Monster Carlo: an MCTS-based Framework
for Machine Playtesting Unity Games

Oleksandra Keehl
Design Reasoning Lab
Department of Computational Media
University of California, Santa Cruz
okeehl@ucsc.edu

Abstract—We describe a Monte Carlo Tree Search (MCTS)
powered tool for assessing the impact of various design choices
for in-development games built on the Unity platform. MCTS
shows promise for playing many games, but the games must be
engineered to offer a compatible interface. To circumvent this
obstacle, we developed a support library for augmenting Unity
games, and Python templates for running machine playtesting
experiments. We also propose ways for designers to use this
tool to ask and answer designs questions. To illustrate this, we
integrated the library with It’s Alive!, a game in development by
the authors, and 2D Roguelike, an open source game from the
Unity asset store. We demonstrate the tool’s ability to answer
both game design and player modeling questions; and provide
the results of system validation experiments.

I. INTRODUCTION

Human playtesting is an irreplaceable aspect of game de-
velopment. It can also be logistically cumbersome and creates
a significant bottleneck in the design cycle: design, build,
test, learn, and redesign. One of the main arguments for
machine playtesting is that a simulator can play through games
orders of magnitude faster than a human. Thus, it can cover
more ground, collect more data, and, in some cases, provide
guarantees through exhaustive search.

We present Monster Carlo, a framework for machine
playtesting Unity! games. Tools based on this framework can
gather data on different design variants and playstyles in order
to detect imbalance and other effects design changes may
have on a player’s experience. We set out to apply Jaffe’s
Restricted Play balance framework [1], to It’s Alive!, a game
in-development by the first author (Figure 2). Contrasting
with Jaffe’s work, which examined the win—lose outcome
of competitive two-player card games, It’s Alive! emphasizes
maximizing the score in a single-player Tetris-like game.
Exhaustive search is not tractable in the general case of It’s
Alive!, due to the vast number of reachable states. In response,
we apply Monte Carlo Tree Search (MCTS) to find input
sequences that approximately maximize the player’s score.

Monster Carlo aims to bring Al techniques to game devel-
opers in the platforms they are already using. In the implemen-
tation of our framework, we made an effort to minimize the
game code changes required for integration. We also provide

Uhttps://unity3d.com/

Adam M. Smith
Design Reasoning Lab
Department of Computational Media
University of California, Santa Cruz
amsmith@ucsc.edu

result visualization templates in Jupyter Notebook, a tool often
used for gameplay data analysis [2].

To test the tool’s versatility, we integrated it with a game
of a different style and one we did not develop: 2D Roguelike
(Figure 5), the open source game from the Unity asset store.”

Monster Carlo is meant to answer a variety of design
questions: In It’s Alive!, how do monster “come to life”
conditions affect the achievable high scores? How does a
player who collects monsters right away compare to a player
who waits until the last moment? In 2D Roguelike, how does
the game dynamic change if we increase both the damage dealt
by the zombies and health gained from food pick-ups? How
feasible is a no-backtracking player strategy?

MCTS has many variations. We experimented with never
re-visiting fully explored branches of the search tree, aiming
to increase the number of states explored. We tested different
values for the tunable exploration constant in the UCT?
algorithm, finding the search performs better if the constant
is closer to an average score of a human player. We also
added an optimization technique of saving the entire playtrace
of each playthrough with a new best score [3]. All of these
game-agnostic variations are available through parameters of
Monster Carlo.

In general, using MCTS for machine playtesting requires the
games to be engineered to be compatible with it. The Monster
Carlo support library is designed to hook into the Unity engine
update cycle and makes this engineering easy. We also created
data analysis templates for experiments that take the form of
comparing optimized scores between variants.

This paper makes the following contributions:

o A framework for machine playtesting Unity games where
instances of the game execute rollouts for MCTS.

o First work to use MCTS at the level of a whole game
platform rather than a specific game.

o C# and Python support libraries for adapting a game to
support machine playtesting and running experiments.*

o Initial experiments that validate the framework and an-
swer design questions about an in-development game.

Zhttps://www.assetstore.unity3d.com/en/#!/content/29825
3Upper Confidence Bound-1 applied to Trees
“https://github.com/saya1984/Monster-Carlo



II. RELATED WORK

In this section, we review the work related to three topics
relevant to Monster Carlo: design inquiry with restricted play,
MCTS, and frameworks designed to support MCTS.

