the interpretation and expression 
processes in TM. 

Interpretation 

Focusing on the interpretation process in TM, we will 
describe how the formal inputs to the system get mapped 
down to models. Our goal in interpretation is not to simply 
squeeze bits out of the input stream, however. We designed 
the system to build representations of its input in a way 
that supports the kind of stories the audience might invent 
about how the system behaves. This constrains the space of 
interpretation processes to those that produce models that 
are simple enough for the system to meaningfully express. 
Figure 2 gives a preview of how our three-level model of 
the environment is assembled via interpretation. 

Semantic Activity Zones and EDF 
The video frames streaming into the system from the 
cameras provide far more detail than we intend our alien to 
understand. We turn video frames into a measure relevant 
to the living space by exploiting an author-provided map 
that tells the system which areas of each image correspond 
to distinct zones of the living space. We call this map the 

semantic activity zone (SAZ) graph because zones are 
selected to represent spaces that, if actively occupied, 
might imply that a person was performing some 
distinguishable activity. Seats on a couch in the living 
room or the space in front of the dishwasher are examples 
of such SAZs. We do not tell the system what each SAZ 
“means”; SAZs only provide image-space distinctions. 
Each node in the SAZ graph defines a region in the camera 
views, while weighted edges describe the connectivity and 
distance between SAZs (“distance” is a measure of how 
easy it is for a human to move from one SAZ to another).
 We further abstract the activity of individual SAZs to 
proxy measures called energy, density, and flow (EDF). 
Informally, energy is the sum of motion over zones, 
density is the distance between zones with motion (how 
“spread out” activity is around the living space), and flow 
is the exchange of energy between adjacent zones. The 
complete definition of EDF is covered in previous 
publications describing TM (Romero, Pousman, and 
Mateas 2007). We associate EDF with specific sets of 
SAZs called regions (such as: kitchen, living, dining, and 
transit areas). Additionally, we compute “global” EDF 
over the complete SAZ graph. With EDF values assigned 
to each region, we have a complete set of proxy measures 
for human activity in the living space in terms of an alien 
thought process. 

Clustering 
The continuous space of values for EDF in different 
regions is still too complex a model to be expressed in TM. 
Furthermore, individual EDF values cannot represent long-
term patterns in time – the very kind of patterns we would 
like the system to detect in order to support long-term 
interaction with the audience! Accordingly, we map the 
continuous EDF space into a small space of discrete 
models using an online, soft, k-means clustering process. 
Because the location of cluster centers is updated over time 
as the cameras observe more activity, they are a function of 
the entire history of the system and can begin to address 
long-term patterns. 
 To support a range from simple to complex behavior, the 
clustering process operates in several different ways, 
resulting in different measures which we organize into 
levels based on their complexity. 
 Level 1 (L1) bypasses EDF and is based on the activity 
of a special SAZ associated with the physical space 
directly in front of TM’s display. Using two clusters in a 
one-dimensional space gives us the effect of an adaptive 
threshold that moves to separate the natural breaks in the 
data. Thus the authors do not have to pick fixed thresholds 
at design time without knowledge of what data the system 
is likely to see. Clearly, this classification admits 
descriptions of the L1 state of the form “The special zone 
is active.” 
 Level 2 (L2) builds explanations of the living space 
using global EDF. Global energy, density, and flow are 
independently clustered to produce three “high” or “low” 
labels. There are 23=8 combinations for these labels – just 
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Figure 2: Building an interpreted model. 



