

Fig. 1. Screenshot of gameplay for a generated mini-game in the

Variations Forever prototype. The player controls the white character

using an Asteroids-inspired movement model, trying to touch all red

characters which move via a Pac-Man-inspired movement model. The

encircling walls, random-walls and random-blocks algorithms have

generated dangerous obstacles which can harm the player’s square. This

particular game’s rules also define the stars and grid backdrop details as

well as a third kind of character (yellow) which drifts on its own.

Abstract—Variations Forever is a novel game in which the

player explores a vast design space of mini-games. In this pa-

per, we present the procedural content generation research

which makes the automatic generation of suitable game rulesets

possible. Our generator, operating in the domain of code-like

game content exploits answer-set programming as a means to

declaratively represent a generative space as distinct from the

domain-independent solvers which we use to enumerate it. Our

generative spaces are powerfully sculptable using concise, dec-

larative rules, allowing us to embed significant design know-

ledge into our ruleset generator as an important step towards a

more serious automation of whole game design process.

I. INTRODUCTION

Automatic generators exist for many game content do-

mains: 2D textures, 3D models, music, level maps, story

segments, ships and weapons, items and quests, character

attributes, etc. In terms of a distinction between code and

data, these kinds of content feel like data and they are inter-

preted by the fixed code in game engines. However, some

kinds of content such as location-based triggers on a map,

behavior trees, or the contents of game scripts blur the line

between game data and game code (between representational

and behavioral components). The field of game research

known as procedural content generation (PCG) can be ex-

panded to include richer aspects of game design if the “con-

tent” that is generated includes the kind of conditionally-

executing logic that we would otherwise call a game’s me-

chanics.

While PCG is often motivated as a means to reduce de-

velopment effort/costs for game content [1], it can also pro-

vide access to richer, and more personalized, play expe-

riences than could be reasonably hand-authored by human

designers. The rich worlds of Dwarf Fortress
1
 include pro-

cedurally generated multi-level landscapes and thousands of

years of history. Meanwhile, the player-designed creatures

of Spore (Maxis 2008) are enhanced with unique, procedu-

rally generated skin details and body animations. Further,

these personalized creatures are used to populate a vast, pro-

cedurally generated galaxy reminiscent of the seminal PCG

work seen in Elite (Acornsoft 1984). These games had im-

The authors are with the Expressive Intelligence Studio at University of

California, Santa Cruz. Emails: {amsmith,michaelm}@soe.ucsc.edu
1 http://www.bay12games.com/dwarves/

pressive generated data, but employed hand-authored me-

chanics.

Though the automatic generation of game mechanics is an

important and underexplored component of automated game

design, it is important not to collapse the part with the whole

(which has been done in the literature [2]). Nelson & Mateas

[3] proposed a factoring of game design into four domains:

abstract game mechanics (abstract game state and how this

state evolves over time), concrete game representation (the

audio-visual representation of the abstract game state), the-

matic content (real-world references), and control mapping

(relation between physical player input and abstract game

state). While we can imagine a procedural generator for the

content of any of these domains, even this would miss out on

an opportunity to illuminate several commonly accepted

processes in game designs that cross-cut these domains.

Conceptualization, prototyping, playtesting and tuning are

essential parts of game design [4]; there is no compelling

reason to think they should not be addressed in a nuanced

automation of game design. However, addressing only a

Variations Forever: Flexibly Generating Rulesets

from a Sculptable Design Space of Mini-Games

Adam M. Smith and Michael Mateas

piece of the whole game design process, the research pre-

sented in this paper focuses on flexibly generating a variety

of abstract mechanics, utilizing hand-authored components

for concrete representations, thematic content, and control

mapping.

Variations Forever (VF) is the name of both a work-in-

progress game and the research project of developing the

technology necessary to implement it. In the remainder of

this section we will distinguish these two projects.

A. Variations Forever as a game project

VF, the game, aims to provide players with the experience

of exploring a generative space of games as an in-game ac-

tivity. The premise, visual style, and themes employed by

the game are inspired by a set of recent, independent games.

ROM CHECK FAIL
2
 is a glitch-laden arcade game in

which the player’s avatar, movement mechanics, level de-

sign, theme music, and enemy mechanics shift at regular

intervals. In the unique, emergent meta-game, the overarch-

ing goal is simply to survive the onslaught of new mini-

games. In VF, however, meta-game will involve unlocking

new mini-game design elements which reshape the space of

mini-games.

Warning Forever
3
, Battleships Forever

4
, and Captain

Forever
5
 each have a space combat setting with glowing

vector art. Beyond aesthetics, they share the theme of re-

combining elementary parts in novel ways in the player’s

major choices (assemble a spacecraft from standard modules

such as girders, thrusters, and weapons). In VF, the recom-

binant nature will shift from ship design to ruleset design.

