
 

 

 

Fig. 1. Screenshot of gameplay for a generated mini-game in the 

Variations Forever prototype. The player controls the white character 

using an Asteroids-inspired movement model, trying to touch all red 

characters which move via a Pac-Man-inspired movement model. The 

encircling walls, random-walls and random-blocks algorithms have 

generated dangerous obstacles which can harm the player’s square.  This 

particular game’s rules also define the stars and grid backdrop details as 

well as a third kind of character (yellow) which drifts on its own. 

 

 

Abstract—Variations Forever is a novel game in which the 

player explores a vast design space of mini-games. In this pa-

per, we present the procedural content generation research 

which makes the automatic generation of suitable game rulesets 

possible. Our generator, operating in the domain of code-like 

game content exploits answer-set programming as a means to 

declaratively represent a generative space as distinct from the 

domain-independent solvers which we use to enumerate it. Our 

generative spaces are powerfully sculptable using concise, dec-

larative rules, allowing us to embed significant design know-

ledge into our ruleset generator as an important step towards a 

more serious automation of whole game design process. 

I. INTRODUCTION 

Automatic generators exist for many game content do-

mains: 2D textures, 3D models, music, level maps, story 

segments, ships and weapons, items and quests, character 

attributes, etc. In terms of a distinction between code and 

data, these kinds of content feel like data and they are inter-

preted by the fixed code in game engines. However, some 

kinds of content such as location-based triggers on a map, 

behavior trees, or the contents of game scripts blur the line 

between game data and game code (between representational 

and behavioral components). The field of game research 

known as procedural content generation (PCG) can be ex-

panded to include richer aspects of game design if the “con-

tent” that is generated includes the kind of conditionally-

executing logic that we would otherwise call a game’s me-

chanics. 

While PCG is often motivated as a means to reduce de-

velopment effort/costs for game content [1], it can also pro-

vide access to richer, and more personalized, play expe-

riences than could be reasonably hand-authored by human 

designers. The rich worlds of Dwarf Fortress
1
 include pro-

cedurally generated multi-level landscapes and thousands of 

years of history. Meanwhile, the player-designed creatures 

of Spore (Maxis 2008) are enhanced with unique, procedu-

rally generated skin details and body animations. Further, 

these personalized creatures are used to populate a vast, pro-

cedurally generated galaxy reminiscent of the seminal PCG 

work seen in Elite (Acornsoft 1984). These games had im-
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pressive generated data, but employed hand-authored me-

chanics. 

Though the automatic generation of game mechanics is an 

important and underexplored component of automated game 

design, it is important not to collapse the part with the whole 

(which has been done in the literature [2]). Nelson & Mateas 

[3] proposed a factoring of game design into four domains: 

abstract game mechanics (abstract game state and how this 

state evolves over time), concrete game representation (the 

audio-visual representation of the abstract game state), the-

matic content (real-world references), and control mapping 

(relation between physical player input and abstract game 

state). While we can imagine a procedural generator for the 

content of any of these domains, even this would miss out on 

an opportunity to illuminate several commonly accepted 

processes in game designs that cross-cut these domains. 

Conceptualization, prototyping, playtesting and tuning are 

essential parts of game design [4]; there is no compelling 

reason to think they should not be addressed in a nuanced 

automation of game design. However, addressing only a 
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piece of the whole game design process, the research pre-

sented in this paper focuses on flexibly generating a variety 

of abstract mechanics, utilizing hand-authored components 

for concrete representations, thematic content, and control 

mapping. 

Variations Forever (VF) is the name of both a work-in-

progress game and the research project of developing the 

technology necessary to implement it. In the remainder of 

this section we will distinguish these two projects. 

A. Variations Forever as a game project 

VF, the game, aims to provide players with the experience 

of exploring a generative space of games as an in-game ac-

tivity. The premise, visual style, and themes employed by 

the game are inspired by a set of recent, independent games. 

ROM CHECK FAIL
2
 is a glitch-laden arcade game in 

which the player’s avatar, movement mechanics, level de-

sign, theme music, and enemy mechanics shift at regular 

intervals. In the unique, emergent meta-game, the overarch-

ing goal is simply to survive the onslaught of new mini-

games. In VF, however, meta-game will involve unlocking 

new mini-game design elements which reshape the space of 

mini-games. 