a few more than we intend to express. We group the results 
into five cases by merging combinations with high global 
flow, and treating the other combinations as distinct. We 
call the resulting case the L2 state. This affords statements 
like (in the case of high energy and high density) “the 
system thinks the house is active with all of the activity 
together” or (high flow) “The system thinks the house is 
changing states.” 
 Level 3 (L3) incorporates the per-region EDF and the 
time of day into a more complex model. Distinct from the 
other levels, the clustering process in L3 works in a high-
dimensional space. Regional EDF contributes fifteen 
dimensions, and the time of day two more.  We use the 
sine and cosine (with a 24-hour period) of the clock time 
so that, geometrically, times that are close together during 
the day are close together in the clustering space. We 
randomly initialize and iteratively update 32 clusters in this 
seventeen-dimensional space. The active cluster is called 
the L3 state. While this only affords statements like (in the 
case that cluster-17 is active) “the house is in state 
seventeen,” we have designed the space so that these 
clusters can find their way to common activities. That is, it 
is possible that the system could behave in a manner 
consistent with statements like “The system can tell we are 
sitting down to watch our favorite television show,” but 
only because it has a model of what regional EDF looks 
like during the time of day that the particular show is being 
watched. However, if no interesting patterns are 
discovered, it should be easy for the audience to write off 
the resulting behavior of the system as “just more 
randomness” as opposed to “acting incorrectly” (though 
we risk them describing too much of the system’s behavior 
as random). 
 L1, L2, and L3 are designed to support behavior with 
different levels of complexity and ease-of-explanation 
from outside of the system. L1 updates quickly in response 
to audience provocation in the special region in front of the 
display. L2 responds to global activity more slowly. 
Finally, L3 responds to recognized patterns only over very 
long periods of time (as cluster centers adapt). These 
different levels of models each correspond to beliefs the 
system has about its environment arising from an alien 
method of perception. 

Expression 

The expression component of TM is significantly more 
direct than the interpretation component. Here we will 
describe how the space of L1, L2, and L3 states get 
mapped to particular images. Figure 3 puts the whole 
expression component together in a single view. 
 The L1 state was the simplest model produced by the 
interpretation process, and here we map it directly to a 
simple, visually prominent output. When the L1 state reads 
high, TM goes into “interactive mode” where new images 
are selected very quickly, causing the display to fade from 
one composition to the next after only about one second. 
When the system is in “normal mode”, it selects a new 

composition about once every two minutes. We give the 
system this behavior so it has a way to say, in its alien 
language, “Yes, you are engaging me.” Here we have 
mapped a simple belief to a simple output, trying to avoid 
leaning on connotations that our alien might not 
understand. We adopt this “impedance matching” heuristic 
to (at least attempt to) avoid having the audience become 
disengaged because the system failed to conform to 
expectations of complexity, as well as avoiding hiding too 
much of the system’s potentially interesting interpretation 
from them. 
 TM’s L2 puts a basic requirement on the images 
selected for display. For each of the five L2 states, our 
mapping dictates that a specific design grammar be used to 
generate the output image, prescribing a distinct visual 
style. Figure 4 samples images from the five grammars. 
 Though we, as authors, have our own aesthetic reasons 
for mapping certain L2 states to certain grammars, the 
system is only aware that distinct L2 states are represented 
with distinct grammars. To attempt to embed any more 
meaning than our own weak connotation in the mapping of 
grammars would push on our impedance matching 
heuristic because the system could be accused of “using 
words it does not understand.” The alien part of the AP 
context shines here because our alien is not obligated to be 
faithful to any particular human interpretation of the shapes 
produced by each grammar. 
 The design grammar does not dictate the entire 
appearance of the final images displayed. The distinct 
emergent visual properties of an image as well as which 
color palette is used to embellish its design is controlled 
directly by the L3 state of the system. In addition to the 
visual style imposed by the grammar, the L3 state 
prescribes the “coverage”, “balance”, and “concentration” 
of images. Coverage is the property of how much the 
foreground covers the background. Balance describes 
whether the foreground detail is left-heavy, right-heavy or 
balanced. Concentration, similarly, describes whether the 
foreground detail was center-column-heavy, side-columns-
heavy, or not distinctly one way or the other. Each of the 
32 distinct possibilities for the L3 state is mapped to the 
presence or absence of three different visual features (and 
one of four color palette families). 
 The result of the expression process so far is a grammar 
name, a set of visual features and a color palette (along 
with the update rate from L1). As implemented, this is only 
one step away from the outputs dictated by the agent 
model. We turn these requirements into a concrete image 
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Figure 3: Expressing the state of the system’s beliefs. 

