
Monster Carlo 2: Integrating Learning
and Tree Search for Machine Playtesting

Oleksandra Keehl
University of California, Santa Cruz

Santa Cruz, CA, USA
okeehl@ucsc.edu

Adam M. Smith
University of California, Santa Cruz

Santa Cruz, CA, USA
amsmith@ucsc.edu

Abstract—We describe a machine playtesting system that com-
bines two paradigms of artificial intelligence—learning and tree
search—and intends to place them in the hands of independent
game developers. This integration approach has shown great
success in Go-playing systems like AlphaGo and AlphaZero, but
until now has not been available to those outside of artificial
intelligence labs. Our system expands the Monster Carlo machine
playtesting framework for Unity games by integrating its tree
search capabilities with the behavior cloning features of Unity’s
Machine Learning Agents Toolkit. Because experience gained in
one playthrough may now usefully transfer to other playthroughs
via imitation learning, the new system overcomes a serious
limitation of the older one with respect to stochastic games (when
memorizing a single optimal solution is ineffective). Additionally,
learning allows search-based automated play to be bootstrapped
from examples of human play styles or even from the best of
its own past experiences. In this paper we demonstrate that
our framework discovers higher-scoring and more-representative
play with minimal need for machine learning or search expertise.

Index Terms—behavior cloning, machine playtesting, Monte
Carlo Tree Search, machine learning

I. INTRODUCTION

Playtesting is a necessary but costly part of game design
process. While questions like “Is this game fun?” or judgments
on aesthetic properties of a game are usually reserved for
human playtesters, many other functions of playtesting can
be performed in an automated fashion. Benefits of machine
playtesting can include more thorough coverage of game-
space [1], shorter turn-around times (on account of automated
agents being able to play games magnitudes of times faster
than humans), and the ability to collect more data faster. The
drawback is that developing an agent which can competently
play any given game is far from a trivial task.

Artificial intelligence (AI) for playing games has been
making significant advances (such as to play Go or StarCraft at
master levels). At the same time, the videogame industry has
begun to move towards the use of automated playtesting [2].
Unfortunately, the large scale computational resources and
AI teams which allow these companies to test their games
with a high degree of precision are usually not available
to independent developers or those in hobby or educational
contexts. Now that free game development software such

as Unity1 and Unreal2 has lowered the barrier of entry for
aspiring game makers, we conjecture quality assurance test
automation is a key point of imbalance between small and big
studios. We contribute the Monster Carlo 2 (MC2) framework
in a step towards bridging this gap.

DeepMind’s successes with AlphaGo [3] are the result of
combining two branches of AI: search (or planning) and
learning. By integrating Monster Carlo (MC1), which is a
search-based machine playtesting framework for Unity games;
with Unity’s open-source Machine Learning Agents Toolkit,
which provides the capability to learn from examples; it is
now possible to assemble a system with an architecture that
mimics DeepMind’s AlphaGo while directly integrating with
in-development Unity games. Our research makes this cutting-
edge AI approach available to game developers in a form
that does not require advanced machine learning or search
knowledge to apply.

In this paper, we describe the components of MC2 and
the results of integrating them with the Tetris-like game It’s
Alive!.3 The stochastic nature of this game (the player does
not know which randomly selected piece will drop next)
makes it challenging for test automation without applying a
strategy of determinization (fixing the game’s random seed),
which can heavily bias results. In this example integration,
we demonstrate the system’s ability to bootstrap from its own
experience or from sample human gameplay. MC2 can learn
a state-dependent action policy. With that, the quality of play
that does not exploit knowledge of the future (an artifact of
search-based agents) can be inspected. The MC2 framework
is now freely available on GitHub.4

This paper makes the following contributions:

• An automated playtesting framework integrating search
and learning in the context of Unity games.

• Experimental validation of the benefits of combining
learning and search without the need for advanced ML
expertise.

1https://unity.com/
2https://www.unrealengine.com
3https://www.kongregate.com/games/saya1984/its-alive
4https://github.com/saya1984/MonsterCarlo2

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

II. BACKGROUND

A. Machine Playtesting

Machine playtesting [4] is the practice of using computa-
tional tools to simulate gameplay in a way that helps answer
questions about a game design or the gameplay impact of
design changes. Typically, this has been approached as an
AI problem to be addressed with search and optimization or,
separately, with machine learning approaches.