A. Design Inquiry with Restricted Play

Ludocore is a logical game engine for modeling video
games [4]. Smith et al. imposed restrictions on the player
behavior in order to analyze games created within the Lu-
docore framework. From Ludocore, we borrow the idea of
asking design questions by restricting our player models and
observing how these constrained players perform as variations
in the design are considered. In Ludocore, games had to be
encoded in a specially-designed logic programming language
which Ludocore’s back-end analysis engine could understand.
By contrast, Monster Carlo is meant for integration with
Unity games. Such games can dynamically allocate memory,
hand-off simulation to a physics library, or perform other
computations that would be tedious to model in a purely
symbolic framework.

The Restricted Play concept of asking game balance ques-
tions by preventing or forcing a player to do certain actions
in game was introduced by Jaffe et al. [1] and was applied
to a two-player, perfect-information game Monsters Divided.
In their evaluation tool, the authors calculated the optimal
strategies for each type of restricted behavior. The game size
(five cards per player) allowed for exhaustive search through
the entire game tree, foreseeing every possible playthrough. In
their Future Work section, the authors state that MCTS is a
promising alternative for games whose complexity makes ex-
haustive search impractical. Because of MCTS’s agnosticism
to a game’s features, it can be used without modification on
different restricted players and game design variants. In this
paper, we extend Jaffe’s restricted play idea, combining it with
MCTS and applying it to a new class of games: single player,
discrete state games with a larger space of states.

Zook et al. [5] follow up on Jaffe’s suggestion to use MCTS
for analyzing large games. They experimented with Scrabble
and the Magic: The Gathering inspired card game Cardo-
nomicon. They used restricted play to simulate player skill
levels to see what trends and strategies emerge when players of
different skills are pitted against each other. Although Scrabble
and Cardonomicon are naturally imperfect-information games
(one cannot be sure which tiles or cards the opponent has until
they are played), Zook et al. work with determinized, perfect-
information variations of these games (explained further in
section II-B). It’s Alive! is also a nondeterministic game (the
player does not know which piece will be randomly dropped
next), and we use the determinization strategy by fixing the
game’s random seed value.

Holmgrd et al. [6] used genetic algorithms to evolve custom
evaluation functions for use with MCTS to simulate different
playstyles in the game MiniDungeons 2. They used the evolved
personas to assess feasibility of each playstyle in different level
layouts. This approach can be combined with Monster Carlo,

as it allows the user to implement custom evaluation functions
for use within simulations and final score computation.

B. MCTS

Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm which selectively explores the tree of possible moves
[3]. It assesses the potential of each move by averaging the
scores of simulated random playouts from the current point
in the game until a terminal state. Although MCTS denotes
a broad family of algorithms, the most common, UCT, has a
single tunable parameter: the balance of advancing the more
promising branches of the tree with exploring the paths less
traveled. MCTS is a relatively simple algorithm and can be
used with a multitude of decision problems without the need
for game-specific heuristics. It has been successfully applied to
Go [7], Tetris [8], Scrabble [5] and other games. Most recently,
it was used in the creation of AlphaZero [9], the latest world
champion in Go. In the rest of this paper, we use the general
term MCTS to refer to the specific instance of UCT in the
Monster Carlo framework.

MCTS relies on building a tree of the possible moves in
each state. In games with a random element, such as 7Tetris
or Scrabble, the search was performed using a predetermined
sequence of pieces. In the determinized version of the game,
the automated player’s goal is simply to find the single best
sequence of moves that maximizes the final score. Without
determinization, the much more difficult goal is to devise a
policy that maximizes the expected score averaged over all
possible random elements in the game. We used determiniza-
tion, as it is sufficient to answer the design questions Monster
Carlo is intended to answer. One of the main differences in
our application of MCTS is that the games described above
all had a win/lose condition (even Tetris, as it was played
competitively), while the games described in this paper focus
on the highest score attained.

C. Environments that support MCTS

The Video Game Definition Language (VGDL) [10] is a
representational language for modeling videogame mechanics
and level designs. The General Videogame Artificial Intelli-
gence (GVG-AI)’ project provides an interpreter for VGDL
games which exposes an MCTS-compatible forward model.
Although VGDL has been used to model games inspired by
many different kinds of pre-existing videogames, it cannot
integrate with the original implementations of any of these
games. Like Ludocore, GVG-AI tools can only understand
games expressed in a specialized language. By contrast, Unity
games can make unrestricted use of the general purpose C#
programming language used for Monster Carlo.