Warning Forever
3
, Battleships Forever

4
, and Captain 

Forever
5
 each have a space combat setting with glowing 

vector art. Beyond aesthetics, they share the theme of re-

combining elementary parts in novel ways in the player’s 

major choices (assemble a spacecraft from standard modules 

such as girders, thrusters, and weapons). In VF, the recom-

binant nature will shift from ship design to ruleset design. 

This paper presents a prototype of VF (depicted in Figure 

1) in which we have realized a large space of varied mini-

games. This prototype does not yet include player-control 

over the design space; however, we will show how our ap-

proach supports such functionality. 

B. Variations Forever as a research project 

The goal of VF, the research project, is to create a means 

to automatically explore a generative space of game rulesets 

that supports both the variety of mini-games we desire and 

the hooks needed to place the exploration into players’ 

hands. Our emphasis is on flexibility of generation, and we 

leave evaluation of game quality for future research. 

We have adopted a symbolic approach to representing 

games because we believe that breaking free of the parame-

ter-vector paradigm pervasive in PCG will be required to 

address the larger automation of game design. Reasoning 

through the intentional creation of prototypes, the identifica-

tion of useful mechanics and generation of hypotheses to 

validate in playtesting requires a representation which reso-

nates with the symbolic, modular, non-parametric medium 

used to implement every videogame: code. 

 
2 http://db.tigsource.com/games/rom-check-fail 
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In this paper we describe a flexible approach to game ru-

leset generation that should also be of interest to those PCG 

researchers working in traditional content domains such as 

level or map generation, etc. While we will use VF as a run-

ning example, the schema we provide for creating generators 

is not inherently tied to the ruleset generation domain. 

Our contribution is a content generation approach based 

on constraint logic programming which allows the declara-

tive specification of design spaces and uses domain-

independent solvers to sample these spaces. Our application 

to ruleset generation demonstrates the representational flex-

ibility and ease of incremental modification that comes with 

the use of a non-parameterized representation. Such flex-

ibility and modifiability are critical to integrating the genera-

tion of rulesets into larger-scale game design automation 

efforts. 

II. RELATED WORK 

Automated game design has been studied from a number 

of different angles. An important bit of vocabulary we can 

use to reconcile these efforts is “generate and test” a popular 

discussion topic on a PCG community mailing list
6
. Genera-

tion tells us how artifacts of interest come into existence, and 

testing tells us how these artifacts are separated from their 

less-interesting neighbors in some space (generally involv-

ing both evaluation and filtering). 

A recent example of generating and testing simple game 

designs is seen in the work by Togelius [5] in which a space 

of Pac-Man-like games is automatically explored using evo-

lutionary computation. Game variants, represented as fixed-

length vectors of integer parameters which encode quantita-

tive properties of a game such as its time and score limit as 

well as basic qualitative data such as which movement logic 

or collision effects are used by the various “things” in the 

world. The mechanics of the games generated by this system 

are the result of combining the parameter vector with some 

fixed rules defining the meaning of each parameter. The 

mechanics of the mini-games we consider in VF are directly 

inspired by this work.   

Togelius’ parameter vectors are using an operationaliza-

tion of Koster’s theory of fun [6] based on reinforcement 

learning. The system illustrates that while games may be 

generated by some simple, syntactic method, they must be 

played to understand their semantics and to assign them val-

ue. While acknowledging the depth of automatic playtesting 

as both a computer-science and game-design problem, VF 

focuses on bringing flexibility to generation. Where Toge-

lius’ games all involved exactly four colors of “things”, 

VF’s generator is capable of choosing an arbitrary number of 

characters types and populating the appropriately sized colli-

sion effects table to describe their mechanics (such scalabili-

ty in terms of set cardinality is awkward for fixed-length 

parameter vectors). 

Hom & Marks’ project in generating balanced board 
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games also took an evolutionary approach, opting for three-

way crossover as the means of generating games represented 

by a triple of board type, piece type, and victory condition 

[2]. Testing, in this project, was done using general game 

playing software to look at the relative win rates for the first 

vs. second players. 

In addition to the main triple, the representation also al-

lowed optional rule modification tags which could be ap-

pended to a game ruleset. While these tags could have been 

folded into additional Boolean values in the genetic descrip-

tion, the authors decided to treat them specially to simplify 

the crossover logic of their generator. This also points to 

awkwardness in using parameter-vector techniques to 

represent rulesets. Incidentally, the general game playing 

tool they used already expected a code-like representation as 

input. 

Automation of ruleset generation has also been addressed 

without including a distinct test component. The METAGAME 

system [7] and the EGGG system [8] are both capable of ge-

nerating games as complex as Chess without any testing. 