Holmgard et al. used Monte Carlo Tree Search (MCTS) and
distinct utility functions in order to imitate playthroughs of
levels in the MiniDungeons 2 game by players with different
priorities—procedural personas. For example, the Runner is
a persona who tries to finish the level as fast as possible,
while the Monster Killer is a persona who tries to kill as
many monsters as possible before completing the level. This
approach required hand-crafted utility functions specific to the
game. When the design questions to be asked are not specific
to the hand-crafted personas, evolved utility functions could
be used instead [5]. In MC2, MCTS is also used as the core
search algorithm. Developers integrating the framework may
expose any notion of score or utility to the framework which
they would like it to optimize; the framework is compatible
with personas-style investigations.

Ludocore [6] is a logical game engine for modeling
videogames. In this system, gameplay trace inference (ac-
complished using constraint-solving techniques which utilize
search) can be used to ask for examples of gameplay under
constraints that characterize assumptions about player or non-
player character behavior. Although Ludocore could offer
optimality and non-existence guarantees, it could only do this
for games specified in a limited logical modeling language.
Because developers integrating MC2 with their game control
which actions are made available to the AI system, constraints
on player behavior can be easily modeled with our framework.
Likewise, constraints in playtraces can be implemented with
the use of flags (a playtrace that does not meet a certain
condition can assigned be a zero score). The exact optimality
and non-existence guarantees are unfortunately not possible
for games beyond those with very small state spaces.

Recently, researchers at game development firm King5 (the
creators of Candy Crush) worked through several different ap-
proaches to playtesting their continuously released new levels.6

They started with human playtesters, which was too slow;
moved on to machine playtesting via hard-coded heuristics
(procedural personas without search), which were limited in
representing strategies; then tried MCTS, which was slow and
ultimately resulted in unrealistically super-human play; and,
finally, to non-search player models trained via supervised
learning on masses of player data in the wild. King used
high-capacity deep neural networks and trained them on the
data from 1% of global players selected at random during
a 2 week period. This resulted in approximately 12 million

5https://king.com/
6https://medium.com/techking/human-like-playtesting-with-deep-learning-

92adafffe921

samples. Since MC2’s target audience is small-scale Unity
game development teams (or individuals) who are unlikely
to have access to that scale of player data or neural network
expertise, we intend to offer a more accessible and generic way
for using machine playtesting. Lower-capacity networks will
mostly be trained on the results of inexpensive simulations.

Ultimately, MC2 aims to combine the usefulness of search
(for discovering new play styles) and learning (for summariz-
ing knowledge into an executable form) in a package that is
tied to a popular platform rather than an individual game.

B. Monster Carlo

The original Monster Carlo framework [7] (denoted as MC1
in this paper) used the game-agnostic MCTS algorithm [8] to
realize a machine playtesting tool for games built in the Unity
game engine. It was best suited to games where player behav-
ior could be well-modeled as making occasional high-level
decisions between a relatively small number of meaningful
alternatives. Further, it requires games to be deterministic (or
at least determinizable by fixing random seeds). MC1 could
be set to answer design questions within Jaffe’s restricted play
paradigm [9] where the value of a design element (such as
giving players a new kind of action to consider) is judged by
the impact of restricting the use of that element on the score
of (approximately) optimal play.

While MC1 succeeded in demonstrating a proof-of-concept
for search-based machine playtesting for Unity games, inher-
ent limitations of the MCTS algorithm became limitations
on the system’s ability to usefully answer design questions.
MCTS doesn’t learn from experience across games (including
different determinizations of the same game) or benefit from
the existence of samples of human play which are always
available for in-development games. As a result, in many
cases MC1 was not able to discover gameplay that achieved
scores comparable to those of the game’s designer, even after
exploring the game tree for tens of thousands of rollouts.
Further, because of the cost of searching with many rollouts, it
was impractical to average the results of machine playtesting
experiments over different determinizations (many different
random seeds). When MCTS does discover high-scoring play,
it has often unrealistically used knowledge of the future (e.g.
knowing when a randomized element of the game will drop
a favorable outcome by searching ahead) to do it. Answers to
design questions asked via restricted play are only as good as
the approximations to optimal play on which they are based.

