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Abstract

We need to teach AI to students in and outside of tradi-
tional computer science degree programs, including those
designer-engineer hybrid students who will design and im-
plement games or engage in technical games research later.
The need to rethink AI curriculum is pressing in a design
education context because AI powers many emerging prac-
tical techniques such as drama management, procedural con-
tent generation, player modeling, and machine playtesting. In
this paper, we describe a 5-year experimental effort to teach a
Game AI course structured around a broad and expanding set
of roles AI can play in game design (e.g., Adversary and Ac-
tor, as well as Design Assistant and Storyteller). This course
sets up computer science and computer game design students
to transform practices in the game industry as well as create
new forms of media that were previously unreachable. Our
students gained mastery over the relevant techniques and fur-
ther demonstrated (via novel prototype systems) many new
roles for AI along the way.

Introduction
As AI technology matures, there is an increasing need to
consider how engineered systems integrate with human ex-
periences. However, these topics are typically pursued by
people with distinct interests and backgrounds. Students
with design interests are often ill-prepared to work with
complex computational systems, while students with tech-
nical backgrounds are similarly ill-prepared to work in areas
where human interaction and experience are key factors. In
the practice of game design, this concern is unavoidable as
the projects require communication between technical and
artistic contributors. As a result of this tension between dis-
ciplines, AI has so far been narrowly applied in the gam-
ing industry. This situation creates an important opportu-
nity for education to develop design-literate engineers and
engineering-capable designers.

In 2014, UC Santa Cruz established a new Department of
Computational Media to serve as an academic home for a
new interdisciplinary field that is concerned with computa-
tion as a medium for creative expression (Stephens 2014).
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This department hosts the computer game design degree
program which was previously administered through the De-
partment of Computer Science. The background and inter-
ests of students in this program differ from that of other
STEM disciplines in that they directly connect to the arts
and social sciences via their focus on human experiences.
With the establishment of the new department, there was a
need to reboot several existing computer science classes un-
der the banner of computational media.

This experience report describes a 5-year effort in teach-
ing an upper-division artificial intelligence course in the
context of an interdisciplinary technical degree program.
We contribute a new course design including programming
and reading assignment suggestions, evaluated by the diver-
sity of student-initiated final projects. We enumerate several
roles for AI in interactive systems including many that fall
outside the range of traditional AI textbooks, and we show
that students can be engaged in the process of inventing
and demonstrating additional roles for AI themselves. This
demonstrates the possibility to teach a complex engineering
subject to a mixed audience of undergraduates by adopting
an applications perspective.

Background
Our new Game AI course design succeeds an earlier design,
first offered in 2006, that primarily emphasized coverage of
concepts and practices in use by the game industry. With the
establishment of the new department, the Game AI course
was pulled in several directions: it could continue to distill
the industry sense of Game AI, it could introduce students
to the role of AI in technical games research (a focus area
amongst the faculty of the new department), or by default it
could follow the outlines offered by textbooks of Game AI.

AI in the Gaming Industry
The premier industry conference for video game developers
is the Game Developers Conference (GDC). The kinds of
knowledge shared at this conference are very broad, ranging
from technical to artistic and business-related. The confer-
ence regularly hosts an event called the GDC AI Summit
focused specifically on current and emerging applications
of AI game development. The summit is organized by (and



has an attending audience largely overlapping with) the AI
Game Programmers Guild. These professional bodies define
one viewpoint on Game AI: Game AI should be concerned
with whatever specialized knowledge AI game programmers
need to do their job or is shared on online forums for the in-
dustry like Gamasutra.