OpenAl Gym® is a testbed for AL It includes environments
which provide state information, pixel data and rewards in
response to an agent’s action. It can integrate with commercial
ROM implementations of many Atari games and can have
algorithms learn to play directly from pixel or memory data,

Shttp://www.gvgai.net
Shttps:/gym.openai.com/



rather than the simplified game state abstraction used in
VGDL. A growing number of environments are available for
Al experimentation. A related effort, OpenAl Universe,” aims
to allow integration with an even wider array of gameplay-
like activities, even including a mock travel arrangement task
based on interaction with complex websites. Although these
frameworks allow MCTS-style algorithms to play a very
wide variety of games, they force interaction with the game
at the lowest level of interaction common to all of them:
reading pixels or memory bytes and injecting keyboard and
mouse actions. By contrast, Monster Carlo is intended to give
designers control of the level of abstraction used by MCTS
including high-level game actions (e.g. directly playing a card
rather than clicking somewhere to select a card). This is
important for making Monster Carlo’s analysis useful for game
developers rather than Al researchers.

All of these systems deal with the representations of game
states and actions differently. VGDL uses a data structure for
tracking the abstract state of the game and a list of interactions
between game objects as action representation. OpenAl Gym
uses screenshot pixel data and memory contents for state
representation and low-level keyboard and mouse events as
actions. Monster Carlo does not represent a game state beyond
the sequence of moves needed to reach it, and a way of
asking the framework to make discrete micro-decisions which
assemble into high-level actions (further described in III).

D. Unity and Unity Machine Learning Agents (ML-Agents)

Unity is a powerful game engine available for free for pri-
vate use, which makes it popular with independent developers.
Unity does not directly support integration with MCTS. To
change this, it is necessary for the game to communicate what
actions are possible at any moment and provide a way for
some Al system to select and apply one of those actions.
Additionally, there needs to be a way of communicating a
score to be optimized to the AI system. As the level of
granularity used to model player choices and the notion of
score to be optimized are specific to the game being designed
(and even specific to certain design questions being asked of
that game), these cannot be provided directly at the level of
the Unity platform. In response, Monster Carlo aims to offer
the designer a minimal-effort way of expressing game-specific
concerns on top of the Unity platform.

Unity ML-Agents® is a plugin meant to enable using games
and simulations to train agents via various machine learning
methods. While both Unity ML-Agents and Monster Carlo
involve running many thousands of simulated play traces,
Monster Carlo focuses on summarizing those trace for im-
mediate review by designers rather than producing a trained
behavioral policy as a side effect. As a result, Monster Carlo
has very few parameters to adjust and does not require defining
a neural network architecture or other policy representation.

7https://blog.openai.com/universe
8https://github.com/Unity-Technologies/ml-agents

III. SYSTEM DESIGN

The Monster Carlo framework consists of four major parts
(Figure 1). The integration modifications to the game and
specifications for the design experiment (the green parts on
Figure 1) have to be written by the game designer, while
everything else is provided through the Monster Carlo tool.

We used MCTS as the main search algorithm for our ex-
periments, but the algorithm can be changed without adjusting
the game or the design experiment notebooks.

A. Experiment setup and result visualization

The user-facing element of the Monster Carlo framework is
a sample Jupyter Notebook for running the experiments and
visualizing the results. This includes the game process factory.
The user must provide a function that can be called to start an
instance of the game, and the game must be compiled with the
C# support module (see III-C). The customized process factory
can be used to pass experiment-specific configuration data to
the game. For example, one can configure it to start in a certain
mode optimized for analysis, or arrange for the execution of
the game to happen on a remote cluster of machines. The
experiment results are returned as an object, which can be
saved in a file at the end of each experiment and later used
for analysis and visualization. We used matplotlib® to visualize
the results. All the experiment result graphics in this paper
were obtained through this method.

B. Python support module

This module contains the implementation of the MCTS
algorithm in Python. Upon the termination of the experiment,
it returns an object which contains the search tree and any
additional data. This output object can be trivially modified
to keep track of additional metrics. In our experiments, we
kept track of the growth of the highest seen score over the
rollouts, but we could, for example, have as easily kept track
of the number of monsters collected during a playthrough. In a
narrative oriented game, we might track the fraction of dialog
content seen or tally which endings where reached.

The tool supports running multiple instances of the game
to significantly speed up the search (see Section V-A for the
results). It takes as an argument the number of rollouts and
additional optional arguments that include the UCT constant
value, the number of parallel workers, terminal branch treat-
ment, saving of the best path option, and a callback function,
which can be used to implement custom logging. These are
passed to the game instances via environment variables.

