
Open Problem: Reusable Gameplay Trace Samplers

Adam M. Smith
Center for Game Science

Department of Computer Science & Engineering, University of Washington
amsmith@cs.washington.edu

Abstract

We identify an open problem in game design assistance
and automation: the development of reusable gameplay
trace samplers. Inside many sophisticated content gen-
erators and design tools is a component that samples in-
teresting and plausible sequences of player actions. De-
tails and summary properties of these samples are used
to assess generated content and to inform designers. As
the development of this component is technically in-
volved (sometimes comparable to making a second im-
plementation of a game’s mechanics), design tools often
either make use of entirely custom, game-specific sam-
plers or make due without the ability to sample inter-
esting traces at all. This severely limits the population
who could benefit from automation to those who are
motivated to develop it for themselves. We propose the
development of reusable samplers to ease the develop-
ment of future design automation tools. This paper re-
views several systems that demonstrate the availability
of technology required by these samplers and the range
of applications they may serve. It also sketches how fu-
ture samplers might be architected. This proposal iden-
tifies one way for technical research to make progress
on design automation challenges without making prob-
lematic assumptions about the nature of player behavior
or designer intent. Filling in this missing infrastructure,
we claim, will make the use of artificial intelligence in
the design process more accessible and thus accelerate
game design projects.

Introduction
The ability to sample representative and interesting game-
play traces is essential to the function of many game content
generators. Samples of interesting hypothetical sequences
of player actions capture information about the interactive
space of play afforded by content artifacts. This same abil-
ity powers prototyping tools that intend to give exploratory
game designers insightful feedback on the choices they are
considering. Building reusable sampling engines would ac-
celerate efforts to develop both content generation and other
design automation systems by reducing the required exper-
tise and engineering cost associated with producing accurate
and responsive generative simulators for gameplay.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gameplay trace samplers, as we tentatively call them for
the purposes of this proposal, would function as an oracle
that stands in for the player. The sampler should be able to
provide the concrete player-action data that allows answer-
ing higher-level questions such as “how long does it take the
player to get from here to there?” “what actions might the
player take to recover from this situation?” or “how often
will players who play according to this externally provided
strategy get stuck at each point in the level?” The ability to
sample such traces would allow asking and answering ques-
tions that are not just about actions, but also about the exis-
tence of traces with critical properties for a generated map
or puzzle, or even a designer’s manually entered rule system
or strategy description.

As an introductory example of the use of gameplay sam-
pling in an active design project, consider an in-house tool
created to assist in the development of the upcoming game
The Witness.1 In a post on the game’s development blog, de-
veloper Casey Muratori describes Walk Monster, a system
for mapping out the player-traversable area in the game’s
map. Muratori writes (2012):

There are very easy ways to think that you were test-
ing the player movement code without actually testing
it. One example would be to do some kind of analysis
on the collision volumes and walkable surfaces in the
game, looking for small areas, gaps, etc. Once you’d
eliminated all of these, you’d then proclaim the world
safe to traverse and move on. But this is testing the data,
not the actual code. It’s still easily possible to have bugs
in the movement code that result in bad behavior even
with sanitized data. To avoid this kind of trap, I wanted
the testing system to remain as close as possible to what
a human does to actually control player movement in
the game.

His article describes a succession of sampling algorithms
that lead to quicker and more informative feedback about
what was possible in the game (towards catching design
flaws earlier in the development process). He explains how
he abstracts out physical momentum to focus on the inter-
action between the map geometry and the game’s collision
detection logic. This choice mildly sacrificed accuracy of his

1http://the-witness.net/



Figure 1: A custom sampling algorithm for traversable spa-
tial paths in The Witness reveals a design bug. The red hole
in the center outlines an invisible collision body mistakenly
left on the map. (This screenshot was reproduced from Mu-
ratori’s blog post with permission from the developers.)

sampler in favor of reduced time to gather the sampling cov-
erage he sought, a balancing choice any sampling system ar-
chitect must make. In use, the system identified that a partic-
ular patch of rocks was traversable by the player, despite the
intent for them to be an impassible barrier. Movement sam-
ples found by the tool (and later reproduced in live game-
play) further revealed this this patch was only traversable
in one direction, potentially allowing the player to become
stuck. In another instance (visualized in Figure 1), the lack
of traces crossing one area of the map highlighted the fact
that a collision body had been left there after its graphical
counterpart had been removed.

Even with the need for original algorithm design, Mura-
tori is convinced that his effort in making and applying the
sampler were worth the effort. In his closing thoughts, he
ponders what other design queries might also be served by
moderate extensions to his experiment. It is unrealistic to
ask every other developer to take the blind leap into sampler
design in the way that this developer did, but, with reusable
infrastructure, others might be persuaded to try and see what
benefits can be had for their own projects.