Although this community is only very loosely connected
to the world of academic AI research, there is a long his-
tory of academic ideas making their way into game projects
and for ideas originally developed in an industry context
to be documented and disseminated in the academic liter-
ature. The game F.E.A.R. (Monolith Productions 2005) (and
many more including Deus Ex: Human Revolution (Eidos
Montréal 2011)) makes use of Goal-Oriented Action Plan-
ning (GOAP), a STRIPS-like planning architecture (Nils-
son 1998), to control non-player characters. Halo 2 (Bungie
2004) employed behavior trees, a reactive/dynamic planning
architecture (Isla 2005), for a similar purpose. The game Left
4 Dead (Valve South 2008) included a “Director” system
for drama management, the practice of procedurally manip-
ulating the game world to influence the player’s experience
without overtly controlling the game’s non-player charac-
ters. Other systems for technical authoring of a game’s nar-
rative, such as the Versu system underlying Blood & Lau-
rels (Short 2014), are now documented in academic AI jour-
nals. The use of procedural content generation, such as for
generating the vast in-game worlds of Dwarf Fortress (Bay
12 Games 2006), Minecraft (Mojang 2011), or No Man’s
Sky (Hello Games 2016), is now considered an AI applica-
tion by the academic community (Yannakakis and Togelius
2018b). Systems for player intent recognition, such as those
in Bioshock Infinite (Irrational Games 2013), have clear con-
nections to academic AI research on goal recognition. The
categories of academic AI applied in games and readable-as-
intelligent systems used in commercial games that are then
accepted by the academic community are co-evolving.

Technical Games Research
Technical games research is an emerging topic spanning ex-
isting fields of computing including artificial intelligence,
human-computer interaction, computer graphics, and others
(Nelson 2019). Technical games work related to AI is often
presented at the AAAI Conference on Artificial Intelligence
in Interactive Digital Entertainment (AIIDE) or the IEEE
Conference on Computational Intelligence in Games (CIG,
recently renamed to the IEEE Conference on Games). It is
archived in journals such as the IEEE Transactions on Com-
putational Intelligence and AI in Games (TCIAIG, recently
renamed to the IEEE Transactions on Games). Additionally,
AI-related work is regularly presented at cross-disciplinary
conferences such as the International Conference on Digi-
tal Storytelling (ICIDS) or International Conference on the
Foundations of Digital Games (FDG).

An alternate view of Game AI emerges from technical
games research: Game AI should be concerned with what-
ever specialized knowledge is used by these academics and
disseminated in their peer-reviewed publication venues. This
view is distinct from the general sense of AI captured by the
AAAI Conference on Artificial Intelligence or the Journal

of AI Research which, while very broad, usually would not
consider drama management, procedural content generation,
player modeling, and machine playtesting.

Textbooks of Game AI
Around the world, several universities offer Game AI
classes that are based on a foundational distinction between
(industry-based) Game AI and Academic AI. While text-
books such as Russell & Norvig’s well-known Artificial In-
telligence: A Modern Approach (Russell and Norvig 2016)
often anchor general AI courses in computer science pro-
grams, Funge’s Artificial Intelligence for Computer Games:
An Introduction (Funge 2004) is often used to anchor Game
AI courses (usually at institutions offering technical degree
programs specifically related to game design). Indeed, the
Game AI versus Academic AI distinction is introduced in
the book’s first chapter. Upon completing a course based on
Funge’s book, students should be able to understand and ap-
ply the ideas documented in industry-oriented books such as
the AI Game Programming Wisdom series (Rabin 2002).

Since the emergence of technical games research (largely
taking place after Funge’s 2006 distillation of Game AI),
there is a clear need for textbooks that cover topics rele-
vant to future AI-oriented technical games researchers. In
2018, Yannakakis & Togelius published the textbook Ar-
tificial Intelligence and Games (Yannakakis and Togelius
2018a), targeting both graduate and undergraduate students
and closely aligning with the slice of technical games re-
search usually considered at the CIG conference and in the
TCAIG journal. This book covers the use of games as con-
figurable testbeds for academic AI technologies (usually in
the form of game playing agents exemplified by AlphaZero
(Silver et al. 2017)) but also as a domain with its own unique
challenges. The book introduces procedural content genera-
tion and player modeling as peers to the topic of automati-
cally playing games. Although this book also opens with a
discussion of the “gap” between Game AI and Academic AI,
it suggests this gap is the manifestation of a temporary his-
torical situation before the interest in AI in games broadened
beyond controlling non-player characters. In a section called
“What We (Don’t) Cover in This Book” the authors inten-
tionally leave certain AI topics like planning to academic
AI books (like Russel & Norvig’s) and others like pathfind-
ing to industry-oriented Game AI books (like Millington &
Funge’s). For these authors, post-gap AI in Games is not
simply the intersection or union of the categories identified
earlier. They identify further AI topics popular in technical
games research, including computational narrative, but leave
these out to control the scope of their book.