This paper presents a prototype of VF (depicted in Figure

1) in which we have realized a large space of varied mini-

games. This prototype does not yet include player-control

over the design space; however, we will show how our ap-

proach supports such functionality.

B. Variations Forever as a research project

The goal of VF, the research project, is to create a means

to automatically explore a generative space of game rulesets

that supports both the variety of mini-games we desire and

the hooks needed to place the exploration into players’

hands. Our emphasis is on flexibility of generation, and we

leave evaluation of game quality for future research.

We have adopted a symbolic approach to representing

games because we believe that breaking free of the parame-

ter-vector paradigm pervasive in PCG will be required to

address the larger automation of game design. Reasoning

through the intentional creation of prototypes, the identifica-

tion of useful mechanics and generation of hypotheses to

validate in playtesting requires a representation which reso-

nates with the symbolic, modular, non-parametric medium

used to implement every videogame: code.

2 http://db.tigsource.com/games/rom-check-fail
3 http://db.tigsource.com/games/warning-forever
4 http://db.tigsource.com/games/battleships-forever
5 http://db.tigsource.com/games/captain-forever

In this paper we describe a flexible approach to game ru-

leset generation that should also be of interest to those PCG

researchers working in traditional content domains such as

level or map generation, etc. While we will use VF as a run-

ning example, the schema we provide for creating generators

is not inherently tied to the ruleset generation domain.

Our contribution is a content generation approach based

on constraint logic programming which allows the declara-

tive specification of design spaces and uses domain-

independent solvers to sample these spaces. Our application

to ruleset generation demonstrates the representational flex-

ibility and ease of incremental modification that comes with

the use of a non-parameterized representation. Such flex-

ibility and modifiability are critical to integrating the genera-

tion of rulesets into larger-scale game design automation

efforts.

II. RELATED WORK

Automated game design has been studied from a number

of different angles. An important bit of vocabulary we can

use to reconcile these efforts is “generate and test” a popular

discussion topic on a PCG community mailing list
6
. Genera-

tion tells us how artifacts of interest come into existence, and

testing tells us how these artifacts are separated from their

less-interesting neighbors in some space (generally involv-

ing both evaluation and filtering).

A recent example of generating and testing simple game

designs is seen in the work by Togelius [5] in which a space

of Pac-Man-like games is automatically explored using evo-

lutionary computation. Game variants, represented as fixed-

length vectors of integer parameters which encode quantita-

tive properties of a game such as its time and score limit as

well as basic qualitative data such as which movement logic

or collision effects are used by the various “things” in the

world. The mechanics of the games generated by this system

are the result of combining the parameter vector with some

fixed rules defining the meaning of each parameter. The

mechanics of the mini-games we consider in VF are directly

inspired by this work.

Togelius’ parameter vectors are using an operationaliza-

tion of Koster’s theory of fun [6] based on reinforcement

learning. The system illustrates that while games may be

generated by some simple, syntactic method, they must be

played to understand their semantics and to assign them val-

ue. While acknowledging the depth of automatic playtesting

as both a computer-science and game-design problem, VF

focuses on bringing flexibility to generation. Where Toge-

lius’ games all involved exactly four colors of “things”,

VF’s generator is capable of choosing an arbitrary number of

characters types and populating the appropriately sized colli-

sion effects table to describe their mechanics (such scalabili-

ty in terms of set cardinality is awkward for fixed-length

parameter vectors).

Hom & Marks’ project in generating balanced board

6 http://groups.google.com/proceduralcontent

games also took an evolutionary approach, opting for three-

way crossover as the means of generating games represented

by a triple of board type, piece type, and victory condition

[2]. Testing, in this project, was done using general game

playing software to look at the relative win rates for the first

vs. second players.

In addition to the main triple, the representation also al-

lowed optional rule modification tags which could be ap-

pended to a game ruleset. While these tags could have been

folded into additional Boolean values in the genetic descrip-

tion, the authors decided to treat them specially to simplify

the crossover logic of their generator. This also points to

awkwardness in using parameter-vector techniques to

represent rulesets. Incidentally, the general game playing

tool they used already expected a code-like representation as

input.

Automation of ruleset generation has also been addressed

without including a distinct test component. The METAGAME

system [7] and the EGGG system [8] are both capable of ge-

nerating games as complex as Chess without any testing.

However, this ability comes at the cost of an immense know-

ledge engineering effort to embed as much intuition about

the game design space into the generator as possible.