In the body of this proposal, we review several existing
systems that internally perform functions similar to our pro-
posed samplers and demonstrate potentially reusable tech-
nology for developing them. We also sketch possible archi-
tectures for samplers in terms of their inputs, internal pro-
cesses, outputs, and possible modes of packaging for use in
specific game design projects. Finally, we examine the po-
tential impact of the proposal on technical research in and
outside of game content generation.

Samplers in the Wild
The seeds of potential reusable gameplay trace samplers are
scattered in two directions: in game-specific samplers that
could be generalized to talk about other games in their tar-
get genres, and in already-general sampling tools that can
be made more specific for improved accessibility in game
development projects.

In Game-Specific Projects
Game-specific tools can take advantage of sampling tech-
niques that would not be appropriate to blindly apply to
every game. In the assisted level design tools (Bauer and
Popović 2012; Bauer, Cooper, and Popović 2013) for the
game Treefrog Treasure,2 two internal gameplay trace sam-
plers are used to determine reachability between different
points in a level design under construction. An initial sam-
pler, based on rapidly-exploring random trees or RRTs3

(LaValle and Kuffner 2001), determines overall reachability
between different platforms in the game’s map. After each
local edit to the map, a custom dense sampling process re-
estimates the proportion of moves that could be made be-
tween each pair of platforms of interest. While the first ver-
sion of this system made calls to the actual game to perform
simulated actions (resulting in an ability to sample on the or-
der of five moves per second), the subsequent version used
genre-specific knowledge about the shape of jump paths to
replace a frame-by-frame physics simulation with a jump-
at-a-time simulator based on intersecting analytic curve seg-
ments (allowing hundreds of simulated moves per second).
In a related performance-oriented prototype,4 careful atten-
tion to the sampling process allowed sampling hundreds of
thousands of moves per second for the same movement me-
chanics. In general, there are many ways to trade small de-
creases in simulation accuracy for massive increases in sam-
pling rate, but the scope of these approximations is limited
to games with similarly structured mechanics.

In another project from the same group, Butler et al.
(2013) provide interactive feedback on manual edits as part
of a mixed-initiative design tool for the puzzle game Refrac-
tion.5 Their level analyzer works by sampling solution traces
that avoid practicing critical gameplay concepts. The pres-
ence or absence of these solutions feeds into a visualization
of which concepts a puzzle requires across all of its solu-
tions. Although this sampler depends on game-specific code
(approximately 150 lines of code that define the game’s me-
chanics and solution conditions), the engine that searches for
satisfying solutions is quite general (Smith et al. 2012). The
same idea is used in their level generator which makes use
of exhaustive machine playtesting internally (Smith, Butler,
and Popović 2013).

As Refraction is a turn-based puzzle game with determin-
istic mechanics played on a coarse grid, extracting out just
those mechanics relevant for efficient and informative sam-
pling is not as hard as it is for other games. In Togelius’ per-
sonalized racetrack generator (2007), just a single gameplay
trace (for a player-specific driver model) is sampled for each
track considered by the generator because of the frame-by-
frame physics involved in the game. If a probabilistic driver
model were to be used (allowing the system to know that
a driver could only make a critical turn 20% of the time),

2http://www.kongregate.com/games/
gamescience/treefrog-treasure

3Muratori also explored using RRTs in Walk Monster.
4http://adamsmith.as/typ0/k/frogsplat/
5http://www.kongregate.com/games/

gamescience/refraction



many samples would need to be taken, either putting pres-
sure on the sampler to perform much faster or the genera-
tor to glean the same information from traces sampled with
a coarser physics timestep. In the generator for Cloudberry
Kingdom, a procedural platformer game hyped for its “in-
sane” levels (Fisher 2012), generated levels are guaranteed
to be feasible (possible to complete) by constructing a ref-
erence path. After each new design element is added to the
level, such as platform or fireball, the reference trace must be
re-simulated to check the path’s feasibility. Game-specific
techniques could be invented to speed up sampling for ei-
ther of these games, but unless they are shared and made
reusable, it is only the daring sampler developers who will
rediscover them in new projects.

In General Game Design Tools
General-purpose gameplay trace sampling is far from im-
possible. Game prototyping systems such as LUDOCORE
(Smith, Nelson, and Mateas 2010) and the Machinations
framework (Dormans 2011) offer trace sampling for any
game representable in their abstract and diagrammatic mod-
eling languages. In LUDOCORE, a model of the game’s me-
chanics, world configuration, player behavior, and context
of designer interest are encoded in a common logical mod-
eling language. In response to these heavyweight queries,
the system produces one or more example gameplay traces
demonstrating the required (and potentially extremely rare)
behavior. No statistical properties, however, are promised
over the output. The Machinations framework, by contrast,
takes a lightweight approach where samples are constructed
by independent forward-simulation runs. To sample specific
types of traces (e.g. to explore a certain strategy), imperative
scripts can be written to conditionally trigger events in each
sampled run.