Our Game AI course takes the perspective that neither of
these approaches (that might be caricatured as preparing fu-
ture AI programmers for the game industry or future AI re-
searchers in technical games research) is entirely appropri-
ate for our undergraduates in a department of Computational
Media. Instead, we propose that a core topic for AI in games
is inventing and demonstrating new roles for AI in games.
Our course did not employ one specific textbook but instead
assigned readings, game playing, and original research pa-
pers instead. We intend that our students, whether in industry



or in academia, continually identify new applications of AI
in game design, development, run-time execution, or post-
deployment analysis.

Course Design
Our Game AI course introduces AI in the context of a newly
formed department of Computational Media, whose goal
(roughly stated) is to train a generation of design-sensitive
engineers and engineering-capable designers. It is a quarter-
length (11 week long) class, with a student body consist-
ing of Juniors and Seniors with backgrounds in digital me-
dia, arts, computer science, and games. The composition is
typically half students from our computer game design de-
gree program and half students from the computer science
and engineering degree program (both housed within our
School of Engineering). This mixed background presents
a challenge for communicating technical material, but also
a tremendous opportunity to coordinate students on cre-
ative projects that take advantage of their diverse skills. The
course has only one prerequisite: completion of the upper-
division Algorithms and Abstract Data Types course. No
previous exposure to AI in previous courses is assumed, and
some students enroll in our institution’s upper-division Arti-
ficial Intelligence course independently of Game AI.

We established the following learning objectives for the
course: (1) students can apply and modify common Game
AI techniques in programming tasks; (2) students under-
stand that AI can be employed in a diverse set of roles
within games; and (3) students can invent new roles for AI
in Games, and demonstrate them in novel prototypes.

The first objective ties the desired level of mastery to the
background of the student body. It defines the goal as giving
students the power to apply AI techniques in games, ver-
sus the ability to implement the technique or understand the
surrounding theory. The second objective clarifies a differ-
ence between this course and the way Game AI has tradi-
tionally been taught; rather than focus on using AI to create
smart non-player characters (NPCs), we adopt a mission to
broaden students’ conception of the roles AI can perform.
This stance clearly reflects a bias on our part that is partially,
but not completely supported by the current state of the art
in the game industry, but it’s heartfelt, and consistent with
the academic objective of improving the landscape of games
and interactive experiences in the future. Our third objec-
tive emphasizes the creative use of AI techniques, which is
essential in the context of a design-oriented curriculum.

We refined these learning objectives into a set of themes
that structured course content: Core AI Metaphors; AI as
“X” in Games (where X is a role for AI); Examining the AI
in Existing Games; and Creatively Applying AI in Games.

For purposes of an applications-oriented class, we defined
Core AI Metaphors as AI technologies and algorithms with
implementations available on the web that are most easily
applicable in games. The selection involves something of
a judgment call, and the ordering is also important as the
students draw on the palette of methods presented in the
first half of the course when framing their creative projects.
Lectures described algorithms at the pseudo-code level, and
worked examples primarily in game settings. We covered

forward search (breadth first and depth-first search, Dijk-
stra’s forward search, greedy best first search, A*), con-
straint satisfaction, Monte Carlo Tree Search, finite and hi-
erarchical finite state machines, rule application, behavior
trees, reactive planning languages, goal oriented action plan-
ning, utility models, genetic algorithms, decision tree learn-
ing, perceptron learning, steering behaviors, answer set pro-
gramming, deep learning for classification, and deep rein-
forcement learning, with all but two or three discussed prior
to the start of student projects.