 



using the generation component of TM. This image is then 
output on the display where the audience is free to 
“decode” it. In the next section we will look at the 
generation component in more detail. 
 The expression component, as a whole, translates a 
simple set of beliefs into an alien (but presumably partially 
understandable) language. Where possible, we designed 
the expression component so that association between 
human-level activities and system’s behavior is fuzzy 
enough for randomness to wash away any “mistakes.” 
Recall that we aim to support and engage the audience’s 
meaning-making, not to have the system declare its own 
interpretation of the environment to be absolute truth. 

Generation 

For the system to support any meaning-making at all, TM 
must display images that are at least engaging enough to 
spark investigation, and the properties controlled by the L2 
and L3 states must be distinct enough that the audience 
notices the distinctions and can begin interpreting them. 
These constraints, intersected with the authors’ aesthetic 
motivation to match the style of our human-designed 
prototype images, set high expectations for the generation 
component. 
 In an idealized world, we would have a simple method 
to directly synthesize an image each time the system 
wanted to express its many states. After exploring other 
avenues, we settled on a powerful and unintentionally 
general generate-and-test method for achieving our 
combined goals. The “generate” part uses design grammars 
to over-produce a space of images that includes those we 
are looking for as well as many others. The “test” part uses 
basic image processing to assign labels to images that we 
can use to filter out only appropriate images. Taken 
together, these independently-tweakable parts of TM’s 
generative component comprise a high-performance, 
parameterized image synthesis process. 

“Generate” 
 We generate images using context-free design 
grammars. Specifically, we use Chris Coyne’s open-source 
CFDG package from http://contextfreeart.org/.  Informally, 
design grammars in CFDG are sets of simple rules 
describing how to draw shapes in terms of other shapes. 
Rules may be written in terms of primitive (terminal) 
shapes such as circles, squares, and triangles, in terms of 
other rules, or even in terms of themselves in the case of 
recursive rules. Furthermore, several rules may share the 
same name, indicating that there are several ways to draw 
the named shape. This practice yields a non-deterministic 
grammar. This non-determinism, coupled with exploring a 
huge space of random seed values, is what gives rise the 
immense space of images that we select from in the 
generation component. 
 The main design grammars are built using a stack of 
grammars, comprising a shared library of TM-specific 

shapes, to mitigate complexity and enforce a common 
visual motif. Each contains rules that describe the overall 
placement of grammar-specific high-level shapes, as well 
as the definition of those high-level shapes in terms of the 
rules from a grammar called ANY that describes the smaller 
shapes common to all of our main grammars. For brevity, 
we will admit only a brief description of each main 
grammar (samples shown in Figure 4). 
 The simplest grammar, NOCLUST (used for high-flow 
L2), haphazardly scatters ANY shapes, making use of 
minute angular offsets and gross scaling to give a 
disheveled look. 
 The condensed-looking grammars (used for high-density 
L2), CURVES and KINKS, are populated by worm-like 
shapes composed of long chains of ANY shapes that flip 
orientation and heavy-vs.-lightness along their length 
according to an improvised, first-order Markov model. 
 The gaseous-looking (used for low-density L2) 
grammars, OUTERCLUST and INNERCLUST, are populated 
by composite clusters. In OUTERCLUST, clusters are made 
by growing a seed shape and surrounding it with smaller, 
similar shapes of the same color, creating a bubbling 
silhouette of familiar primitives. Alternatively, in 
INNERCLUST, clusters are created by nesting shapes of 
differing color at increasingly smaller scales inside of an 
outer shape. 
 Each grammar describes images that are quite distinct 
from other grammars; however, within each grammar there 
is still an effectively infinite space of variation. The 
arrangement of shapes in a final image is the result of 
sampling from the generative space of a design grammar 
using a specific seed value for the internal, randomized 
rule selection processes. 