However, this ability comes at the cost of an immense know-

ledge engineering effort to embed as much intuition about 

the game design space into the generator as possible. 

METAGAME’s author refers to the generator as “long and 

complicated and full of special cases”. These systems illu-

strate that generators can actually contain and represent large 

amounts of domain knowledge. It is desirable to have a ge-

nerator that is improvable, that is, can be easily augmented 

with new knowledge which helps it avoid uninteresting or 

problematic regions in the design space. Our generation ap-

proach indeed aims to ease the process of adding new know-

ledge to a generator (particularly that which focuses the ge-

nerative space). 

In a filtering-heavy approach to designing games, Nelson 

& Mateas use a common-sense knowledgebase to filter out 

only those combinations of mechanics and representational 

art that “make sense” from a larger generative space [3]. 

Because the mechanics used in their WarioWare-style games 

are so simple, detailed playtesting is not required for evalua-

tion. Rather a common-sense knowledgebase is effective in 

filtering a game where a duck avoids a bullet shot by a gun 

(a reasonable premise) from a games where a person fills a 

piano with ducks (less reasonable), both of which are in the 

latent generative space tested by this system. For a given 

target concept, such as “duck”, the system might produce 

any of a small space of games which both make sense and 

include the target concept. This project illustrates that filter-

ing one generative space to make another is an important 

technique in design automation. 

Finally, though it only consumes and does not produce ru-

lesets, the dual human-and-machine playtesting supported by 

our BIPED system [9] is relevant. This playtesting tool reads 

in rulesets represented as logic programs and produces ga-

meplay traces in a similar logical representation that are de-

rived either from human players or from logic programming 

tools which can solve for edge and limit cases in a game’s 

design. This project shows that symbolic, logical representa-

tions for game rulesets can be comfortably used by both hu-

mans and machines and they can serve as an effective inter-

change format for the playtesting stage of design. 

III. INTRODUCTION TO ANSWER SET PROGRAMMING 

The essence of our approach here is a separation of the 

generative space from the procedure that enumerates it. We 

use an answer set program to specify the generative space. 

Answer sets from this program can be fed to a traditional 

game engine, resulting in fully playable games. The defini-

tion of the generative space is designed to be concise and to 

support easy modification of the space. 

Answer set programming (ASP) is a form of constraint 

logic programming [10]. ASP is often used to implement 

abductive reasoning, a logical foundation for traditional AI 

applications such as automated planning, fault diagnosis, and 

natural language understanding [11]. Common to all of these 

applications is the process of generating a logically-

described artifact (a plan, a fault, a statement, etc.) from 

which desired observations follow deductively. Outside of 

abductive reasoning, ASP can be used to generate logically-

described artifacts which meet internal-consistency con-

straints. It is precisely this generative facility (synthesis) 

with the integration of deductive reasoning (analysis) which 

makes ASP attractive to us in automating game design. 

ASP extends the predicates used in traditional (deductive) 

logic programming with two special constructs: choice rules 

and integrity constraints. Choice rules give a program li-

cense to assume a set of logical statements if needed. To 

give an example, “{rain, sprinkler}.” says “it may have 

rained, the sprinkler may have been on, or both”. Appending 

this to a background theory such as “wet :- rain. wet :- 

sprinkler. dry :- not wet.” (which says “it is wet out-

side if it rained or if the sprinkler was on, otherwise it was 

dry”) allows an ASP solver to enumerate different logical 

worlds (called answer sets) consistent with these rules. There 

are four possible worlds: “dry.”, “rained, wet.”, “sprink-

ler, wet.”, and “rained, sprinkler, wet.”. In this ex-

ample we have already defined a tiny generative space and 

shown the elements that a solver would extract from it. 

Integrity constraints balance the generative nature of 

choice rules; they allow the programmer to express certain 

conditions which should be considered unreasonable to hold. 

Suppose we are interested in explaining how it got to be wet 

outside, and we further know that a mechanism in our sprin-

klers keeps them from activating in the rain. We can expand 

our example above with two integrity constraints which re-

semble logical rules with a missing head: “:- not wet.” 

and “:- rained, sprinker.”. Intuitively they say “don’t 

show me logical worlds where any of these conditions hold”. 

Running our ASP solver on the program now results in only 

two answer sets, both containing the wet fact and one of 

rained or sprinkler. Appending additional knowledge to 

our definition has scoped the generative space down to a 



 

 

 

smaller one in which our observations hold. 