C. C# support module

The C# module must be added to the game project. The
module takes in the environment arguments at the start of
the experiment and communicates with the Python module
through a TCP socket. It receives the most promising path
prefix determined by the MCTS algorithm from the Python
module at the beginning of each playthrough. Each time a

9https://matplotlib.org



Experiment

Design experiment parameters >
Result Result tree
esults and log data

e ———
e ————

1 Python support

e ————

MCTS

Launch several Experiment
instances parameters
Request
micro-decision
C# Game
support Selected
Action prefix action _
< Score
Play trace
and score Executable

Fig. 1. High level architecture of the Monster Carlo framework. The specification of the design experiment (in Python) and the game code itself (in C#) are

project-specific, while the other elements are provided by the framework.

decision must be made in game, the game tells the module
how many legal moves are available, and the module makes
a choice without needing to know what those moves are. If
there are pre-determined moves in the path prefix, the module
feeds those back to the game one at a time. When the end of
the path is reached, the module continues by making random
choices. A custom heuristic can be optionally be expressed in
C# by providing an array of action selection weights to be
consulted during the rollout phase. When the play session is
over, it reports the final score to this module, which sends the
full action path, the final score, and any other information the
designer specified, back to the Python module.

D. Modifications to the game

The designer must implement micro-decisions and scoring:
the game must determine legal moves at each step, request
an index of a move to take, and apply that action. When the
game reaches a terminal state, it must provide the score to
the support module. If random elements are present, each
playthrough needs to use the same random seed. We also
recommend creating a headless, no-graphics mode for the
game, as it can significantly speed up the playthroughs on
some platforms.

The game also needs an experiment mode to be able to
replace the user’s input with decision requests to the C# mod-
ule. Launching the game in the experiment mode can include
skipping menu screens and disabling smooth movements. To
optimize the running time, we recommend adding an ability
to reset the game after the terminal state is reached, so that
the application doesn’t have to be re-launched for each fresh
playthrough.

Additionally, if the designer wishes to conduct Jaffe-style
restricted play experiments, they will have to implement the
player models (which may limit available actions before the
C# module is queried for a choice). They can also implement a
way to switch between the game design variations. The space
of design variants considered can be as flexible as the user
wants, as long as they can specify those variants in Python
and communicate them to the game’s executable.

IV. EXPERIMENTS

This section describes example experiments we conducted
using the Monster Carlo framework. They show how to use

Fig. 2. Possible actions in this state include landing the falling piece in one
of the five columns in one of four orientations, or collecting one of the two
living monsters.

the restricted play methodology to ask design questions for
two games: It’s Alive! and 2D Roguelike.

A. It’s Alive!

It’s Alive! (see Figure 2) is a Tetris-style game where the
player controls the position and orientation of pieces falling
from the top of the board. Player loses if the pieces pile up to
the very top of the board. Rather than trying to make simple
horizontal lines of pieces as in Tetris, the player must form
arrangements of pieces that represent monsters. A monster
comes to life when it minimally contains a head piece and
a heart piece. At this point, the player may choose to collect
it to free up space, or continue building it up. Bonus points
are awarded based on the size and color coordination of each
monster. If there are several moving monsters on screen, the
player can choose which one to collect by shifting the highlight
from one monster to another. The player aims for the highest
score by animating and collecting five monsters.

The player actions consist of rotating the falling block,
moving it left or right, or quick-landing it. The player can
also cycle the highlighter through living monsters or delete
the currently highlighted monster. Thus, at any point, she
has four to six possible keyboard-level actions: rotate, move



G000 —— greedy | e
—— unrestricted
— lazy
5000 A
«» 4000 A
o
o
O
¥ 3000 A
2000 -
1000 A

0 2000 4000 6000 8000 1000012000 14000
Rollouts

Fig. 3. Highest score achieved for greedy, unrestricted and lazy player models.

left, move right, quick-land, cycle highlighter, collect monster.
Some of those actions could be repeated indefinitely without
affecting the game state, meaninglessly expanding the scope
of the search for Monster Carlo to perform. To avoid this, we
use micro-decisions to model only those choices that resulted
in meaningful state change. The OpenAl Gym would have
forced a mode of interaction at the level of keyboard inputs,
whereas Monster Carlo allows the flexibility to focus the
analysis on the level of details the designer cares about. Instead
of ability to move the block left or right any number of times,
the artificial player simply chooses whether to collect one of
the living monsters or to land the piece in any orientation
in an open column. Similarly, cycling the highlighter is not
considered an action, instead, collecting any of the living
monsters in the current state is considered a legal action,
regardless of the highlighter position (Figure 2). With this new
definition of action in mind, the player has 20 or more possible
actions at every moment. That is five possible columns times
four landing orientations, plus one collect action per living
monster. On a 5x7 playfield, this makes exhaustive search
computationally intractable due to the vast number of possible
combinations.