The second iteration of Monster Carlo, MC2, is intended
to use a new AI architecture that is capable of learning from
experience (of humans and itself) and transferring knowledge
across game states and different determinizations. Supporting a
mode where decisions are made without access to an oracle for
stochastic outcomes, the system also plays the game in a way
that better structurally models the human player’s experience.

C. Unity and Unity Machine Learning Agents Toolkit

Unity is a real-time 3D development platform. While it now
offers services to a variety of industries, from architecture to

cinematics, for many years it has been primarily known as
a game development platform and a popular tool for many
independent developers as well as hobbyist and educators.

The Unity Machine Learning Agents Toolkit (UMLAT) [10]
is described on their GitHub page:7 “[UMLAT] is an open-
source Unity plugin that enables games and simulations to
serve as environments for training intelligent agents. Agents
can be trained using reinforcement learning, imitation learning,
neuroevolution, or other machine learning methods through a
simple-to-use Python API.” For our purposes, the imitation
learning capability of UMLAT is the most relevant, as well
as its built-in support for runtime inference, as it offers a
convenient way to both train, and later use a trained model
in game. In MC2, imitation learning is used to summarize a
collection of gameplay samples into a reactive decision policy.
Imitation learning allows us to answer the question: “If I were
to play in the general style of the samples given, what would
be the most likely move for me to take in the current game
state?”

D. AlphaGo and AlphaZero

AlphaGo [3] introduced a revolutionary approach to com-
puter Go, using two deep neural networks: a value network to
evaluate board positions (prediction of the chance of winning)
and a policy network for move selection (deciding which move
should be selected). These networks were initially trained by
supervised learning using human expert playtraces, and then
further trained on data extracted from self-play using tree
search advised by those same networks.

Later, AlphaZero [11] showed that the expert human data
used in AlphaGo could be ignored. Bootstrapping from ini-
tially random choices using self-play alone could take the
system all the way to and beyond the strength of play seen
in AlphaGo. While impressive, it is important to consider the
depth of machine learning expertise as well as raw compu-
tational power needed to achieve these feats. To offer even
a fraction of this level of success for in-development Unity
games, it is important that our approach doesn’t require custom
neural network design, careful adjustment of hyperparameters,
or specialized hardware not already available to practicing
game developers.

There exist several open-source reimplementations of the
AlphaGo system such as OpenGo [12]. OpenGo is built on
the ELF [13] platform for game AI research. ELF and other
frameworks can integrate with new games, however they are
primarily targeted at machine learning researchers and are not
designed to ease integration with any platform in particular
(e.g. Unity).

III. SYSTEM DESIGN

The components of our system come from three sources
(diagrammed in Fig. 1): UMLAT, which is responsible for
the machine learning and run-time inference; the game devel-
oper, who provides their own game, including the required

7https://github.com/Unity-Technologies/ml-agents

modifications to integrate it with UMLAT and MC2; and
MC2, which provides the MCTS implementation, experiment
setup framework, playtrace collection, result visualization, and
facilitates behavior cloning through UMLAT. In this section
we will examine each of these components in detail.

A. Unity Machine Learning Agents Toolkit

Among many other capabilities, UMLAT allows developers
to train a decision making model (also called a policy network)
from play examples using an imitation learning technique
known as behavior cloning (recognizable as a form of su-
pervised learning). This model can be used to play the game
automatically. MC2 uses this capability to learn from human
expert playtraces, or those discovered via automated search
(with MCTS), to train the decision making model. Where in
MC1 decisions during MCTS rollouts were selected at random
or guided by a developer-provided heuristic, in MC2 they
can now be made using the trained decision making model,
which leads to more informative search and thus to better high-
scores (as confirmed by experimental results covered in a later
section).

Because UMLAT’s imitation learning mode is primarily
setup to take human player input directly during training,
training from pre-recorded playtraces (such as those saved
from a run of MCTS) was not supported. We made a minor
adjustment to UMLAT’s open source code to achieve the
required functionality. We made it possible for the MC2’s C#
plugin to dictate the moves taken by UMLAT’s Teacher agent,
which in turn broadcast them through UMLAT’s behavior
cloning pipeline.