We presented a variety of roles for the use of AI in
games. These included AI as: Actor (agents that act in
a way that is readable as intentioned behavior consistent
with a fictional characterization); Author (agents that con-
figure settings, plots, and characters to assemble a plausible
narrative); Design Assistant (agents that provide feedback
on human-authored design elements, often via simulation);
Designer (agents that generate design elements that would
otherwise be hand-authored); Drama Manager (agents that
adapt continuously the game world to shape the game’s nar-
rative and player experience); Adversary/Villain (agents that
either play to win or to lose under precisely described con-
ditions); Student/Learner (agents that continually grow or
adapt in response to player feedback); and Referee (agents
in the same role of game masters in table-top games).

Many of these themes are illustrated in commercially
successful AAA and Indie games (such as in those exam-
ples given in the Background section above). Overall, the
coverage of AI themes in existing games is somewhat sparse,
and this fact was one of our motivations for composing the
course. We believe that AI represents a largely unexploited
resource in game design, and this course is a practical step
in addressing that gap.

We used the theme of unpacking the AI in published
games to ground our technology lectures in concrete set-
tings. We found that students were tremendously motivated
by these examples, as they unveiled mysteries behind their
own game playing experiences and showed depth behind
games they had not previously considered.

The source material for these lectures was somewhat hard
to obtain as companies are not necessarily motivated to re-
veal their underlying technology. Postmortem talks (where
designers explained what worked and what did not after their
game had been commercially released) were a great resource
here, as were occasional debriefs by game authors on the
web or as guest speakers.

The final theme called for students to actively employ AI
in games in a creative fashion. This goal was the source of
the project-oriented structure of the class, and it dictated the
broad syllabus of the class. In particular, we needed to com-
municate AI metaphors in roughly the first half of the term
in order to leave time for a substantial creative project based
on those techniques in the last 4-5 weeks of the quarter. This
divided the lecture content into a closely guided tour through
AI techniques, followed by a more open presentation of in-
terest topics. Most guest lecturers spoke during this period.
This schedule also impacted the assignment structure, with
multiple readings and 6 weekly programming tasks starting
on day 1 of the class, but minimal readings and no program-



ming assignments later.
We employed programming assignments to communicate

selected AI roles in detail (described later). Students per-
formed each of these assignments in two-member teams.
This decision served multiple goals; it let us create more
valuable (but more challenging) assignments, it let us scope
projects to enable contributions by both the technology-
focused and design-oriented students in the class, it fos-
tered peer-instruction, it reflects our belief that pair-coding
is easier than solo work, and it reflects the reality that game
development in industry is invariably conducted in teams,
which makes teamwork a necessary skill for undergradu-
ates in a game-oriented curriculum. We encountered some
resistance to this team-coding requirement. The amount var-
ied from very little to moderate grumbling during the term,
but the policy received positive student summations at the
end. Overall, we attempted to thermalize inequalities among
teams by requiring that students not pair with someone else
they had already paired with in recent assignments.

As mentioned earlier, we employed on-line readings vs
textbooks as primary course materials. Some readings were
very broad and covered high level themes, e.g., from the
“Turing Tantrums: AI Devs Rant” session at the GDC AI
Summit (Sunshine-Hill 2015) or selections from the “Pho-
toshop of AI” debate (Mark 2009) in various venues, while
others were technology summaries.

The detailed course structure consisted of 6-7 weekly pro-
gramming assignments (done in teams), about 15 readings
with associated questionnaires, a midterm in some years,
and a major creative project (performed in teams of 3-4)
in the last 4-5 weeks of the class. Their relative weights
for grading were 20% reading, 50% programming, and 30%
project in years without a midterm, and 10% reading, 30%
programming, 30% midterm, and 30% project otherwise.

Programming Assignments
This section reviews the breadth of programming assign-
ments utilized in our offerings of the course. Not every as-
signment was utilized every year and not every assignment
is listed here. Most assignments built on instructor-provided
base code and downloadable packages for the Python lan-
guage. Where the previous design for this course empha-
sized from-scratch C++ programming to orient students to
industry practices, our new design emphasized finding and
building on top of existing software infrastructure to let stu-
dents quickly demonstrate new roles for AI in games.