The toy problem of rain and sprinklers is traditionally giv-

en as an example of abductive reasoning, but here we aim to 

emphasize how choice rules and integrity constraints in ASP 

give us language-level support for the conceptual processes 

of “generate” and the filtering aspect of “test”. True to our 

intuitions for formal logic, and unlike Prolog, constructs in 

ASPs (both the predicates and the conjuncts in their bodies) 

can be freely re-ordered, meaning that the programmer need 

not worry about backtracking or other issues of how genera-

tion and testing are interleaved at the execution level. 

IV. REPRESENTING RULESETS IN LOGICAL TERMS 

To put ASP to work in the ruleset generation domain, we 

need to somehow represent elements of game rulesets in the 

heads of ASP’s choice rules and encode the logical condi-

tions which ensure the generated rulesets are valid into the 

bodies of these rules. This implies a representation of ruleset 

elements as logical terms. 

Though logical terms are a standard knowledge represen-

tation format in AI, we review them here because they have 

not been used in published PCG work (with one intriguing, 

unpublished exception
7
). A logical term is either an atom or 

a compound term. Atoms are symbols, numerical constants, 

or logical variables. Compound terms combine a symbol 

called a functor with a sequence of logical terms as argu-

ments, as in afraid_of(6,7). 

An example of a logical term encoding an element of a 

game script is the following: scripted_event( 

spawn(boss_creature, temple), 120). This term, if it 

asserted in an answer set, might mean “a boss-class creature 

should be spawned in the temple after two minutes of play”. 

The meaning given to scripted_event is given by the code 

that consumes it, which might be other rules in the ASP or 

the game engines which deliver this content to the player. 

The rules for the kind of games we are considering for VF 

contain various types of information: collections of objects 

that participate in the game and their properties, policies for 

handling events that arise during play, conditions under 

which we can consider the game to end in victory or defeat, 

and, additionally, miscellaneous procedures and configura-

tion details which we can use to add to the variety of play 

experiences. Lists, variable sized look-up tables, and nested 

expressions are all difficult to represent with fixed-length 

parameter vectors. 

Each of the elements we would like to include in rulesets 

has a straightforward representation in logical terms. Lists, 

such as a list of valid move types, are represented by a pat-

tern of terms that may be instantiated several times: 

“move(rock). move(paper). move(scissors).” (a numer-

ical argument may added to represent a strict ordering if 

needed). Tables, such as a mapping from event to a handling 

character’s response action with a performance modifier, are 
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represented by simply asserting the presence of each tuple of 

the data the table contains: “on(poke, giggle, quietly). 

on(jab, yelp, loudly). on(stab, die, slowly).”. 

Code-like nested expressions are also natural: 

“when(equal(health, 0), go_state(defeat)).”. 

While we could use a simple, context-free grammar to 

syntactically generate masses of such terms, building our 

generator as an answer set program gives us the means to 

powerfully sculpt the space of generated rulesets using the 

same language used to define it. For example, when generat-

ing terms of the form “on(poke, giggle, Adverb)” we can 

require that the adverb come from a table of modifiers com-

patible with the giggle action or forbid the use of certain 

adverbs in conjunction with the poke event by consulting a 

blacklist of known problem cases. Further, such a table or 

blacklist might itself be the output being simultaneously 

produced by another part of the same generator. The ability 

to specify defaults and override them with many levels of 

specialization, important for flexible modeling, comes from 

the non-monotonic reasoning used in ASP solvers. 

V. VF’S GENERATIVE SPACE 

Having introduced basic answer set programming and a 

representation of game rulesets in its terms, we now describe 

how the concrete elements of rulesets for VF are generated 

and how these elements influence one another. The genera-

tive space of the VF game prototype is meant to exercise the 

expressiveness of the generator’s logical formulation and 

does not yet represent the complete set elements in the other 

Forever games we intend to reference. Figure 1 provides a 

visual guide for one element of VF’s generative space. 

A basic element used by all mini-games in VF is the play 

space. It is always rectangular, but has a numerical grid reso-

lution parameter which is used by certain character move-

ment models and obstacle-placement policies. Specifying the 

simple selection of a numerical parameter looks like this:  

 
This snippet asserts that it is true that several numerical 

symbols are valid resolution factors, and that the exactly one 

ground clause of the space_resolution predicate should be 

emitted in answer sets. The clause in curly braces is a choice 

rule which gives permission to emit terms of a certain form 

(where the F variable is bound by the resolution_factor in 

this case). 