B. Game Modifications and Integration

MCTS requires a forward model to play games. In MC2
(just as in MC1), the Unity game itself is used to provide this.
Rather than requiring that game developers be able to save
and restore the precise state of their game (an unreasonable
task for systems not originally designed to support this), we
only require that the game be determinizable. Game states, as
they are manipulated by MCTS, are identified by the sequence
of player choices needed to reach them. Because identical
game states can be reached via different sequences of choices,
it is relevant that MC2 is able to learn from experience to
transfer knowledge between perceptually equivalent (or even
just similar) game states.

As in MC1, the game needs to be able to identify legal
actions at each step, request an index of the action to take,
and apply that action. There are two additional requirements
needed to enable the machine learning aspects of MC2. The
first is collection of gamestate at each decision-making point.
This should include the information we imagine human players
are using to make their own decisions. UMLAT provides best
practices for this.8 The second requirement is that the game
needs to be able to wait for the trained model to make the
decision, as it is delivered asynchronously.

8https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/Learning-Environment-Design-Agents.md

MCTS,
ML Agents integration

ML Agents

 The Game

ML Agents plugin

Monster Carlo 2
Experiment

Result visualization

Game executable Unity ML Agents

Monster Carlo libraryGame-specific settings

User-specific settings

Game-specific
settings

Fig. 1. Software architecture: Green components are provided by the Monster Carlo framework, black components are provided by the Unity Machine
Learning Agents Toolkit, and yellow components are project-specific details created by the game developer.

Human
playtraces

Best MCTS
playtraces

Score-
optimizing

MCTS

Learning
via Behavior

Cloning

Decision
making policy

Random
or heuristic
decisions

Fig. 2. MC2 Process diagram. The two distinct procedures in MC2 are MCTS
rollouts and behavior cloning. Each relies on the output of the other. The
behavior cloning needs the behavior to clone (in the form of playtraces).
These can either come from human examples or from the games played with
MCTS. MCTS needs a way to make decisions during rollouts. This can be
done either with a model produced by behavior cloning, by making choices
at random or using a user-provided heuristic.

The game developer also needs to specify experiment pa-
rameters inside the MC2 experiment setup (a Python program
for which we provide a template file), and select features to
visualize from the results in the visualization notebook. We
also recommend some minor changes to the UMLAT neural
network configuration file. Since we do not expect our users
to have expert machine learning knowledge, we offer a simple
suggestion for setting the network parameters in UMLAT: use
a single hidden layer with the number of nodes equal to the
average of the number of inputs and outputs [14] (for example
if the gamestate can be described with 20 values, and there are
four possible actions in the game, the hidden layer could have

(20 + 4)/2 = 12 nodes. We were able to achieve favorable
results using this simple setup.

C. Monster Carlo 2

MC2 has all the software components present in MC1,
albeit modified, as described further: experiment setup, results
visualization, MCTS implementation, and the C# library to be
included with the game, responsible for decision making and
communication with the python modules of MC1. In addition
to those, MC2 includes a method to facilitate behavior cloning
from playtraces through UMLAT.

Like MC1, MC2 provides the implementation of MCTS,
which offers the user several settings, such as the number of
rollouts to perform per game, the number of games to play,
the UCB value to use and optional terminal branch treatment.
The new system has several differences. MC1 would play
a limited number of differently-determinized games (in the
dozens) exploring each game tree for a relatively long time
(10k rollouts) in order to achieve higher scores. This limited
number of games made the results vulnerable to the random
seeds selected to make the stochastic elements of the game
deterministic (a necessity for MCTS). The new system can
play thousands of games with significantly fewer rollouts,
trying out thousands of random seeds, and thus removing
that vulnerability. The user decides how many rollouts each
game can perform, and how many rollouts are allowed at each
step before the system commits to a move and no longer
explores any options that came before it. The obtained scores
may be lower than those obtained from prolonged searches
of MC1; however, because MC2 is capable of learning from
its experiences and iteratively improving its performance,
this limitation is ultimately negated and the results are more
representative of the game’s stochastic nature.

Both MC1 and MC2 allow the option to run the search
remotely and in parallel, potentially exploiting many-core and

cluster-computing hardware configurations. In the interest of
serving small teams and individuals, all experiments in this
paper were run on a single laptop computer.