Navmesh Pathfinding: Navigation meshes (Tozour and
S. Austin 2003) are a Game AI technique for abstractly rep-
resenting the traversable spaces in a game world. Just after a
(video) reading assignment on how to use a new algorithm to
outperform the traditional A* graph search algorithm (Rabin
2015a), we asked students to demonstrate their own massive
speedups over A* using an alternate world representation.
Given a 4,096 by 4,096 pixel dungeon map, this assignment
required students to find paths between interactively selected
waypoints with pixel-level precision. Students implemented
variations of A* (e.g. including bidirectionality) that worked
on a rectangular decomposition of the free space in the in-
put dungeon map where the cost of traversing a rectangle

Figure 1: A student-selected test map for the navmesh
pathfinding assignment. Students were required to generate
their own debugging visualizations, as such visualizations
are a common topic at the GDC AI Summit.

depended on the dynamically chosen enter and exit points
on the perimeter. Students were also asked to find or design
their own map to demonstrate edge cases of their implemen-
tations (Figure 1). The base code implemented the recursive
subdivision logic as this assignment emphasized pathfinding
with navmeshes rather than navmesh generation.

Ultimate TicTacToe: We used the game of Ultimate Tic-
TacToe to teach Monte Carlo Tree Search (Browne et al.
2012). Unlike its progenitor, this game is hard enough to
engage the adult mind; play occurs on a 3x3 grid of TicTac-
Toe boards, where a move in square i, j of any board forces
the next player to choose a move on board i, j if possible.
The game is won by securing a three-in-a-row line of wins
on the 3x3 grid. Students were given an Ultimate TicTacToe
implementation with appropriate operations, an MCTS node
abstraction, and two game-playing bots (one that selects ran-
dom moves, and another that samples x games for every
available move, plays randomly, and returns the move with
the highest expected turnout. Given these tools, students
were asked to implement two versions of MCTS and con-
duct source-of-power experiments. They assessed the im-
pact of tree size on win rate for a random-rollout player, and
the impact of heuristic vs random rollout on win rate given
a maximum tree size (with and without a time bound). Ul-
timate TicTacToe is also sometimes used in AI courses that
do not have a games focus (Neller et al. 2019).

MiniRTS: We implemented a miniature real-time strat-
egy game and asked students to implement controllers for
two kinds of non-player characters. In contrast to the Mi-
croRTS framework (Ontanón 2013) used in previous aca-
demic game playing AI competitions (turn-based, with com-
plex economic mechanics), this game emphasized the role
of AI as actor. The student-created non-player characters
needed to demonstrate a modest (design-appropriate) level
of autonomy while being highly responsive to player com-
mands and being readable as fictional workers and war-
riors. Although paired readings primed students to think
about finite state machine (FSM) behavior representations,
this assignment encouraged students to create a functional



but tangled mess of if-else blocks with ad-hoc conditions.
We wanted students to understand the tension between
expressive-and-messy and clean-but-restrictive forms of be-
havior authoring seen in Game AI practice.

Planet Wars: We assigned a 1-week programming ex-
ercise with Behavior Trees set in Google Planet Wars, an
interstellar conflict simulation with mechanics for starship
generation, conflict resolution, and travel time between plan-
ets. We supplied a behavior tree implementation, a game
interface, plus five game-playing bots, and asked students
to compose a single behavior tree that won against all five
bots on a randomly chosen set of star maps. We also ran a
round-robin tournament among student entries, which stu-
dents found quite motivating (we also gave extra credit to
the winning team). We observed that simple/bold strategies
tended to win over intricate casing logic.

Minecraft Crafting Planner: In Game AI, graph search
algorithms (e.g. A*) are almost always used to search two
or three-dimensional spaces for the purposes of navigation.
To break this association and open up student minds to new
roles for AI, we asked students to repurpose their earlier
graph search code to produce action plans. Inspired by the
crafting mechanics of the game Minecraft (a game popular
amongst students in which the player can, for example, con-
vert three units of Planks and two units of Sticks into one
unit of Wooden Pickaxe in the presence of a Crafting Ta-
ble), students implemented a state-space planning approach
where states were represented by resource inventory tuples
(how many units of which kinds of items the player pos-
sessed). Students were given a file defining the vocabulary
of items and available crafting recipes (a planning domain)
as well as a sequence of planning problems (an initial inven-
tory state and a set of minimum items counts for goal states).
In order to be able to complete the full sequence of challenge
problems within a time limit, students needed to use domain
knowledge in order to implement heuristics, state pruning
operators, or operator dependency analysis. Students were
encouraged but not required to implement optimal planners
(which minimized the sum of per-recipe action costs).