Our mini-game play space has an overall topology which 

is either toroidal (like Pac-Man), spherical (strange but none-

theless distinct), or flat (resulting in “falling off” the edges 

of the world) if not otherwise specified. The generator out-

puts between zero and one instances of space_topology 

predicate (as dictated by numerical bounds on the choice 

rule) using a scheme similar to the above with symbols to 

name the various topologies instead of numbers. 

Related to the space, but not an element of the game me-

resolution_factor(2;3;4;6;8;12;16). 

 

1 {space_resolution(4*F) 

   :resolution_factor(F)} 1. 



 

 

 

chanics, the game may utilize (or not) any of two back-

ground layer display algorithms (twinkling stars or dotted 

grid lines). The generator code for this aspect introduces 

dependence between a generated element and a flag that 

might be toggled via player exploration in future VF proto-

types: 

 The play space is primarily populated by characters, iden-

tified by color. The generator internally selects an active 

subset of colors from a larger list, and whether a color is 

active or not is used as a logical precondition for the rest of 

the character-related generator rules. 

 Every active character color is assigned a unique move-

ment model (determining their response to keyboard input 

and, eventually, autonomous behaviors). The VF prototype 

includes Asteroids, Pac-Man, and Rogue inspired movement 

models. The generator code to support this combines quanti-

fication over multiple variables to produce a one-to-one 

mapping specific to the active characters: 

 
 In additional to a movement model, characters have 

another required property called their spawn model which 

dictates whether exactly one of them should spawn at the 

start of the game or a larger, random number. The generator 

code has identical structure to that of the movement model. 

 Much more interesting is the character-character collision 

effects table. This table, which describes only active charac-

ters, produces agent_collide_effect, a predicate which is 

not only used by the game engine during mini-game execu-

tion, but also by the generator itself as we will describe later. 

The table describes which collision resolution behavior 

should be applied to the character of the first color if it hits 

another of the second color. There are kill and bounce op-

tions with a default of simply passing through on collision. 

In future versions of VF, the set of collision resolution beha-

viors that are considered will be conditioned on player ex-

ploration as well. 

 Beyond the basic space and characters, if the generator 

has the obstacles exploration flag enabled, the game will 

consider any combination of three obstacle placement pat-

terns: an encircling wall, stick-like scattered walls, or iso-

lated blocks with slight rotations (all three are active in Fig-

ure 1). The selection of these algorithms is described with 

the same schema used to select background art layers. If 

obstacles are enabled, an optional collision resolution beha-

vior is selected for each character and encoded as the ob-

stacle_collide_effect predicate (obstacles themselves 

cannot be “killed”). In this case, not just the size but the very 

existence of a table in the ruleset is conditioned on other 

generated outputs (the active set of colors). 

 In order to make games in this space playable, we need to 

assign the player control of one of the characters. This as-

signment is based on color; if the player controls a character 

with the “many” spawn model, then they will only control 

one such character and the rest will perform their default 

behavior. 

 At this point, games include a player who can fly a cha-

racter around a variously configured world, bumping into 

other characters and obstacles to trigger effects out of tables, 

but there is still no goal to our mini-games. The final ele-

ment of the mini-game description gives it one. The goal 

predicate must have a single instance in each game design to 

enable victory-condition checking.  Its form may either be 

“goal(kill_all(Color))” which monitors for when all 

characters of a given color are killed or “goal(escape)” 

which monitors for when the player character reaches the 

world boundary (which only exists in the flat space topolo-

gy). 

This final output illustrates a clear representational flex-

ibility that our symbolic representation has over fixed-length 

parameter vector representations: some of our game goals 

are parameterized by active character colors, while others 

such as escape are not. There is no penalty for mixed struc-

tures such as this. The escape goal, in particular, is addition-

ally forbidden in games utilizing the encircling wall obstacle 

generator (from which is impossible to escape). This is an 

example of capturing special-case knowledge in the genera-

tor extracted from experience playtesting broken games. 