METAGAME’s author refers to the generator as “long and

complicated and full of special cases”. These systems illu-

strate that generators can actually contain and represent large

amounts of domain knowledge. It is desirable to have a ge-

nerator that is improvable, that is, can be easily augmented

with new knowledge which helps it avoid uninteresting or

problematic regions in the design space. Our generation ap-

proach indeed aims to ease the process of adding new know-

ledge to a generator (particularly that which focuses the ge-

nerative space).

In a filtering-heavy approach to designing games, Nelson

& Mateas use a common-sense knowledgebase to filter out

only those combinations of mechanics and representational

art that “make sense” from a larger generative space [3].

Because the mechanics used in their WarioWare-style games

are so simple, detailed playtesting is not required for evalua-

tion. Rather a common-sense knowledgebase is effective in

filtering a game where a duck avoids a bullet shot by a gun

(a reasonable premise) from a games where a person fills a

piano with ducks (less reasonable), both of which are in the

latent generative space tested by this system. For a given

target concept, such as “duck”, the system might produce

any of a small space of games which both make sense and

include the target concept. This project illustrates that filter-

ing one generative space to make another is an important

technique in design automation.

Finally, though it only consumes and does not produce ru-

lesets, the dual human-and-machine playtesting supported by

our BIPED system [9] is relevant. This playtesting tool reads

in rulesets represented as logic programs and produces ga-

meplay traces in a similar logical representation that are de-

rived either from human players or from logic programming

tools which can solve for edge and limit cases in a game’s

design. This project shows that symbolic, logical representa-

tions for game rulesets can be comfortably used by both hu-

mans and machines and they can serve as an effective inter-

change format for the playtesting stage of design.

III. INTRODUCTION TO ANSWER SET PROGRAMMING

The essence of our approach here is a separation of the

generative space from the procedure that enumerates it. We

use an answer set program to specify the generative space.

Answer sets from this program can be fed to a traditional

game engine, resulting in fully playable games. The defini-

tion of the generative space is designed to be concise and to

support easy modification of the space.

Answer set programming (ASP) is a form of constraint

logic programming [10]. ASP is often used to implement

abductive reasoning, a logical foundation for traditional AI

applications such as automated planning, fault diagnosis, and

natural language understanding [11]. Common to all of these

applications is the process of generating a logically-

described artifact (a plan, a fault, a statement, etc.) from

which desired observations follow deductively. Outside of

abductive reasoning, ASP can be used to generate logically-

described artifacts which meet internal-consistency con-

straints. It is precisely this generative facility (synthesis)

with the integration of deductive reasoning (analysis) which

makes ASP attractive to us in automating game design.

ASP extends the predicates used in traditional (deductive)

logic programming with two special constructs: choice rules

and integrity constraints. Choice rules give a program li-

cense to assume a set of logical statements if needed. To

give an example, “{rain, sprinkler}.” says “it may have

rained, the sprinkler may have been on, or both”. Appending

this to a background theory such as “wet :- rain. wet :-

sprinkler. dry :- not wet.” (which says “it is wet out-

side if it rained or if the sprinkler was on, otherwise it was

dry”) allows an ASP solver to enumerate different logical

worlds (called answer sets) consistent with these rules. There

are four possible worlds: “dry.”, “rained, wet.”, “sprink-

ler, wet.”, and “rained, sprinkler, wet.”. In this ex-

ample we have already defined a tiny generative space and

shown the elements that a solver would extract from it.

Integrity constraints balance the generative nature of

choice rules; they allow the programmer to express certain

conditions which should be considered unreasonable to hold.

Suppose we are interested in explaining how it got to be wet

outside, and we further know that a mechanism in our sprin-

klers keeps them from activating in the rain. We can expand

our example above with two integrity constraints which re-

semble logical rules with a missing head: “:- not wet.”

and “:- rained, sprinker.”. Intuitively they say “don’t

show me logical worlds where any of these conditions hold”.

Running our ASP solver on the program now results in only

two answer sets, both containing the wet fact and one of

rained or sprinkler. Appending additional knowledge to

our definition has scoped the generative space down to a

smaller one in which our observations hold.

The toy problem of rain and sprinklers is traditionally giv-

en as an example of abductive reasoning, but here we aim to

emphasize how choice rules and integrity constraints in ASP

give us language-level support for the conceptual processes

of “generate” and the filtering aspect of “test”. True to our

intuitions for formal logic, and unlike Prolog, constructs in

ASPs (both the predicates and the conjuncts in their bodies)

can be freely re-ordered, meaning that the programmer need

not worry about backtracking or other issues of how genera-

tion and testing are interleaved at the execution level.