OUTERCLUST 

KINKS 

INNERCLUST 

CURVES 

NOCLUST 

Figure 4: Example images from the five design grammars. 
 



 The rendering system for our design grammars is 
capable of producing high-quality, full-screen images in a 
vector (shape-based) image format. While we use this 
format for display, we will see that we will have to 
generate raster (pixel-based) versions of the compositions 
to support automated analysis of their content in the “test” 
process. 

“Test”    
 Recall that the expression component mapped the L3 
state to distinct visual properties of images, not just to the 
name of the grammar that generated it. In order for the 
system to have a better idea of what the compositions it 
generates “look like”, we pass low-resolution, raster 
images to an image analysis program. This program looks 
only at very basic properties of a foreground-background 
map (independent of intensity). This process results in 
numerical assignments for the three visual features 
mentioned in the expression component (coverage, 
balance, and concentration). These values are in a 
continuous space, so we chose a working threshold via 
inspection and used it to assign categorical labels for each 
feature. 
 A pixel-level analysis of the images is important because 
many visual properties are not obvious from a shape-level 
description of an image. For instance, an image with a 
single large shape obscuring many small ones appears to 
be a very simple composition at the pixel level, however 
the shape-level description would suggest a complex result. 
Alternatively, if all of the shapes in an image happen to 
cluster together on the left half of the image, the viewer 
may perceive a distinct imbalance that is, again, not 
obvious at the shape-level. 

Time-Space Tradeoff 
When given enough time, our generate-and-test process 
can produce an image suitable for expressing any state the 
system is in. However, by design, TM is a soft real-time 
system that depends on meeting deadlines to support live 
human interaction. Because of this constraint, we chose to 
run the generate-and-test process off-line and save the 
results. 
 Because the soft real-time parts of the system only 
require that an image be produced with a set of 
requirements (coming from a finite space), we can pre-
compute a large set of images for use in each state the 
system could be in.  In practice, this meant sampling about 
26,000 images from each of the five main grammars. After 
analysis, the bulky raster version of each image was 
thrown away. We saved a compressed version of the vector 
source for images along with the result of analysis in a 
database and used this database in a read-only manner for 
live installations. In this way, the deployed system need 
not include the ability to sample from a grammar or 
analyze images, greatly simplifying the software aspect of 
our live installation. 

 Clearly, in terms of the visual output of the system, 
whether the generation process occurred in the home or in 
the studio before installation is not important (the process 
does not learn from experience). In either case, suitable 
images are produced. In terms of the interactive nature of 
the output, our choice was critical, as, for a given set of 
requirements on an image, it may have taken hours of 
search to find a suitable image in the generative space of a 
design grammar. 
 Finally, to make our “lookup table” more effective, we 
restricted the generate-and-test process to grayscale images 
and left the final application of color palettes (a 
computationally simple process) to the on-line part of the 
system. In this way, our database-driven image synthesis 
process could use any of over 2,000,000 unique, highly-
detailed compositions when synthesizing a concrete image 
from abstract requirements (with only about 50,000 images 
shown over the lifetime of a TM installation, most going 
unobserved). Figure 5 shows a final, colored composition. 

Discussion 

We have seen the detailed design of TM, from input video 
streaming from cameras in a living space to a smoothly 
fading, detailed image sequence at its output. Now we can 
move to a higher level of discussion and look at our 
original goals, implications for APs, and creative 
intelligent systems in general. 