The complete generated ruleset for the “kill all the red 

guys” game shown in Figure 1 is represented by these logi-

cal statements produced by the generator: 

 

VI. ZOOMING IN ON GAMES OF INTEREST 

While the exclusion of known problematic interactions 

between mechanics is something that could be encoded di-

rectly into the preconditions in the body of the choice rules 

used in the generator, there are many occasions in which we 

would like to temporarily scope down our generative space 

without disturbing any existing logical formulae. The me-

chanism of integrity constraints in ASP provides exactly this 

space_resolution(32,24). 

space_topology(spherical). 

background(grids; stars). 

active_agent(red; yellow; white; cyan). 

agent_movement(red,asteroids; white,asteroids; 

               yellow,roguelike; cyan,pacman). 

agent_population(red,many; white,singleton; 

                 yellow,singleton; cyan,many). 

agent_collide_effect(red,white,kill; 

                     cyan,yellow,kill). 

player_agent(white). 

obstacle_distribution(enclosure; random_walls; 

                      random_blocks). 

obstacle_collide_effect(red,kill; white,kill). 

goal(kill_all(red)). 

1 {agent_movement(C,M) 

:movement_model(M)} 1 :- 

        active_color(C), color(C). 

tech(backgrounds). 

 

{background(L) :background_layer(L)} :- 

tech(backgrounds). 



 

 

 

functionality. 

We can use integrity constraints to zoom-in on a subspace 

of games in which we are interested via several methods, but 

the simplest is to simply require that certain ruleset elements 

be present in all answer sets we see. Recalling the original 

rain/sprinkler example, we can simply append an integrity 

constraint rejecting the absence of the required configura-

tion. If we wanted to tweak the implementation of the Aste-

roids motion model in VFs game engine, we might add this 

collection of constraints to always give ourselves control 

over a red character in a primitive field of asteroids to navi-

gate, regardless of other mechanics: 

 
 Another use of integrity constraints to sculpt the genera-

tive space is to reject co-occurrence of mechanics known to 

interact poorly. The special-case knowledge for the escape 

game goal is encoded with the single integrity constraint “:- 

goal(escape), obstacle_distribution(enclosure).” 

 Integrity constraints need not only operate on the same 

elements that are exported by the generator, they may in-

volve complex deduction. The following snippet of code 

(slightly condensed) zooms in on rulesets in which the game 

is reasonably winnable by indirectly pushing characters into 

each other to achieve the stated goal: 

 
In the above example, we have shown an elementary at-

tempt at engineering emergent gameplay. As new mechanics 

are added to VF’s design space and the winnable_via predi-

cate is augmented with a simple complexity metric, it be-

comes possible to write single-line integrity constraints 

which translate to statements akin to “only show me rulesets 

for games in which a reasonable plan for victory involves an 

indirect chain of at least 5 steps utilizing at least 3 different 

low-level interaction types”. Games complex enough to sa-

tisfy this constraint would likely come from a space which 

also includes many broken games. Fortunately, additional 

integrity constraints may easily be added to carve away such 

failure cases as they arise in playtesting. It is this use of ad-

ditional deductive rules to capture complex relationships 

between low-level mechanics which demonstrates the power 

of using a logical representation. 

VII. GENERATING PLAYABLE MINI-GAMES 

At this point we have described how to create, enumerate, 

and expressively sculpt the generative spaces of game rule-

sets. However, we have yet to show how to transform such 

sets of assertions about how a game should work into func-

tioning games which operate as the generator designs them. 

In this section we will describe the concrete software com-

ponents which bring ASP-based ruleset generation into con-

tact with the player in our prototype of VF: the game genera-

tor and the game engine. 

A. Game Generator 

Our game (ruleset) generator is manifest in two distinct 

parts. The first is the logical definition of a design space 

using an ASP as described above, and the second is the 

software we use to enumerate games in the design space. We 

have adopted the freely available LPARSE and SMODELS 

tools
8
 which, respectively, translate first-order ASPs into 

simplified, grounded logic programs and solve for the de-

sired number of answer sets, outputting each as it is found. 

To surface the functionality provided by these highly ob-

scure (from a game programming perspective) command-

line tools, we created a minimal web-service wrapper which 

allows any HTTP-capable program to request a stream of 

answer sets to a given ASP. This wrapper allows us to be 

much more flexible about the kind of game engine we use to 

consume the generated game designs. 

The result of organizing our generator in this way is that 

the designer of the generative space does not need to think 

about (nor necessarily understand) the underlying generation 

algorithm. Indeed, different solvers that consume LPARSE 

groundings may employ radically different algorithms while 

being indistinguishable at the level of answer set generation. 

B. Game Engine 

Realizing the outputs of our game generator in the glow-

ing vector-art aesthetic (and supporting low-level mechanics 

such as movement with momentum and collision detec-

tion/resolution) requires the use of a game engine. We built 

our game engine using the Flash game library Flixel
9
 as a 

base. To this base, we added skeletal support for the ele-

ments we knew our ruleset generator would like to instan-

tiate: abstractly depicted characters which can roam about, 

bumping into each other and obstacles, victory condition 

templates, basic level generation algorithms, and back-

ground image generation. 