IV. REPRESENTING RULESETS IN LOGICAL TERMS

To put ASP to work in the ruleset generation domain, we

need to somehow represent elements of game rulesets in the

heads of ASP’s choice rules and encode the logical condi-

tions which ensure the generated rulesets are valid into the

bodies of these rules. This implies a representation of ruleset

elements as logical terms.

Though logical terms are a standard knowledge represen-

tation format in AI, we review them here because they have

not been used in published PCG work (with one intriguing,

unpublished exception
7
). A logical term is either an atom or

a compound term. Atoms are symbols, numerical constants,

or logical variables. Compound terms combine a symbol

called a functor with a sequence of logical terms as argu-

ments, as in afraid_of(6,7).

An example of a logical term encoding an element of a

game script is the following: scripted_event(

spawn(boss_creature, temple), 120). This term, if it

asserted in an answer set, might mean “a boss-class creature

should be spawned in the temple after two minutes of play”.

The meaning given to scripted_event is given by the code

that consumes it, which might be other rules in the ASP or

the game engines which deliver this content to the player.

The rules for the kind of games we are considering for VF

contain various types of information: collections of objects

that participate in the game and their properties, policies for

handling events that arise during play, conditions under

which we can consider the game to end in victory or defeat,

and, additionally, miscellaneous procedures and configura-

tion details which we can use to add to the variety of play

experiences. Lists, variable sized look-up tables, and nested

expressions are all difficult to represent with fixed-length

parameter vectors.

Each of the elements we would like to include in rulesets

has a straightforward representation in logical terms. Lists,

such as a list of valid move types, are represented by a pat-

tern of terms that may be instantiated several times:

“move(rock). move(paper). move(scissors).” (a numer-

ical argument may added to represent a strict ordering if

needed). Tables, such as a mapping from event to a handling

character’s response action with a performance modifier, are

7The Warzone Map Tools project uses ASP to generate strategically-

optimized maps for an RTS game. http://warzone2100.org.uk/

represented by simply asserting the presence of each tuple of

the data the table contains: “on(poke, giggle, quietly).

on(jab, yelp, loudly). on(stab, die, slowly).”.

Code-like nested expressions are also natural:

“when(equal(health, 0), go_state(defeat)).”.

While we could use a simple, context-free grammar to

syntactically generate masses of such terms, building our

generator as an answer set program gives us the means to

powerfully sculpt the space of generated rulesets using the

same language used to define it. For example, when generat-

ing terms of the form “on(poke, giggle, Adverb)” we can

require that the adverb come from a table of modifiers com-

patible with the giggle action or forbid the use of certain

adverbs in conjunction with the poke event by consulting a

blacklist of known problem cases. Further, such a table or

blacklist might itself be the output being simultaneously

produced by another part of the same generator. The ability

to specify defaults and override them with many levels of

specialization, important for flexible modeling, comes from

the non-monotonic reasoning used in ASP solvers.

V. VF’S GENERATIVE SPACE

Having introduced basic answer set programming and a

representation of game rulesets in its terms, we now describe

how the concrete elements of rulesets for VF are generated

and how these elements influence one another. The genera-

tive space of the VF game prototype is meant to exercise the

expressiveness of the generator’s logical formulation and

does not yet represent the complete set elements in the other

Forever games we intend to reference. Figure 1 provides a

visual guide for one element of VF’s generative space.

A basic element used by all mini-games in VF is the play

space. It is always rectangular, but has a numerical grid reso-

lution parameter which is used by certain character move-

ment models and obstacle-placement policies. Specifying the

simple selection of a numerical parameter looks like this:

This snippet asserts that it is true that several numerical

symbols are valid resolution factors, and that the exactly one

ground clause of the space_resolution predicate should be

emitted in answer sets. The clause in curly braces is a choice

rule which gives permission to emit terms of a certain form

(where the F variable is bound by the resolution_factor in

this case).

Our mini-game play space has an overall topology which

is either toroidal (like Pac-Man), spherical (strange but none-

theless distinct), or flat (resulting in “falling off” the edges

of the world) if not otherwise specified. The generator out-

puts between zero and one instances of space_topology

predicate (as dictated by numerical bounds on the choice

rule) using a scheme similar to the above with symbols to

name the various topologies instead of numbers.

Related to the space, but not an element of the game me-

resolution_factor(2;3;4;6;8;12;16).

1 {space_resolution(4*F)

 :resolution_factor(F)} 1.

chanics, the game may utilize (or not) any of two back-

ground layer display algorithms (twinkling stars or dotted

grid lines). The generator code for this aspect introduces

dependence between a generated element and a flag that

might be toggled via player exploration in future VF proto-

types:

 The play space is primarily populated by characters, iden-

tified by color. The generator internally selects an active

subset of colors from a larger list, and whether a color is

active or not is used as a logical precondition for the rest of

the character-related generator rules.