MC2’s C# library, which integrates with the game, commu-
nicates with the MCTS implementation and (new in MC2) can
request or direct decision making of UMLAT-trained agents.
It supports four modes of operation: collection of human
playtraces; MCTS rollouts with no model; MCTS rollouts
utilizing a trained model; and coordinating behavior cloning by
using the playtraces provided by a Python training module to
feed state-action pairs through the UMLAT imitation learning
pipeline.

Finally, like MC1, MC2 includes a Jupyter Notebook with
templates for visualizing the results. All the result figures in
this paper were obtained this way.

Notably, in both AlphaGo and the experiments by King,
researchers avoided training on consecutive sequences of
moves from the same game, using random sampling from their
considerable available data. The claimed reason for this is that
the states of the consecutive moves are usually very close to
each other and an over-fitting to those states can become a
problem when a general policy is needed. While that may
be true, with the limited amount of training data available
in MC2’s context and the system’s inability to jump to an
arbitrary game state without running through all the moves
leading up to it, we chose to use full consecutive playtraces
in our training. We found that even with this simplistic
approach we were able to achieve quantitative improvement
over MC1’s results. There is no doubt that better performance
could be obtained with more attention to the machine learning
component of MC2. However, it is important for our target
audience that this level of expertise is not required.

IV. EXPERIMENTAL VALIDATION

In this section we describe the game that we used for our
experiments; the game-specific neural network architecture
and reasoning behind its design; and finally, the goals and
results of our experiments.

A. The game: It’s Alive!

To compare our results with the previous Monster Carlo
paper we decided to use the same game. It’s Alive! is a
Tetris-like game, in which monster pieces fall from the top
of the screen and the player gets to choose the position and
orientation of each piece before it lands (see Fig. 3). The player
loses if the pieces pile up to the top of the screen. A monster
comes to life if it has at least one head and at least one heart. At
this point, the player can collect the monster to free up space,
or continue building it up to achieve a higher score. For the
purpose of our experiments we set the game field to grid size
of four by five and the game ended when two monsters were
collected (the limit is normally five). Having a smaller field
frequently led to some of the randomly generated sequences
resulting in an immediate loss, as there was no heart or no
head before the screen filled up. Having a larger field led to
longer game rollouts, and therefore lengthier experiments. This

Fig. 3. Screenshot of It’s Alive!, the Tetris-like game used in our experiments.
During play, the player assembles monsters by rotating falling blocks. A
monster comes alive when it has at least one head and one heart. Once alive
it can optionally be collected to score points and free-up space. The player
may choose to continue building up the monster to earn more points. The
goal is to get the highest score after collecting five monsters. The game is
lost if the pieces pile up to the top.

may be desirable when testing specific features of the game
related to the shape of the field, but in our case, a 4-by-5 field
was sufficient. We limited the number of monsters required for
completion for the same reason. Developers integrating MC2
are expected to make decisions that balance the complexity
and fidelity of playtesting experiments for themselves.

B. Monte Carlo Tree Search

For our experiments we used the following MCTS settings:
we limited the search to performing 80 rollouts before commit-
ting to a move, which is approximately four times the number
of possible moves at each step. The scores achieved by the
search increased with the size of the decision limit, but so did
the time it took to conduct the experiments. We chose 80 as
it provided a reasonable speed–score balance.

The paper about MC1 suggested to use the expected human
score as the Upper Confidence Bound (UCB) constant. How-
ever, MC1 did not have a notion of a decision limit. In the
present experiments, we found that setting the UCB that high
diversified the search too much, leading to results not much
better than random play. By trial and error, we settled on a
value of 200 (which is approximately 1

8 of the typical human
expert score).

C. The Neural Network Architecture

1) Input Representation: Our game state representation
(input to a neural network) was inspired by King’s experiments
used for testing Candy Crush [2], namely, having a binary
(0/1) channel for each relevant feature of a cell in the game’s
grid. However, while Candy Crush used a binary channel
for each candy type, we decided that in our case the more
pertinent information was whether any cell on the grid was
occupied, and if so, whether things could be connected to it
from each of the four directions (up, down, left and right),
and whether the monster part occupying the cell or any

1
1 1

0
0 0

Occupied Up Left Down Right

Current
block

Next
block

Can connect... Has a...