1) Playstyle experiments: Like Tetris, It’s Alive! has many
quick game-over states resulting from piling pieces in the
same column and reaching the ceiling while most of the
playfield is still empty. To prevent Monster Carlo from wasting
time exploring these dead-end scenarios, we prevented all
player models from placing a piece that would end the game
if a non-game-ending move was possible, such as placing
a piece somewhere else or collecting a monster. We did
this by excluding the game-ending moves from the list of
available actions within the game. No changes to the Monster
Carlo framework were required to express this more focused
analysis.

We used factored actions for most of It’s Alive! experiments.
Each turn, the player makes a sequence of micro-decisions.
First: Should I land the current piece or collect a monster?
Next, if I chose to land a piece: Which column should I land
it in? Finally, in which orientation should I land the piece?

5000 1 — regular
—— mon-ochrome-ster

—— ten-acious

4000 -

3000 A

Scores

2000 A

1000 -

0 2000 4000 6000 8000 1000012000 14000
Rollouts

Fig. 4. Highest score for regular, mon-ochrome-ster and ten-acious designs.

We experimented with three player styles. The greedy player
collects the monsters as soon as they came alive. The lazy
player collects a monster only if the game would otherwise
end. The unrestricted player is free to collect at any point.

Figure 3 shows that the lazy player did best, while the
greedy player performed the worst. The p-values designating
statistical significance of the difference between the scores of
each pair of the results ranges from 3.4e-08 to 4.5¢-07.1°

These results show that deciding when to collect a monster
is a meaningful choice for the player. Notably, while techni-
cally nothing prevented the unrestricted player from achieving
the same results as the lazy player, presenting it with an
opportunity to collect the living monster at every step slows
down the search progress. This is a reminder that all results
from MCTS are approximations computed within a fixed
computational budget, so they cannot be trusted with the same
level of certainty as in the exhaustive search results in Jaffe’s
original Restricted Play work. Nevertheless, large score gaps
can provide a signal that a designer should look deeper into
the specific playtraces found by MCTS that illustrate specific
styles of play in action. For this reason, it is important that
Monster Carlo returns the resulting tree, not just the aggregate
statistics. The user may decide to replay the highest scoring
play trace in a mode with more detailed analytics turned on
to gain deeper insight into the impact of playstyle difference
that the tool discovered.

2) Design variants: We considered three game design
variants. The regular design follows the rules outlined above.
The mon-ochrome-ster design considers two pieces within a
monster connected only if they are of the same color. In the
third variant, fen-acious, the monster only comes to life if it
consists of at least ten pieces.

The results (Figure 4) show that the mon-ochrome-ster mode
is much harder than the other two, and affords for a lower max-
imum score. Counter-intuitively, the ten-acious design variant,

10Here and in all other experiments, statistical significance is judged
according to the single-sided Mann-Whitney U test applied to the highest score
achieved within the rollout limit. Each experiment involves 20 independent
replicates of each condition.



Fig. 5. Screenshot of Unity tutorial game 2D Roguelike.

which places a restriction on the player and thus, makes for
a harder game, led to higher scores than those Monster Carlo
achieved in the regular design. Both experiments were run
with the same random seed, so nothing prevented the regular
design player from building monsters of ten blocks or more.
The progression of the highest score seen across the rollouts
in Figure 4, shows that the regular design scores are higher
initially, but are quickly overtaken by those seen in ten-acious.
We believe this is caused by the restrictions in ten-acious,
which prevented the search exploring the frequent collection of
smaller monsters. As before, Monster Carlo does not replace
the user’s judgment of game design alternatives, but it can
gather specific evidence that helps the user make that judgment
for themselves.

B. 2D Roguelike

Note that because we are the developers of both Mon-
ster Carlo and [It’s Alive!, it is possible that we have over-
specialized the framework for analysis of games very much
like It’s Alive!. In this section, we consider the integration
effort and results from experiments with a game that we
did not make ourselves, nor considered during the primary
development of the Monster Carlo framework.