At each major design decision which would normally be 

hard-coded in a particular game (such as how big the game 

world is, which character the player controls, etc.) we added 

code to consult a configuration object (to be provided by the 

generator). Though making an engine that supports many 

 
8 http://www.tcs.hut.fi/Software/smodels/ 
9 http://flixel.org/ 

pushes(A,B) :- 

on_collide(A,B,bounce), 

on_collide(B,A,bounce). 

 

kills(A,B) :- on_collide(A,B,kill). 

 

indirectly_pushes(A,B) :- pushes(A,B). 

 

indirectly_pushes(A,C) :- pushes(A,B), 

indirectly_pushes(B,C). 

 

winnable_via(indirect_push_kill(A,C)) :- 

 indirectly_pushes(A,B), kills(B,C). 

 

compute { 

 player_agent(A), goal(kill_all(B)), 

 winnable_via(indirect_push_kill(A,B)) }. 

:- not player_agent(red). 

:- not character_movement(red, asteroids). 

:- not use_obstacles(encircling). 

 



 

 

 

possible games is significantly more difficult than making 

any particular game, the task is similar in complexity to the 

integration of a scripting language which many complex 

games already possess to ease the development process. 

The general flow of our prototype works as follows. On 

startup, the engine sends the internally-stored ASP (logic 

program) to our ASP solver service and begins streaming in 

solutions over the network. The player can randomly sample 

mini-game rulesets, given a basic textual preview of the 

game (describing what they control, the goal of the game, 

and other details selected by the generator). Upon selecting a 

mini-game, play begins. The mini-game’s rules are fixed 

across restarts when the player character is “killed”. The 

player rejoins the initial game selection screen upon victory 

or intentionally abandoning a difficult game. 

In the design of VF beyond the prototype, we envision 

performance in mini-games linked to a resource which can 

be spent to either unlock new reaches of an initially small 

game mini-game design space or buy constraints which en-

force interesting patterns. Through incrementally refining 

the possibilities open to the generator the player can slowly 

come to understand the interaction between the various 

modular mechanics set into the VF universe. Each new game 

design element the player unlocks results in new “tech(T)” 

assertions being simply appended to the text of the internal 

ASP, which, in concert with existing integrity constraints 

and preconditions, means the design space of mini-games is 

dramatically reshaped during play at a scale unmatched by 

any other game.  

VIII. DISCUSSION 

A. Coupling between Generator and Engine 

While the definition of the a design space is strongly sepa-

rated from the means of sampling the space in our approach, 

there is a strong coupling between the content generator and 

the game engine which consumes the content. This mandato-

ry coupling is not problematic if one considers the generator 

and the engine to be two parts of a single program. In the VF 

game prototype, the game engine and ASP code used for 

ruleset generation are combined into a single binary that runs 

in the player’s browser while the ASP solver runs indepen-

dently on remote server. 

B. Tradeoffs in Levels of Abstraction 

The relative expressiveness of the generator compared to 

the engine depends on the level of abstraction used by the 

logical terms with which they communicate. As the genera-

tor takes on more responsibility for defining the mechanics 

of games (e.g. working with lower-level terms to implement 

movement models instead of simply instantiating them), it 

becomes even more critical that we be able to sculpt the de-

sign space to avoid the swath of well-formed yet meaning-

less or broken (in terms of gameplay) constructions which a 

grammar might admit.  

At the low-level extreme of generating the equivalent of 

machine instructions, clearly an astronomically tiny fraction 

of such “rulesets” would represent valid games and we 

would have a hard time writing down constraints which have 

any useful effect. Meanwhile, at the high-level extreme of 

parameterizing a game by only a few configuration values, 

the space of games (even if all were guaranteed to be valid) 

would be uninteresting for a player to explore. The chal-

lenge, which we have taken but a single step towards, is to 

work at the lowest, code-like level possible (enabling the 

richest variety) while not losing control of the design space 

and consequently asking the player to pay a non-game. 

C. Towards Automating Game Design 

VF is a single experiment in larger effort to automate the 

creativity-intensive practices of game design. We draw in-

spiration for this task from the Robot Scientist project [12] 

which represents a very ambitious effort to automate the 

practices of computational biology. Iterative experimental 

design processes in science have a meaningful analog in 

game design in terms of prototyping and playtesting games. 