1 1

0
1 1

0
0 0

0 0

0
0 0

0
0 0

0 1

1
0 0

0
0 0

1 1

0
1 0

0
0 0

0 1

Head Heart

1
1 0

0
0 0

1 0

1
1 0

0
0 0

0 0

Field

G
am

e
St

at
e

Fe
at

ur
iz

at
io

n

Fig. 4. Game state representation of It’s Alive!. Here we see what the state representation would look like for the pictured 2x3 field on the left. Seven binary
channels with the dimensions matching those of the playfield represent the game state by binary encoding of each of the features we deemed relevant to make
the decision on where to place the current block: whether a grid cell is occupied, whether the part in the cell has connections in one of four directions, and
whether the part or the monster it belongs to has a head or a heart. The relevant information for the current and upcoming blocks is also captured (the green-
and red-tinged numbers respectively in this illustration).

pieces of the monster it belonged to had a head or a heart
(see Fig. 4). Applicable information for the currently falling
block and the upcoming piece was also collected as part
of the state. The illustration shows a hypothetical state for
a 2x3 game-field, which resulted in 56 values. Since the
game used in our experiments had a 4x5 field, our state had
154 observations (4x5=20 of occupied observations, 4x5x4=80
connectivity in four directions observations, 4x5x2=40 head
and heart observations, plus 7 observations each for the current
and upcoming blocks). The version of UMLAT we used
allowed the input of state by successively adding single values
via AddVectorObs(float observation) method, so while it is
conceptually helpful to imagine the game state in terms of
tensors, it was actually treated as a long one-dimensional
array with all the values. Notably, our input layer had one
important flaw: our gamestate didn’t capture the information
about the color of blocks, which is relevant for decision
making, as placing same-colored blocks next to each other
lead to color bonus. It is expected that the featurization of the
game state doesn’t describe every possible detail of the game,
just capturing most of the useful details.

2) Output Representation: Neural networks have a fixed
input and output size. Since our outputs represented the space
of possible actions to take, which differed from state to state,
we set its size to what we estimated to be the biggest number
of possible actions that could be available at any one time. In
our case, we had 16 landing actions (width of the field = 4
times possible orientations = 4), plus three monster-collecting
actions for at most three living monsters on the field of that
size. We used the UMLAT action-masking feature to prevent
the model from selecting an illegal action, such as trying to
collect a monster when no live monsters were present. In the
rare cases when this feature failed (approximately 0.5% of the
time), MC2 fell back to making a random choice among legal
actions.

3) Network Architecture: By default, UMLAT uses a multi-
layer neural network architecture with three hidden layers,

each with 8 nodes. We found that a network with that structure
did not perform very well in our case. One of the rules of
thumb for choosing the hidden layer structure is a simple
formula [14], claimed to work acceptably for most problems.
Since we do not expect our users to have advanced machine
learning expertise, and nor are we experts ourselves, we
decided to go with this formula, as it produced favorable
results (described later). In our case, we had 154 input features
and 19 possible outputs, so we decided to use 90 hidden nodes
in a single hidden layer.

D. Experiments

Our work was inspired by Google’s DeepMind’s successes
with AlphaGo and AlphaZero. We set out to see if we could
recreate some of their impressive results, albeit on a vastly
smaller scale and with a more practical application for game
developers. With that in mind, we identified several sets of
data we wanted to examine and compare. The first set was
a collection of expert playtraces (to stand in for grandmaster
players). These were recorded from the game developer’s own
play. We obtained 124 game’s worth of state-move pairs (about
3300), each game with a different random seed determining
piece drops. We trained a move-prediction model on this data
for three epochs (experimentally, we found that adding more
epochs led to overfitting). We call this policy Human Model
1 (H1). H1 correctly predicted approximately 50% of expert
moves. This is significant considering that, in our experiments
there were 19 possible moves at every step, so the accuracy
of uniform random guessing would be just over 5%.

We also collected 2000 playtraces from games played by
using the MCTS algorithm with uniform-random rollouts. We
used 124 (the same number of expert samples) best scoring
games from this set to train another policy, which we call
Search Model 1 (S1).