The presence and probabilistic distribution of game-
play traces with interesting properties can directly translate
into design insight regarding a design under test. In LUDI
(Browne and Maire 2010), “a system for playing, measur-
ing, and synthesizing games,” an estimate of the quality of
a given strategic board game is made by taking many sam-
ples of its typical gameplay (as generated by generic strate-
gic search agents). Whether the distribution of samples has
properties such as bias for or against the first player, too of-
ten ending in a draw, or never indicating the possibility of
dramatic reversals partially reflects the nature of the game.
However, properties of these samples also reflect the nature
of assumptions the system made about how typical players
play.

To gain deeper insight into which facets of a game design
are responsible for its balance, Jaffe et al. (2012) argue for
examining the outcome of competitive play under designer-
prescribed restrictions on the behavior of one player or an-
other. For example, to judge the impact of a particular ac-
tion, they examine the relative win rate of a player who can
only use that action up to a constant number of times against
an unrestricted opponent. Although the system they describe
is based on exhaustive analysis of the complete game tree,
systems that attempt to provide the same insight for more
expansive game trees (such as those derived from complex

videogames) will come to depend on sampling techniques.
Jaffe’s later work examined the possibility of Monte Carlo
tree search (MCTS) for this purpose (2013). If efficient
and reusable samplers are available for a variety of game
types, many interesting design questions can be automati-
cally probed. To do this, the designer poses and interprets
the results of queries for gameplay traces under restriction
on play. In this application, the sampler does not judge what
is good or bad design, but it does provide an “early warning
system” for notable imbalances.

Automatic navigation mesh construction (Tozour 2002) is
an example of a reusable designer assisting technology that
has already been widely adopted within the game industry.
These meshes, however, are most often computed directly
from the geometry of a level design. As Muratori reminds
us, this data-only analysis misses interactions between the
game’s varied mechanics and the fixed geometry. Reusable
gameplay trace samplers might someday allow the auto-
matic construction of more general ‘action meshes’ which
captured not just possible navigation actions but engagement
with other mechanics such as triggering of switches, un-
locking doors, collecting/crafting/using items, or dialog ex-
changes. The boundaries between spatial pathfinding, action
planning, and abstract puzzle solving would become blurred
in such systems.

Architectural Choices
In this section, we sketch the architecture of potential sam-
plers. Depending on the choice of inputs, internal processes,
and outputs, a trace sampler might be better named by other
terms such as trace simulator, trace planner, or trace con-
straint solver. In each of the architectural facets below, a sat-
isfying system need not implement every possibility, instead
only a combination that works well together.

Inputs
A sampler’s input defines the game in question and poses a
specific query to focus the samplers attention. Thus, the sam-
pler’s input should contain details such as the level design in
question and the initial state of the player and non-player
characters. Similarly, the input should describe the relevant
victory or loss conditions associated with the scenario (such
as reaching a key location within allotted time or touching
objects of a certain type). The sampler will not always be
asked to find traces resulting in the victory or loss condi-
tions, but telling the sampler when a trace would result in
termination of a gameplay session is part of how the game is
defined.

Beyond defining a session’s initial and final conditions,
the sampler should take a description of the specific mechan-
ics of the game (either as a symbolic description or direct
callback mechanism). Within a given genre, many low-level
mechanics may be assumed, and a smaller collection of rules
and parameters can define the specifics of a game in terms of
the same abstractions afforded by the game engine on top of
which it is built. The granularity of simulation used by the
sampler need not exactly match that of the game in question.
Abstract simulations, for example, could be used to answer



tentative design questions for early-stage game designs be-
fore the fine-grained details have been fully worked out.

The above inputs would be sufficient for a sampler to
draw from a default distribution over all play traces (per-
haps taking every available action with uniform probabil-
ity). In order to sample more interesting traces, the sampler
should also take a description of the expected player behav-
ior. This could be provided as either an explicit distribution
over actions as a function of game state (perhaps derived
from previously collected observations of human players)
or as a callback to a system outside of the sampler to get
a distribution over moves. This information would ensure
that traces emerging from the sampler are realistic, but they
might still be irrelevant to the design concern in question.
Thus, the sampler should also take an optional description
of any other property that should be required of the sampled
traces. This might be the constraint that the traces all end in
a certain state, that actions of a certain type are never used
(despite the provided player model suggesting their prefer-
ence), or that conditions outside of the player’s control are
structured in a certain way (perhaps that enemies should be
assumed to always fail their first attack). Whether this in-
formation is provided as explicit constraints or as a function
over game state and player actions that should be optimized
is a choice left for the sampler’s architect.