 Every active character color is assigned a unique move-

ment model (determining their response to keyboard input

and, eventually, autonomous behaviors). The VF prototype

includes Asteroids, Pac-Man, and Rogue inspired movement

models. The generator code to support this combines quanti-

fication over multiple variables to produce a one-to-one

mapping specific to the active characters:

 In additional to a movement model, characters have

another required property called their spawn model which

dictates whether exactly one of them should spawn at the

start of the game or a larger, random number. The generator

code has identical structure to that of the movement model.

 Much more interesting is the character-character collision

effects table. This table, which describes only active charac-

ters, produces agent_collide_effect, a predicate which is

not only used by the game engine during mini-game execu-

tion, but also by the generator itself as we will describe later.

The table describes which collision resolution behavior

should be applied to the character of the first color if it hits

another of the second color. There are kill and bounce op-

tions with a default of simply passing through on collision.

In future versions of VF, the set of collision resolution beha-

viors that are considered will be conditioned on player ex-

ploration as well.

 Beyond the basic space and characters, if the generator

has the obstacles exploration flag enabled, the game will

consider any combination of three obstacle placement pat-

terns: an encircling wall, stick-like scattered walls, or iso-

lated blocks with slight rotations (all three are active in Fig-

ure 1). The selection of these algorithms is described with

the same schema used to select background art layers. If

obstacles are enabled, an optional collision resolution beha-

vior is selected for each character and encoded as the ob-

stacle_collide_effect predicate (obstacles themselves

cannot be “killed”). In this case, not just the size but the very

existence of a table in the ruleset is conditioned on other

generated outputs (the active set of colors).

 In order to make games in this space playable, we need to

assign the player control of one of the characters. This as-

signment is based on color; if the player controls a character

with the “many” spawn model, then they will only control

one such character and the rest will perform their default

behavior.

 At this point, games include a player who can fly a cha-

racter around a variously configured world, bumping into

other characters and obstacles to trigger effects out of tables,

but there is still no goal to our mini-games. The final ele-

ment of the mini-game description gives it one. The goal

predicate must have a single instance in each game design to

enable victory-condition checking. Its form may either be

“goal(kill_all(Color))” which monitors for when all

characters of a given color are killed or “goal(escape)”

which monitors for when the player character reaches the

world boundary (which only exists in the flat space topolo-

gy).

This final output illustrates a clear representational flex-

ibility that our symbolic representation has over fixed-length

parameter vector representations: some of our game goals

are parameterized by active character colors, while others

such as escape are not. There is no penalty for mixed struc-

tures such as this. The escape goal, in particular, is addition-

ally forbidden in games utilizing the encircling wall obstacle

generator (from which is impossible to escape). This is an

example of capturing special-case knowledge in the genera-

tor extracted from experience playtesting broken games.

The complete generated ruleset for the “kill all the red

guys” game shown in Figure 1 is represented by these logi-

cal statements produced by the generator:

VI. ZOOMING IN ON GAMES OF INTEREST

While the exclusion of known problematic interactions

between mechanics is something that could be encoded di-

rectly into the preconditions in the body of the choice rules

used in the generator, there are many occasions in which we

would like to temporarily scope down our generative space

without disturbing any existing logical formulae. The me-

chanism of integrity constraints in ASP provides exactly this

space_resolution(32,24).

space_topology(spherical).

background(grids; stars).

active_agent(red; yellow; white; cyan).

agent_movement(red,asteroids; white,asteroids;

 yellow,roguelike; cyan,pacman).

agent_population(red,many; white,singleton;

 yellow,singleton; cyan,many).

agent_collide_effect(red,white,kill;

 cyan,yellow,kill).

player_agent(white).

obstacle_distribution(enclosure; random_walls;

 random_blocks).

obstacle_collide_effect(red,kill; white,kill).

goal(kill_all(red)).

1 {agent_movement(C,M)

:movement_model(M)} 1 :-

 active_color(C), color(C).

tech(backgrounds).

{background(L) :background_layer(L)} :-

tech(backgrounds).

functionality.

We can use integrity constraints to zoom-in on a subspace

of games in which we are interested via several methods, but

the simplest is to simply require that certain ruleset elements

be present in all answer sets we see. Recalling the original

rain/sprinkler example, we can simply append an integrity

constraint rejecting the absence of the required configura-

tion. If we wanted to tweak the implementation of the Aste-

roids motion model in VFs game engine, we might add this

collection of constraints to always give ourselves control

over a red character in a primitive field of asteroids to navi-

gate, regardless of other mechanics:

 Another use of integrity constraints to sculpt the genera-

tive space is to reject co-occurrence of mechanics known to

interact poorly. The special-case knowledge for the escape

game goal is encoded with the single integrity constraint “:-

goal(escape), obstacle_distribution(enclosure).”