Goals   
 First, we set out to produce a real, working system. The 
complete TM has been installed and evaluated in homes. In 
these installations hundreds of images were printed and 
tens of them annotated with the audience member’s 
thoughts. TM has also been on (interactive) display at the 
Beall Center for Art and Technology at University of 
California, Irvine where it was warmly received by artists 
as well as the general public. 
 Towards our goal of understanding the design flexibility 
afforded by the non-anthropomorphic focus of APs, we 
found the “alien” metaphor quite powerful in the design 

Figure 5: A large composition from the OUTERCLUST design 
grammar, colored for final display. 



evolution of our system. After much debate about how to 
use connotation in the expression component of TM, we 
realized that an alien need not understand the connotations 
we were trying to embed. This allowed us to focus on 
simply illustrating distinctions with distinct outputs, 
instead of leaning on a model of human emotional 
response (or the authors’ approximation to that model). 
The focus on our alien’s body and its visual input and 
output organs (cameras and display) allowed us to sidestep 
hard problems in natural language processing, opting 
instead for a greatly simplified alien language. Finally, 
designing TM as an AP allowed us to focus on the 
intelligent agent model, guiding us to view the system as 
choosing actions in response to its model of the 
environment (affording more structure and meaning than 
viewing it as a plain generative system would provide). 
 In the realm of human-computer interaction our goal 
was to understand how TM engages human meaning-
making in a long-term interaction. In order to evaluate this 
question, TM was installed in three homes in the Atlanta, 
Georgia area for a period of six to eight weeks. Each 
household contained a nuclear family, with both parents 
and children, along with pets. At the beginning, while 
participants were confused and a bit confounded by TM’s 
display and behavior, they regarded it as a curious artifact. 
As time progressed, participants began to notice trends in 
the images produced, noting “morning” images and 
“afternoon” images. Participants found many of the images 
aesthetically pleasing, and used statements like “nice” and 
“pretty” to describe images that they chose to print. 
Participants were sensitive to the design grammars 
describing NOCLUST as “busy” and “blocky,” CURVES as  
“like caterpillars” or like “a rosary,” (some curves 
terminate in crosses giving them a rosary like connotation), 
and OUTERCLUST as “like bubbles.” The visual aesthetic 
was understood and well received by study participants, 
and many participants formed interesting long-term 
interpretations of the system’s behavior in terms of their 
own behavior. 
 Finally, in our generative art goals of ensuring that 
images are aesthetically valuable and relevant to the 
situation, as shaped by the authors’ vision, we find that TM 
meets with mixed success. The generative space of images 
we define for TM is quite large, and easy to sample from. 
However, getting the images we would like in a specific 
scenario was difficult. Our choice of context-free design 
grammars gave us fine, expressive control of prescribed, 
local structures in the image (such as how a shape’s size, 
rotation, position in relation to other shapes in a chain, or 
how intricate arrangements of small shapes form a single, 
larger shape). However, we had no control over emergent, 
global structures in the images (such as the accidental 
arrangement of shapes into larger, recognizable structures, 
the overlapping of independent shapes, or crowding of an 
image’s border). We addressed this lack of global control 
with the image analysis process, allowing us to regain 
control over some emergent properties of images (without 
complicating the design grammars at all). For the simple 

properties we implemented in our image analysis process, 
the (offline) generate and test loop was able to find images 
with the appropriate emergent properties. However, if we 
were to instruct the analysis process to look for much more 
specific emergent properties (say, accidental arrangements 
of shapes that looked like “human faces” or “safety pins”, 
properties that study participants found quite evocative) we 
might have to exponentially increase the number of images 
we search before finding a suitable image. 

Alien Presence  
 With an eye toward AP in general, the interpretation and 
expression components of TM have some reusable parts. 
TM used online clustering to map the continuous space of 
EDF into a finite set of easily described models. In other 
AP systems, we may not be working in a space where EDF 
makes sense, but in its place would likely be another 
continuous proxy measure for interesting properties of the 
environment. Online clustering could, again, be used to 
produce simple labels, relevant to the entire history of the 
input parameters, which are readily mapped to expression 
pathways of similar complexity. Next, TM built its output 
image by selecting randomly from a pool of images with 
known-to-be-appropriate visual features. The particular 
design grammar basis for “generation” and image 
processing “test” factors, again, may not be appropriate in 
the context of a different AP. However, the move to use 
random selection from a set of options that satisfy required 
constraints is quite general. Systems designed with this 
pattern may be made to produce quite complex and 
expressive outputs. 