2D Roguelike (Figure 5) is an open source official tutorial
game for the Unity game engine.!! It is grid and turn based:
zombies get to take a step for every two steps the player takes.
The player starts at the lower left corner of the field and the
goal is to reach the exit in the upper right corner, signifying he
has survived another day. The game is over when the player
runs out of food points and the final score is the number of
days the player has survived. One food point is lost for every
move and several are lost in case of zombie attacks. The food
points can be replenished by picking up food items. The levels
are laid out randomly. The number of zombies is a function
of the number of days survived, gradually increasing. At any
point, the player may choose to go up, down, left or right.

https://www.assetstore.unity3d.com/en/#!/content/29825

Each of these actions results in a state change, as the food
points go down even if the player attempts to walk through a
wall and does not actually move.

1) Playstyle experiments: For 2D Roguelike we factored
the actions into a choice of moving toward or away from the
exit, and then deciding whether the move is lateral or vertical.
For the first player, as a simple heuristic, we used Monster
Carlo’s capability for weighted choice to make the player more
likely to move toward the exit in the rollout phase of MCTS.
The second player was restricted to only move toward the
goal. After 30,000 rollouts, the forward-only player achieved
statistically significantly higher scores (p = 3.3e-08).

Due to the game mechanics, while the forward-only player
has a short-term advantage of a powerful heuristic, it would
eventually come to a hard limit, as it is impossible to pass
some levels without backtracking to avoid the zombies. In
this game, while the player can break through inner walls, it is
impossible to kill the zombies. If the player runs into one and
cannot back away, it will eventually kill him. Given enough
time, we believe the unrestricted player would outperform the
forward-only player. However, this would take too long to be
practically feasible for playtesting. Another option would be
to increase the bias with which the unrestricted player would
select the forward motion vs. backtracking. This would help
get more realistic scores faster without imposing the forward-
only restriction.

2) Design variants: We compared the game’s default con-
figuration with one where both the damage dealt by the
zombies and food gained from pick-ups were increased by
50 percent. The results from this high stakes design variant
were statistically significantly higher (p = 4.8e-07). From this,
one could conclude that the high stakes variant of the game
is easier to play for any given score threshold.

V. FRAMEWORK VALIDATION

The original design of It’s Alive! has a 5x7 playfield, which
makes for a large search space with the average branching
factor of 20 and depth of at least 36 (if no monsters are
collected). This leads to longer rollouts and slower depth-
wise exploration rate. For the framework validation exper-
iments we reasoned that having a smaller playfield would
allow us to run experiments faster while still demonstrating
relative differences between performance of Monster Carlo
with different parameters. We built a smaller It’s Alive! with a
3x5 playfield and only three monsters required for the win. A
typical human player score for this game is 1200-1400 points.
Unless stated otherwise, the experiments were run with an
unrestricted player, 24 parallel workers, factored actions, cut-
off terminal branch setting, and the exploration parameter in
the UCT algorithm set to 1000.

A. Parallel vs. Single Thread

The classic MCTS updates the tree after each rollout and
uses the updated tree to chose the next move. With instances
of the game running in parallel, the tree is updated each time a
playthrough is completed, and the next move is selected with



1100
w waern
g
o
B T00 A e
500 A
—— parallel
—— single
300 +—£ r T T T T
0 2000 4000 6000 8000 10000
Rollouts

Fig. 6. Highest score achieved for a single worker and 24 workers in parallel
on a 3x5 board (20 replicates). The rollouts completed approximately 20 times
faster in the parallel case, better results in less wall-clock time.

the results from several other in-flight rollouts still unknown.
This is similar to the tree parallelization with global mutex
approach described by Chaslot et al. [11]. We wanted to see if
there was a large drop in the tool’s effectiveness at the cost of
the speed. We ran two experiments with 30,000 rollouts. The
first set used 24 parallel workers, and the second used a single
worker. The parallel experiment achieved higher scores (Figure
6) with statistical significance (p = 0.02). However, the bigger
difference is in the duration. The single-thread experiment
lasted eight hours and 20 minutes while the parallel experiment
took about 24 minutes. Initially, the parallel experiment took
more rollouts to get to the same scores as the single-thread
experiment. This leads us to extrapolate that parallel workers
have a diversifying effect on MCTS. While this initially leads
to lower scores, it also makes it less likely for the search to
get bogged down in unproductive territory.