Abductive logic programming (supported by the very same 

ASP tools we use), plays into nearly every creative and/or 

scientific task the Robot Scientist performs. 

In a serious attempt at automating game design, we im-

agine integrating the ruleset generator with an automated 

playtesting tool such as BIPED [9]. The logically-described 

playtesting feedback can be used with inductive logic pro-

gramming, such as provided by Progol [13], to learn (or in-

duce) logical predicates which predict player choices and 

reactions. This same rule-learning could be used to find use-

ful constraints on the generative space of rulesets. Know-

ledge gleaned from experience testing can be embedded into 

the generator, forming a closed-loop design system which 

better approximates the iterative design process used in the 

game industry. 

From a scientific perspective, small game prototypes are 

analogous to experimental setups, designed to elicit a dem-

onstration of some natural behavior (or player behavior for 

games). Continuing the metaphor, we envision iterative 

game design as process that, instead of aiming to produce 

games, aims to produce knowledge about play, producing 

games as a byproduct of the discovery process. A new chal-

lenge, now, is in building a generative space of game design 

patterns and player model elements which would serve as 

the building blocks of theories in a game-design-as-science 

paradigm. In the future, we will examine the use of ASPs to 

represent these generative spaces as well. 

D. Evaluation 

Towards gauging our level of success in this project, we 

are most interested in expressivity of our generation ap-

proach and the constraints it employs to shape generative 

spaces for the application of procedural content generation. 

In our experience with the VF prototype, we found 100-

line ruleset to be abundantly generative, generating rulesets 

which exposed legitimate bugs in our game engine and rais-



 

 

 

ing important game design issues (such as how the momen-

tum of Asteroids-style characters model should change in 

collision with roguelike-style characters). With integrity 

constraints, it was both easy to both zoom in on failure cases 

for testing and to forbid the occurrence of situations we had 

not yet resolved. 

In terms of expressivity of constraints, recall the space of 

indirect-push-kill (described previously). This scenario de-

monstrates how we can encode additional knowledge about 

a game design space (such as how to produce a high-level 

plan to win games in it) into the generator itself. Knowing 

that high-level descriptions such as “winna-

ble_via(indirect_push_kill(red,blue))” are present in 

the games definitions allows us to write single-line con-

straints requiring or forbidding high-level patterns. Such in-

line self-analysis of games could also be used to prepare a 

small manual for each generated game. EGGG [8] was able 

to produce documentation for the game it generated, also by 

virtue of having so much design knowledge baked into the 

generator. 

Evolutionary methods such as Togelius’ system aim to 

produce rulesets optimized by some metric (with Brown’s 

LUDI system [14] even striking commercial success in au-

tonomously designing Yavalath
10

). However, in PCG, there 

is an inherent demand for sizable spaces with significant, 

player-visible variety. Our declarative approach allows easy 

manipulation of generative spaces of arbitrary size, while 

evolutionary approach only maintain a fixed-size population 

(on the order of tens or hundreds) during its search for a sin-

gle, optimal individual. While both approaches are highly 

declarative in their own sense, we believe our approach is 

distinctly more space-oriented, and is therefore better suited 

for PCG (also recall that it is not actually specific to ruleset 

generator). 

As a final form of evaluation, we can look at our ruleset 

generator as a creative system (though it was not designed as 

one). In the field of computational creativity, a standard 

means of evaluating an artifact generator are to look for no-

velty and value in the artifacts it creates [15]. One instance 

of novelty we experienced was a seemingly unwinnable 

game. After some effort we realized the game could actually 

be won by indirectly pushing an intermediate character into 

the characters it was our goal to kill. Excited by this occur-

rence which was both unexpected (novel) and fun (fun), we 

quickly devised the indirect kill detection logic described 

previously to zoom in on other games of this variety, trans-

forming the generative space. 

IX. CONCLUSION 

In seeking the technology to support a novel game design, 

we have developed a new content-generation approach and 

applied it to the challenging domain of game ruleset genera-

tion, producing a large space of playable mini-games. The 

flexible representations afforded us by ASP allow us to 

 
10 http://www.cameronius.com/games/yavalath/ 

make concise-yet-powerful modifications to this design 

space. This representation schema has also prepared us for a 

more serious attempt at automating game design. 

We invite the reader to try playing several mini-games in 

our public demo
11

 and consider what new options should be 

made available to the generator and which combinations 

should be forbidden to avoid bad interactions between ele-

ments. 
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