Instant Feedback Level Design Tool: Paired with read-
ings on mixed-initiative level design tools emerging from the
technical games research literature (Smith, Whitehead, and
Mateas 2010; Butler et al. 2013), students were asked to im-
plement AI for the Design Assistant role (Figure 2). Given
base code that implemented a simplified paint program, stu-
dents again adapted their graph search code to quickly com-
pute reachability of every point in the game’s world to the
initial state each time the user painted a new detail onto
the map. Inspired by the Metroidvania genre of games, the
player’s movement ability in this game incrementally un-
locks as they collect more special items (requiring travers-
ing the same geometric space multiple times with different
inventory states). A key design concern for Metroidvania
games is sequence breaking – can the player reach certain
locations too soon by collecting special abilities in an unex-
pected order? Although planning was still used to find paths
for a hypothetical player in this assignment, it emphasized a
design-time role for AI in the context of game that might not
utilize any path-planning at run-time.

Figure 2: Reachability feedback in the level design tool.

Evolutionary Platformer Level Generation: We used a
level design task set in the Super Mario Bros game to teach
genetic algorithms. We provided students with a skeleton
genetic algorithm implementation, a game interface, helper
functions and a base fitness metric, and two genome repre-
sentations ; a fixed length grid encoding of a Mario level,
(Summerville et al. 2016) and a variable-length sequence
of design elements (Sorenson, Pasquier, and DiPaola 2011)
like a hole of width w in the ground plane, or ascend-
ing/descending stairs with some height and direction. We
asked students to implement their choice of crossover mu-
tation and successor population generation functions, refine
the base fitness metric per their own criteria, and employ
both representations to evolve levels. Students submitted
their favorite level from each encoding, with the added in-
struction that they should be playable.

Machine learning (including the use of neural networks)
is playing an increasing role in AI-related technical games
research, e.g., for machine playtesting (Keehl and Smith
2019) and content generation (Volz et al. 2018). However,
it was not represented in our programming assignments,
and there is little1 industry adoption of machine learning
in Game AI. Nevertheless, we feel that future iterations of
this course should demonstrate a role for machine learning,
particularly where it might seem unexpected, such as in nar-
rative generation (Ammanabrolu et al. 2019).

Reading Assignments
Our reading assignments were highly varied in their sources
and formats. We sampled chapters from Game AI text-
books (reviewed earlier), from industry-oriented books in
the Game AI Programming Wisdom (Rabin 2002) and Game
AI Pro (Rabin 2015b) series, from postings on Gamasutra,
from videos in the GDC Vault,2 or from independent web-
sites featuring key interactive explanations (Patel 2014). De-
pending on the scheduling of the class offering relative to the
annual Game Developers Conference, it was sometimes pos-
sible to create reading assignments on extremely fresh ma-
terial (emphasizing the importance of taking an expansive
view on Game AI over mastering any one technique).

1Black and White is a notable exception (Wexler 2002).
2https://www.gdcvault.com/



After reading (or watching) the assigned source mate-
rial, students were required to complete a brief response
assignment. The format of this assignment varied between
offerings, sometimes including multiple choice questions,
short answer questions, or short essay questions. Some
anonymized responses to readings would be discussed in the
following lecture to clarify misconceptions or to encourage
students to share their own stories (acknowledging students
diverse background experiences as a source of knowledge).

Guest Lectures
In keeping with the applications focus of the class we main-
tained an active program of guest lecturers. We invited 2-
5 leading AI game developers and researchers each quarter
to speak on AI technology and its role in games they had
worked on. Guest lecturers included originators of AI tech-
nology (steering behaviors), game-AI experts (e.g., Deep
Learning, predictive analytics, Answer Set Programming,
Procedural Content Generation), AI technology advocates
(utility models), and lead AI designers for AAA games (the
Sims series). The list varied depending upon whom we knew
and could elbow into service, but the inclusion of guest lec-
turers with a tie to industry strongly affected the texture of
the class, and directly addressed the theme of unpacking the
AI in existing games.