B. Terminal Branch Treatment

We noticed that MCTS tended to explore the same branch
and get stuck in local maxima, though much better paths were
available. We tried two ways around it. One was to increase
the UCT constant, traditionally set to 2. The other way was to
prevent the tree from revisiting branches marked as terminal.

We ran two experiments, with 30,000 rollouts each, one
with no special treatment of terminal nodes and branches,
and the other that would mark fully explored sections of
the tree as terminal and ignore them during the optimal
path selection. The results for these experiments showed no
statistically significant difference between the highest scores
achieved or the number of nodes explored. We hypothesize
that this is largely due to the fact that the depth of our test
game was too great, and so the terminal branch treatment did
not come into play to a significant degree.

Notably, not revisiting terminal branches allows for exhaus-
tive search on smaller fields. Earlier in this project, we ran tests
on It’s Alive! with a 2x3 grid. We expected the maximum
score to be 250 points but found that one of the branches

1100 -
900 -
%]
g
o
& 700 1
500 -
¢ —— ¢ =200
¢ —— ¢ =1000
300 T : : : :
0 2000 4000 6000 8000 10000
Rollouts

Fig. 7. Highest score achieved with different values of the UCT exploration
constant (20 replicates)

achieved 290 points. This led to the discovery of a bug that
only manifested if the monster pieces were positioned in one
specific way. After fixing the bug, we were able use Monster
Carlo to exhaustively verify the fix by running the same test
with cut-off terminal branches and observe that no branches
scored higher than 250 points.

C. UCT Constant

The UCT exploration constant (¢) regulates how much
MCTS focuses on exploring the most rewarding paths vs.
exploring new areas. Because MCTS is usually applied to
games with a win/lose outcome and the reward values ranging
from O to 1, we hypothesized that when applied to a game
where the reward value is the range of possible high scores,
the UCT constant should be closer to a score you would expect
from a moderately proficient player. We obtained this score by
manually playing the game with the same random seed.

We ran three experiments with respective UCT constant
values set to 2, 200 and 1000. The results in Figure 7
demonstrate that Monster Carlo did best with ¢ = 1000, which
was closer to the expected score of 1300. The results were
statistically significant for comparison of ¢ = 2 and ¢ = 1000
(p = 0.0002), and ¢ = 200 and ¢ = 1000 (p = 0.01). While the
experiment with a lower ¢ got slowed in local maxima fairly
early on, the scores corresponding to the higher ¢ continued
growing due to the search’s higher emphasis on exploration.

D. Experiment Speedup Techniques

If the MCTS rollouts happened at the game’s normal
play speed, each of the aforementioned experiments would
take days to complete. Therefore, we employed a number
of speedup techniques. Game-side changes included setting
Unity’s framerate to maximum value, replacing smooth move-
ments with instant jumps and disabling all artificial delays
(such as waiting half a second between accepting player
inputs). This increased the experiment run speed by a factor
of ten. Game-agnostic changes consisted of running parallel
search with 24 workers (speedup by a factor of 20) and running



on a server-class machine without graphics (speedup by a
factor of eight). The combination of all these allowed us to
run experiments at approximately 1600 times faster than the
original. Distributing the rollouts across several server-class
machines would allow even greater speedups.

VI. CONCLUSION

We presented Monster Carlo, an MCTS-based tool that
can be integrated with the Unity game engine and be used
to perform machine playtesting of in-development games;
conducted a number of framework validation experiments,
which showed merit in adjusting the UCT constant, using
parallel processing when performing rollouts, and applying
special treatment to terminal nodes and branches. Monster
Carlo was integrated with two games: our in-development
game [t’s Alive! and an official Unity tutorial game, 2D
Roguelike. The integration with 2D Roguelike required fewer
than 100 lines of code. We also presented results of several
experiments run on both games, exploring restricted player
models and design variations.

Obtaining reasonable results from MCTS on a complex
game takes time, but so does making meaningful changes.
Some modifications, like restricted player models or limited
variety of pieces, can be added to a game fairly quickly. Larger
changes, like introducing a new type of block to the game or
adding heuristics to a player model, usually take much longer.
With this in mind, even if a set of experimental replicates takes
over an hour to run, it can be considered an acceptable turn-
around time, as the results will likely be in before the next
model is ready for testing. Additionally, the independent runs
of MCTS are extremely parallelization-friendly.