 Integrity constraints need not only operate on the same

elements that are exported by the generator, they may in-

volve complex deduction. The following snippet of code

(slightly condensed) zooms in on rulesets in which the game

is reasonably winnable by indirectly pushing characters into

each other to achieve the stated goal:

In the above example, we have shown an elementary at-

tempt at engineering emergent gameplay. As new mechanics

are added to VF’s design space and the winnable_via predi-

cate is augmented with a simple complexity metric, it be-

comes possible to write single-line integrity constraints

which translate to statements akin to “only show me rulesets

for games in which a reasonable plan for victory involves an

indirect chain of at least 5 steps utilizing at least 3 different

low-level interaction types”. Games complex enough to sa-

tisfy this constraint would likely come from a space which

also includes many broken games. Fortunately, additional

integrity constraints may easily be added to carve away such

failure cases as they arise in playtesting. It is this use of ad-

ditional deductive rules to capture complex relationships

between low-level mechanics which demonstrates the power

of using a logical representation.

VII. GENERATING PLAYABLE MINI-GAMES

At this point we have described how to create, enumerate,

and expressively sculpt the generative spaces of game rule-

sets. However, we have yet to show how to transform such

sets of assertions about how a game should work into func-

tioning games which operate as the generator designs them.

In this section we will describe the concrete software com-

ponents which bring ASP-based ruleset generation into con-

tact with the player in our prototype of VF: the game genera-

tor and the game engine.

A. Game Generator

Our game (ruleset) generator is manifest in two distinct

parts. The first is the logical definition of a design space

using an ASP as described above, and the second is the

software we use to enumerate games in the design space. We

have adopted the freely available LPARSE and SMODELS

tools
8
 which, respectively, translate first-order ASPs into

simplified, grounded logic programs and solve for the de-

sired number of answer sets, outputting each as it is found.

To surface the functionality provided by these highly ob-

scure (from a game programming perspective) command-

line tools, we created a minimal web-service wrapper which

allows any HTTP-capable program to request a stream of

answer sets to a given ASP. This wrapper allows us to be

much more flexible about the kind of game engine we use to

consume the generated game designs.

The result of organizing our generator in this way is that

the designer of the generative space does not need to think

about (nor necessarily understand) the underlying generation

algorithm. Indeed, different solvers that consume LPARSE

groundings may employ radically different algorithms while

being indistinguishable at the level of answer set generation.

B. Game Engine

Realizing the outputs of our game generator in the glow-

ing vector-art aesthetic (and supporting low-level mechanics

such as movement with momentum and collision detec-

tion/resolution) requires the use of a game engine. We built

our game engine using the Flash game library Flixel
9
 as a

base. To this base, we added skeletal support for the ele-

ments we knew our ruleset generator would like to instan-

tiate: abstractly depicted characters which can roam about,

bumping into each other and obstacles, victory condition

templates, basic level generation algorithms, and back-

ground image generation.

At each major design decision which would normally be

hard-coded in a particular game (such as how big the game

world is, which character the player controls, etc.) we added

code to consult a configuration object (to be provided by the

generator). Though making an engine that supports many

8 http://www.tcs.hut.fi/Software/smodels/
9 http://flixel.org/

pushes(A,B) :-

on_collide(A,B,bounce),

on_collide(B,A,bounce).

kills(A,B) :- on_collide(A,B,kill).

indirectly_pushes(A,B) :- pushes(A,B).

indirectly_pushes(A,C) :- pushes(A,B),

indirectly_pushes(B,C).

winnable_via(indirect_push_kill(A,C)) :-

 indirectly_pushes(A,B), kills(B,C).

compute {

 player_agent(A), goal(kill_all(B)),

 winnable_via(indirect_push_kill(A,B)) }.

:- not player_agent(red).

:- not character_movement(red, asteroids).

:- not use_obstacles(encircling).

possible games is significantly more difficult than making

any particular game, the task is similar in complexity to the

integration of a scripting language which many complex

games already possess to ease the development process.

The general flow of our prototype works as follows. On

startup, the engine sends the internally-stored ASP (logic

program) to our ASP solver service and begins streaming in

solutions over the network. The player can randomly sample

mini-game rulesets, given a basic textual preview of the

game (describing what they control, the goal of the game,

and other details selected by the generator). Upon selecting a

mini-game, play begins. The mini-game’s rules are fixed

across restarts when the player character is “killed”. The

player rejoins the initial game selection screen upon victory

or intentionally abandoning a difficult game.