Creative Projects
We designed the Game AI class to communicate a vision
about the role AI can play in games to an audience of Juniors
and Seniors with mixed interests in arts and technology. We
framed the course as an experiment, both to ourselves and to
our students, and now that we have taught it 5 times (once
per year for 5 years) we are in a position to examine the re-
sults and extract lessons learned. This section evaluates our
experience relative to our key learning objectives (listed in
the Course Design section above).

The most visible evidence for student mastery of these
lessons comes from the final creative projects, which were
4-5 week long tasks, done in teams of 3-5, to creatively ap-
ply AI in any aspect of game design, development, play, or
evaluation. We have 102 student projects to draw on for this
analysis, and we report outcomes in three different ways.

Figure 3 identifies the AI technologies incorporated into
student projects. This chart assigns 1 or at most 2 labels to
each project that reflect the core AI technology it employed.
Students overwhelmingly chose technologies we covered in
class; with the exception of the 10 (of 102) projects catego-
rized as other, every label in the figure corresponds to a topic
we examined in lecture or programming assignments.

The chart clearly shows that students applied a wide vari-
ety of AI technologies. Students typically implemented sim-
ple algorithms from scratch (like graph search methods),
but chose to download and modify packages for more com-
plex techniques instead (like constraint satisfaction). For ex-
ample, behavior tree projects commonly introduced a new
node type and encoded novel character behavior in the re-
sult, while goal oriented action planning projects frequently
inserted domain specific selection heuristics into a planner

Figure 3: Distribution of AI technologies in final projects.

downloaded from the web. Given the breadth of AI mech-
anisms represented in Figure 3, we conclude that our stu-
dents collectively demonstrate learning objective #1 - they
developed sufficient mastery to apply and modify a variety
of AI techniques in programming tasks. Recall that complet-
ing other AI courses was neither required nor common for
these students.

It is also interesting to examine which techniques most
often inspired student projects. Genetic algorithm and be-
havior tree projects were the most popular, while there are
noticeable spikes associated with graph search, utility mod-
els, machine learning (collectively), and Monte Carlo Tree
Search. From our experience the governing factors are sex-
iness, familiarity, and accessibility. For example, the popu-
larity of genetic algorithms and behavior trees is explained
by the fact that both have native appeal, both were the sub-
ject of week-long programming assignments, and both are
easy to implement and use. Graph search (the third most
popular project focus) is possibly more mundane from a stu-
dent perspective, but the algorithms are simple and students
utilized the concepts in multiple programming assignments.
Students also submitted 8 machine learning projects; they
clearly found the topic exciting, but it was only discussed in
lecture and the techniques have a somewhat higher barrier to
entry. Monte Carlo Tree Search has a similar, mixed profile;
it is exciting for its success and applicability to games, it was
the subject of a programming assignment, but students found
it intellectually difficult to absorb. Finally, we note that guest
speakers had an effect – in years where a prominent expert
on utility theory spoke to the class, there was a strong uptick
in utility-theory related projects.

Figure 4 categorizes the same set of student projects by
the purpose they pursue using AI. These labels are admit-
tedly subjective. Given that there is no accepted ontology
of game purposes or tasks, we chose terms that covered the
subject matter of student projects but that would also be fa-
miliar to game developers and technical game researchers.
This chart illustrates the diversity of student projects. First,
they apply AI to topics that span game design, game play,
and testing or evaluation. The applications within game de-
sign employed AI to construct and modify multiple game el-
ements, such as game music, character avatars, game objects
(weapons, furniture), game landscape (both locally, and of
entire game worlds), and game levels (their physical layout
and contents). Projects emphasizing game play frequently
employed AI to encode behaviors on background charac-



Figure 4: Distribution of the purpose of AI in final projects.

ters and crowds, companions and support characters, and (of
course) smart adversaries, including competition bots. Stu-
dents also employed AI to enable tutorial and recommenda-
tion systems that provided advice on next actions tailored to
the player’s task, skill level, equipment, or team composi-
tion. Relatively few projects applied AI to game evaluation,
but these included automated play testers and off-line ana-
lyzers correlating player stats with game success. This diver-
sity demonstrates that students mastered learning objective
#2; they understood that AI can be employed in a diverse set
of roles within games.