Machine Creativity    
 With so much AP-focused discussion in this paper, we 
should return to the discussion of machine creativity and 
take a creative intelligent systems view of TM before we 
close. 
 TM addresses the search for novelty in two ways. First, 
in the adaptive interpretation, the system looks for new, 
statistically significant, patterns in the data as they arise 
(though patterns are described in mostly low-dimensional 
spaces). Next, in the generative component, we support 
novelty in the system’s output by generating such a large 
space of images that no repetition of images was observed 
in long-term installations. This may seem like attempting 
to get through on a technicality (trivial novelty); however, 
we expect the audience to complain about a lack of 
conceptual novelty due to a small number of design 
grammars long before they complain of images repeating. 
 The search for value is addressed in a similar manner.  
In combined analysis and selection process, the system 
does a significant amount of work to find, from the huge 
space of compositions we consider, only those images that 
posses certain visual features relevant to the situation at 
hand. This could be thought of as a notion of value relative 
to the system’s intention to express its current state. While 
the processes that implement this idea are technically 



disjoint, the system is always able to find the kind of image 
it needs, and does this under time constraints. Next, in the 
a priori selection of the space of compositions, the authors 
embed a static view of their aesthetic sense. The authors’ 
search through the space of interesting design grammars 
was an intense, human creative process. Nonetheless, the 
system was able to wield the results of this search in a way 
that retained the original value found by the authors. 
 If we were to look into the code defining TM’s behavior, 
we would not find any answers to general questions like 
“What should a creative system do?” but the system’s 
successful development and installations do indicate that 
an AP can successfully embody and dramatically amplify 
the authors’ guess at “What might an artistic, alien other, 
sharing our home do?” 

Future Work 

The success of a large system like TM bodes well for 
favorable exploration of related ideas. Here we will cover a 
few new research directions which directly build off of our 
experience with TM. 
 First, a continued investigation of designing in the AP 
context is warranted. An alien can behave intelligently 
without having to overcome any number of AI-complete 
problems. Future APs may forgo TM’s camera and display 
system in place of microphones and speakers, or even other 
alien senses such as sonar and infrared vision. APs at very 
different spatial and temporal scales could be explored as 
well – towards the scale of neighborhoods or just a single 
desktop, and a few days to a few years. 
 Next, to improve upon the “over-produce, then filter” 
synthesis method used in our system, future work should 
explore analysis of partially produced artifacts as a means 
for guiding the design grammar sampling process. The 
generation process in TM searched through the generative 
space of the design grammars by trying a large number of 
random seeds sequentially. We can imagine a system that, 
instead, attempts to search the “most promising” areas of 
the space first, detecting the emergence of global patterns 
before they have fully formed, eschewing otherwise 
fruitless computation.  
 Finally, the design of TM addressed key issues in the 
discussion of machine creativity in a rather accidental 
manner. Instead of addressing some necessary conditions 
for creativity (“treating the symptoms”), future work could 
adopt a particular theory that provides sufficient conditions 
for creativity and directly implement these. This is no 
trivial task; however, being able to choose the particular 
domain for an AP designed with this intent does make the 
endeavor more approachable. 

Conclusion 

We have presented the detailed design of Tableau 
Machine, the first alien artist in the home. We showed how 
TM builds models of its environment to varying levels of 

complexity and expresses these models in a long-term 
interaction with a human audience using the relevant 
output of a prolific generative art system. 
 We have also tackled the problem of constrained image 
generation in a concrete setting, addressing both authorial 
intent as well as soft real-time constraints. The solution in 
TM uses an internal analysis process to form a primitive 
understanding of what the compositions it displays look 
like, and uses this understanding to make decisions about 
its output. 
 We hope our experience with TM stimulates further 
exploration of the space of generative art systems that 
interact with their environment over extended periods of 
time. 
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