In the design of VF beyond the prototype, we envision

performance in mini-games linked to a resource which can

be spent to either unlock new reaches of an initially small

game mini-game design space or buy constraints which en-

force interesting patterns. Through incrementally refining

the possibilities open to the generator the player can slowly

come to understand the interaction between the various

modular mechanics set into the VF universe. Each new game

design element the player unlocks results in new “tech(T)”

assertions being simply appended to the text of the internal

ASP, which, in concert with existing integrity constraints

and preconditions, means the design space of mini-games is

dramatically reshaped during play at a scale unmatched by

any other game.

VIII. DISCUSSION

A. Coupling between Generator and Engine

While the definition of the a design space is strongly sepa-

rated from the means of sampling the space in our approach,

there is a strong coupling between the content generator and

the game engine which consumes the content. This mandato-

ry coupling is not problematic if one considers the generator

and the engine to be two parts of a single program. In the VF

game prototype, the game engine and ASP code used for

ruleset generation are combined into a single binary that runs

in the player’s browser while the ASP solver runs indepen-

dently on remote server.

B. Tradeoffs in Levels of Abstraction

The relative expressiveness of the generator compared to

the engine depends on the level of abstraction used by the

logical terms with which they communicate. As the genera-

tor takes on more responsibility for defining the mechanics

of games (e.g. working with lower-level terms to implement

movement models instead of simply instantiating them), it

becomes even more critical that we be able to sculpt the de-

sign space to avoid the swath of well-formed yet meaning-

less or broken (in terms of gameplay) constructions which a

grammar might admit.

At the low-level extreme of generating the equivalent of

machine instructions, clearly an astronomically tiny fraction

of such “rulesets” would represent valid games and we

would have a hard time writing down constraints which have

any useful effect. Meanwhile, at the high-level extreme of

parameterizing a game by only a few configuration values,

the space of games (even if all were guaranteed to be valid)

would be uninteresting for a player to explore. The chal-

lenge, which we have taken but a single step towards, is to

work at the lowest, code-like level possible (enabling the

richest variety) while not losing control of the design space

and consequently asking the player to pay a non-game.

C. Towards Automating Game Design

VF is a single experiment in larger effort to automate the

creativity-intensive practices of game design. We draw in-

spiration for this task from the Robot Scientist project [12]

which represents a very ambitious effort to automate the

practices of computational biology. Iterative experimental

design processes in science have a meaningful analog in

game design in terms of prototyping and playtesting games.

Abductive logic programming (supported by the very same

ASP tools we use), plays into nearly every creative and/or

scientific task the Robot Scientist performs.

In a serious attempt at automating game design, we im-

agine integrating the ruleset generator with an automated

playtesting tool such as BIPED [9]. The logically-described

playtesting feedback can be used with inductive logic pro-

gramming, such as provided by Progol [13], to learn (or in-

duce) logical predicates which predict player choices and

reactions. This same rule-learning could be used to find use-

ful constraints on the generative space of rulesets. Know-

ledge gleaned from experience testing can be embedded into

the generator, forming a closed-loop design system which

better approximates the iterative design process used in the

game industry.

From a scientific perspective, small game prototypes are

analogous to experimental setups, designed to elicit a dem-

onstration of some natural behavior (or player behavior for

games). Continuing the metaphor, we envision iterative

game design as process that, instead of aiming to produce

games, aims to produce knowledge about play, producing

games as a byproduct of the discovery process. A new chal-

lenge, now, is in building a generative space of game design

patterns and player model elements which would serve as

the building blocks of theories in a game-design-as-science

paradigm. In the future, we will examine the use of ASPs to

represent these generative spaces as well.

D. Evaluation

Towards gauging our level of success in this project, we

are most interested in expressivity of our generation ap-

proach and the constraints it employs to shape generative

spaces for the application of procedural content generation.

In our experience with the VF prototype, we found 100-

line ruleset to be abundantly generative, generating rulesets

which exposed legitimate bugs in our game engine and rais-

ing important game design issues (such as how the momen-

tum of Asteroids-style characters model should change in

collision with roguelike-style characters). With integrity

constraints, it was both easy to both zoom in on failure cases

for testing and to forbid the occurrence of situations we had

not yet resolved.

In terms of expressivity of constraints, recall the space of

indirect-push-kill (described previously). This scenario de-

monstrates how we can encode additional knowledge about

a game design space (such as how to produce a high-level

plan to win games in it) into the generator itself. Knowing

that high-level descriptions such as “winna-

ble_via(indirect_push_kill(red,blue))” are present in

the games definitions allows us to write single-line con-

straints requiring or forbidding high-level patterns. Such in-

line self-analysis of games could also be used to prepare a

small manual for each generated game. EGGG [8] was able

to produce documentation for the game it generated, also by

virtue of having so much design knowledge baked into the

generator.