Students also applied AI technology in creative ways. For
example, a number of projects employed graph search or
constraint satisfaction to generate game elements that met
requirements, such as solvable mazes and puzzles, or levels
with a known difficulty. Students also employed genetic al-
gorithms to meet constraints, for example, to populate en-
vironments with creatures adapted to external conditions.
Multiple projects focused on reducing authoring effort, for
example, to design environments that incorporate aesthet-
ics via player contributions to a fitness function, or to place
behaviors on characters by searching across behavior tree
structures that achieve a task. Some projects employed AI at
a more abstract level to produce a novel game experience,
for example, to maximize the feeling of horror by dynam-
ically reconfiguring maze structures, to change a player’s
time sense by enabling 50 year moves, or to provide more
flexible game play through generative narrative. We con-
clude that students collectively achieved learning objective
#3: they were able to invent new roles for AI in games and
demonstrate them in novel prototypes, often in novel AI-
based game designs (Eladhari et al. 2011).

While figures 3 and 4 portray the breadth of student
projects and their applications of AI, we can illustrate the
depth by discussing a few examples in detail.

Figure 5 (first item) is drawn from a student presentation
on a God-game enabled by an application of genetic algo-
rithms. Here, the player manipulates the temperature and
rainfall to create biomes, while the creatures evolve until
they are well-adapted. The students modified a genetic al-
gorithm with operations for migration and speciation to pro-
duce a novel game mechanic. This project demonstrated a
lovely merger of technical capability and design sensitivity.

Figure 5 (second item) illustrates a project on tutorial gen-
eration for novice-expert game play. The students imple-
mented a bootstrapped deep learning algorithm inspired by

Figure 5: Screenshots of selected final projects.

AlphaGo Zero that acquired strategies for Go-Moku (5 in a
row). Then, they extracted board positions from the MCTS
tree with highly divergent success rates dependent upon the
move chosen, and presented these as tutorial examples. This
combination of deep learning and analysis was a notable
technical achievement for undergraduate students.

Figure 5 (third item) shows a Puzzlescript game being au-
tomatically playtested by an MCTS-based agent. Students
in this project team adapted MCTS code from a program-
ming assignment to be able to automatically play any Puz-
zlescript game in the wild. This system demonstrated the
general game playing abilities and realized them in the form
of a Design Assistant role. The tool could generate an an-
imation of how to solve a given puzzle, and those anima-
tions could be regenerated after incremental level design or
rule design changes. This undergraduate project was a direct
follow-up to work in the technical games research literature
on Puzzlescript design assistance (Lim and Harrell 2014).

Finally, Figure 5 (fourth item) shows a dynamic tutorial
system based on both spatial and abstract planning. Students
in this team extended a game that they had created for an ear-
lier game design class by using adaptive AI to replace a fixed
tutorial mode of the game. Connecting to the idea of drama
management, if the player had not demonstrated a signifi-
cant game action within a certain timeout, the system would
automatically construct and visualize a plan to demonstrate
the next simplest game mechanic that the player had not pre-
viously exercised (often a crafting recipe). Again, this un-
dergraduate team project was a direct follow-up to academic
work on automatically generating instructional scaffolding
for educational games (O’Rourke et al. 2015).

Conclusion
This experience report contributes the design of a new Game
AI course. Rather than simply servicing industry needs or
preparing students for academic research, our course en-
gages students in the process of inventing and demonstrat-
ing new roles for AI in games and other interactive media.
Through review of students’ final creative projects, we have
shown how the course was able to prepare students to apply
and modify common Game AI techniques, understand that
AI can be employed in a diverse set of roles within games,
and invent new roles for AI in Games while demonstrating
them in novel implemented prototypes.
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