Having a reference score helps with setting an appropriate
UCT constant value to guide MCTS toward better results. A
reference score can be provided by the game designer, or
someone familiar with the game, who can play one or two
games to provide a baseline score. This score can be helpful
for setting the UCT constant, as well as interpreting the MCTS
results: if its best scores are much lower than what a casual
player can get, it indicates that MCTS needs tuning.

A severely limited player model can still provide infor-
mation. In early stages of this project, we ran experiments
on an even larger It’s Alive! playfield of 6x8. We used an
unrestricted player model, and one that did not rotate the
pieces. We experimented with lowering the number of different
monster colors. The size of the field led to a very wide tree
that never had a chance to explore very deeply and resulted in
chaotic and mostly very low scores for the unrestricted player.
However, the non-rotating player, whose actions were limited
by a factor of four on every step, was capable of reaching
more stable scores in the same number of rollouts. The scores
made it evident that the no-rotation player got significantly
higher scores when fewer monster colors were present (from
an average of 1600 to an average of 2100). This is an obvious
example, since having fewer colors means it is more likely to
get two blocks of the same color next to each other. However,

it showed that even a severely limited player model is capable
of providing information about design variants.

Much work remains to be done around Monster Carlo, as
the scores it achieves in a reasonable time still fall short of
human results. In the current setup, the search algorithm has
no representation of game state beyond the action sequence,
so it cannot transfer experience gained down one sequence of
moves to another if they differ by even a single move. Rein-
forcement learning algorithms such as those used in AlphaZero
can distill knowledge gained during MCTS rollouts into value-
estimation and rollout-policy networks that can be applied to
states that have never been explored before. We believe that
borrowing some ideas from frameworks like OpenAl Gym
(such as representing game state with universal data structures
like screenshot pixel arrays or memory byte arrays) could help
a generic search algorithm learn a much better default action
policy than even the human user could provide. However, even
with its current shortcomings, Monster Carlo is capable of
providing usable feedback. With the convenient experimental
setup in Jupyter Notebook, our hope is that new kinds of
machine playtesting experiments can by invented and executed
easily. Nelson et al. [12] and Isaksen [13] suggest several
strategies for understanding game artifacts, some of which
could be implemented using Monster Carlo.

REFERENCES

[1]1 A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and Z. Popovic,
“Evaluating competitive game balance with restricted play,” in Proc. of
the Eighth AAAI Conf. on Artificial Intelligence and Interactive Digital
Entertainment, ser. AIIDE’12, 2012, pp. 26-31.

[2] S. Martinelli, “Starcraft 1l replay analysis with jupyter notebooks.”
[Online]. Available: https://github.com/IBM/starcraft2-replay-analysis

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Trans. on Comp.
Intel. and Al in Games, vol. 4, no. 1, pp. 1-43, March 2012.

[4] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Proc. of the 2010 IEEE Conf. on
Computational Intelligence and Games, Aug 2010, pp. 91-98.

[5] A. Zook, B. Harrison, and M. O. Riedl, “Monte-carlo tree search
for simulation-based strategy analysis,” in Proceedings of the 10th
Conference on the Foundations of Digital Games, 2015.

[6] C. Holmgrd, M. Green, A. Liapis, and J. Togelius, “Automated playtest-
ing with procedural personas with evolved heuristics,” pp. 1-1, 02 2018.

[71 S. Gelly and D. Silver, “Achieving master level play in 9x9 computer
g0,” in Proc. of the 23rd AAAI Conf. on Artificial Intelligence, 2008.

[8] C. Zhongjie, “Playing tetris using bandit-based monte-carlo planning,”
in AISB 2011: Al and Games, 2011.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature, vol.
550, pp. 354-359, 10 2017.

[10] T. Schaul, “A video game description language for model-based or inter-
active learning,” in 2013 IEEE Conference on Computational Inteligence
in Games (CIG), Aug 2013, pp. 1-8.

[11] G. M. B. Chaslot, M. H. Winands, and H. J. van Den Herik, “Paral-
lel monte-carlo tree search,” in Proc. of International Conference on
Computers and Games, September 2008, pp. 60-71.

[12] M. Nelson, “Game metrics without players: Strategies for understanding
game artifacts,” 2011. [Online]. Available: https://aaai.org/ocs/index.
php/AIIDE/AIIDE11WS/paper/view/4114

[13] A. Isaksen, D. Wallace, A. Finkelstein, and A. Nealen, “Simulating
strategy and dexterity for puzzle games,” in IEEE Conference on
Computational Intelligence and Games, Aug. 2017.