We collected 2000 playtraces from MCTS with S1 used to
execute rollouts and conducted additional training on S1 using
the best 124 traces from the set, thus creating the Search Model
2 (S2)

Fig. 5. Top: Distribution of scores for play simulated without using search,
just using a decision making policy based on our feature representation of
game state. Bottom: Distribution of scores for play using search (making use
of different rollout policies). The distribution of human expert scores (from
124 games) are included here. The two charts use the same horizontal axis
scaling for game scores, but the vertical axes use different scales.

Finally, we collected 2000 playtraces from games played by
using the MCTS algorithm where rollouts were executed using
the H1 policy. Again, we used the top 124 scoring games to
further train H1 (that is apply additional training to the already
trained model), thus creating H2. Whether H2 can outperform
H1 depends on the capacity of the neural network used to
represent it and the hyperparameters used in its training. In
our case, our networks inability to learn about monster colors
likely contributed to the model’s lack of improvement from
H1 to H2. Similarly, the hyperparameters may be to blame
for the fact that S2 performed worse than S1.

The results of our machine playtesting experiments are
presented in Fig. 5 and Fig. 6. The top chart of Fig. 5 shows
results obtained by playing the game with five different ways
of making decisions, 2000 games each. The five decision
models are: uniform random; S1, S2, H1 and H2 (described
earlier). Notably, the games with zero score are not included
in the graphic, as the 1924 zeroes resulting from random
playthroughs dwarfed the rest of the results. The H1 policy
only got 980 zeroes.

The bottom chart of Fig. 5 shows the distribution of scores
obtained by playing the game using MCTS with rollout deci-
sions based on the five policies in the figure above. The expert
human game score distribution is included for comparison.
As expected, scores obtained with search are generally higher

Dataset Mean SD Median Max

Uniform Random 1.08 12.03 0 195
S1 Policy 61.14 109.82 0 770
S2 Policy 50.05 95.01 0 680
H1 Policy 202.31 277.90 0 1430
H2 Policy 169.72 271.12 0 1430
MCTS with Random 295.72 141.13 295 685
MCTS with S1 734.13 159.44 725 1310
MCTS with S2 709.14 165.25 700 1290
MCTS with H1 1063.02 244.52 1055 1710
MCTS with H2 1070.87 237.23 1070 1680
Human Play 1326.90 245.93 1400 1600

Fig. 6. Summary statistics for each dataset of scores. With exception of
MCTS with H1 and MCTS with H2, each pair of the results was statistically
distinct with p < 0:009 according to a two-sided Mann-Whitney U test.

than scores obtained without search. Notably, researchers at
King decided to abandon search-based playtesting partially
because the determinized search’s look-ahead quality lead to
superhuman performance, as search would select moves based
on the sequence of pieces unseen by the player. However, due
to computational limitations, the users of MC2 are unlikely
to perform the number of MCTS rollouts comparable to King
for this to become a problem. Also, not all games’ results are
as drastically affected by stochastic elements as Candy Crush,
so this may not always be an issue at all. Finally, because our
system allows to train models which can be used to playtest
the games by making decisions based on current state without
look-ahead to the future (though, admittedly, with much lower
scores in our experiments), it is conceivable that the look-
ahead problem can be avoided entirely.

Fig. 6 goes over the quantitative measurements of our
results. Notably, MC1’s experiments failed to reach human
play results even with tens of thousands of MCTS rollouts,
whereis MC2’s combination of MCTS and H1 and H2 models
were able to occasionally surpass human performance.

Our results show the utility of combining learning and
search to discover high-scoring play. Learning can be applied
to human expert play where available and to self-play simu-
lations when not. Although we were hoping to see stronger
benefits from iterating the cyclic process illustrated in Fig. 2,
we hypothesize that the weak lift seen in our experience mostly
reflects the low capacity of our neural networks and lack
of fine-tuned hyperparameters. For the individual or small-
team game developer, we have demonstrated a clear benefit
for combining learning and search. Those willing to learn
more about how neural network architectures are specified in
UMLAT can turn up the capacity of the model to match the
scale of their data as needed.

V. FUTURE WORK

Compared to AlphaGo and AlphaZero, MC2 is notably
missing the ability to evaluate a state (whereas the state
evaluation network in AlphaZero was trained at the same