Evolutionary methods such as Togelius’ system aim to

produce rulesets optimized by some metric (with Brown’s

LUDI system [14] even striking commercial success in au-

tonomously designing Yavalath
10

). However, in PCG, there

is an inherent demand for sizable spaces with significant,

player-visible variety. Our declarative approach allows easy

manipulation of generative spaces of arbitrary size, while

evolutionary approach only maintain a fixed-size population

(on the order of tens or hundreds) during its search for a sin-

gle, optimal individual. While both approaches are highly

declarative in their own sense, we believe our approach is

distinctly more space-oriented, and is therefore better suited

for PCG (also recall that it is not actually specific to ruleset

generator).

As a final form of evaluation, we can look at our ruleset

generator as a creative system (though it was not designed as

one). In the field of computational creativity, a standard

means of evaluating an artifact generator are to look for no-

velty and value in the artifacts it creates [15]. One instance

of novelty we experienced was a seemingly unwinnable

game. After some effort we realized the game could actually

be won by indirectly pushing an intermediate character into

the characters it was our goal to kill. Excited by this occur-

rence which was both unexpected (novel) and fun (fun), we

quickly devised the indirect kill detection logic described

previously to zoom in on other games of this variety, trans-

forming the generative space.

IX. CONCLUSION

In seeking the technology to support a novel game design,

we have developed a new content-generation approach and

applied it to the challenging domain of game ruleset genera-

tion, producing a large space of playable mini-games. The

flexible representations afforded us by ASP allow us to

10 http://www.cameronius.com/games/yavalath/

make concise-yet-powerful modifications to this design

space. This representation schema has also prepared us for a

more serious attempt at automating game design.

We invite the reader to try playing several mini-games in

our public demo
11

 and consider what new options should be

made available to the generator and which combinations

should be forbidden to avoid bad interactions between ele-

ments.

REFERENCES

[1] C. Remo, "MIGS: Far Cry 2's Guay on the Importance of

Procedural Content," Gamasutra, November 2008.

[2] V. Hom and J. Marks, "Automatic design of balanced board

games," in Proc. 3rd Artificial Intelligence and Interactive

Digital Entertainment Conference, 2007, pp. 25-30.

[3] M. J. Nelson and M. Mateas, "Towards automated game

design," in AI*IA: Artificial Intelligence and Human-Oriented

Computing, 2007, pp. 626-637.

[4] T. Fullteron, Game design workshop: a playcentric approach

to creating innovative games, 2nd ed.: Morgan Kaufmann,

2008.

[5] J. Togelius and J. Schmidhuber, "An experiment in automatic

game design," in Proc. IEEE Symposium on Computational

Intelligence and Games, 2008.

[6] R. Koster, A theory of fun for game design.: Paraglyph press,

2005.

[7] B. Pell, "Metagame: A new challange for games and learning,"

in Heuristic Programing in Artificial Intelligence 3: The Third

Computer Olympiad, Ellis Horwood, Ed., 1992.

[8] J. Orwant, "EGGG: Automated programming for game

generation," IBM Systems Journal, vol. 39, no. 3-4, pp. 782-

794, 2000.

[9] A. M. Smith, M. J. Nelson, and M. Mateas, "Computational

support for play testing game sketches," in Proc. 5th Artificial

Intelligence and Interactive Digital Entertainment

Conference, 2009.

[10] I. Niemela, "Logic programs with stable model semantics as a

constraint programming paradigm," Annals of Mathematics

and Artificial Intelligence, vol. 25, pp. 241-274, 1999.

[11] A. C. Kakas, R. A Kowalski, and F. Toni, "Abductive logic

programming," Journal of Logic and Computation, vol. 2, no.

6, pp. 719-770, 1992.

[12] R. King et al., "Functional genomic hypothesis generation and

experimentation by a Robot Scientist," Nature, vol. 427, pp.

247-252, 2004.

[13] S. Muggleton, "Inverse entailment and Progol," New

Generation Computing Journal, pp. 245-286, 1995.

[14] C. B. Browne and F. D. Maire, "Evolutionary Game Design,"

IEEE Transactions on Computational Intelligence and AI in

Games, vol. 2, no. 1, pp. 1-16, 2010.

[15] A. Pease, D. Winterstein, and S. Colton, "Evaluating machine

creativity," in Workshop on Creative Systems, 4th Intl. Conf.

on Case Based Reasoning, 2001.

11 http://eis.ucsc.edu/VariationsForever