Processes
Three broad directions for the internal processes used by the
sampler are particularly clear to us. In the first direction,
the sampler would be organized as a statistically-sound sam-
pling process. Such a system would draw samples with the
guarantee that the sample distribution converges to a well-
defined theoretical distribution (associated with the query
to the sampler). Probabilistic programming languages like
Church (Goodman et al. 2008) offer these semantics for a
Scheme-like general-purpose programming language. These
general-purpose languages fall short of desirable, for our ap-
plication, by providing no special support for creating and
refining models of gameplay for any particular game genre.
Nevertheless, such a language could be used inside of a sam-
pler with the help of a library that forms, in effect, a proba-
bilistic game engine for the genre in question.

The second direction, also inspired by the availability
of tools for analyzing general-purpose programs, is to use
tools emerging from the software model checking commu-
nity. PRISM (Kwiatkowska, Norman, and Parker 2011), for
example, is a probabilistic model checker that accepts a
model of a program and a formal property to check, such
as whether a certain class of states is reachable from the
initial conditions. PRISM and similar systems can output
either detailed instances (interpretable as execution traces)
that falsify a critical property or report summary statistics
on those traces satisfying the property. Meanwhile, CBMC
(Clarke, Kroening, and Lerda 2004) is a model checker that
operates on programs defined by standard ANSI-C and C++
sources (potentially allowing exact symbolic inference about
the functioning of the same code used by the game in ques-
tion without directly executing it in a callback, similar to
LUDOCORE).

The third direction is to employ general game tree search
methods such as MCTS (Tavener et al. 2012). These are
the same kind of algorithms that power the various agents
that participate in general game playing (GGP) competitions
(Genesereth, Love, and Pell 2005). The trace-sampling prob-
lem, however, will not always be aligned with the strengths
of common tree search algorithms. For example, the rele-
vance of a trace (deciding if the sampler should emit the
trace) may not be representable as a simple reward function
over states. Instead, it may depend on properties of the se-
quence of actions taken. As a result, different internal sam-
pler processes may be better suited to answering different
types of queries.

Outputs
Depending on the level of detail used by the gameplay sim-
ulation and the scope of the query, different samplers may
intentionally provide outputs at different granularities. For
example, one sampler may only report high-level moves in
an approximation of the game, perhaps under the extra con-
straint that each sample is unique and the collection of sam-
ples exhausts the possibilities of a given size. This might be
used to enumerate build orders in an RTS game that, under
abstraction, result in a sufficiently strong economy within a
certain time limit. Alternatively, a sampler that operates over
a very accurate model of the game’s mechanics might report
pixel and/or frame-accurate traces that can be replayed ex-
actly within the target game.

It might be tempting to directly output aggregate statistics
or other metrics over possible traces in an effort to directly
answer a design-level question. We suggest that architects of
samplers focus on emitting informative and concrete game-
play traces wherever possible. This will allow a larger sys-
tem employing the sampler to draw its own inferences (even
if it means simply tracking the counts of traces with certain
properties or plotting their extent on a map) and avoid fea-
ture creep in the design of the sampler itself that might limit
its reusability. The sampler’s job is to draw samples, not to
interpret those samples on behalf of others.

Packaging
Reusable samplers become useful only when integrated into
a project-specific context. Perhaps the simplest way to pack-
age a sampler would be as a library that provides a mod-
eling and query API (with an eye towards direct integra-
tion into larger tools and designer-facing visual interfaces).
This approach allows for easy integration of hooks and call-
backs. Another approach is to package the system as a
network-accessible service with a well-defined query lan-
guage (akin to a database engine). This language-agnostic
approach would be a convenient way to expose cluster and
cloud computing resources for use in design automation pur-
poses while shielding consumers of the sampler from the as-
sociated system complexity. Yet another alternative would
be providing a domain specific programming language and
interpreter (where programs define the game model and
query, and, when run, produce a result set of samples). This
self-contained approach might be best useful for very ex-
ploratory design processes where performance and integra-



tion are not yet serious concerns while keeping the rapidly
changing game model in one place is preferred.

Discussion
Having sketched the array of existing samplers and explored
potential architectural choices for reusable samplers in the
future, we now look at the effect of sampler development on
technical game research programs.

Problematic Assumptions
Returning to the context of design automation, the develop-
ment of reusable samplers would provide a productive out-
let for technical research in a way that avoids making prob-
lematic assumptions. It is common for game content gen-
erators (such as level generators) to make explicit and ar-
chitecturally fixed assumptions about what makes for good
game design or what the imagined designer (the user) always
wants from the generated content. Inside these systems, the
component responsible for generating representative game-
play traces for evaluation makes similarly problematic as-
sumptions about how players behave: that just one trace or
a very sparse collection of traces is representative of the tar-
get audience (such as in Cloudberry Kingdom), or that the
distribution over traces emerging from the system’s fixed
search process is always representative (such as in Ludi).
Smith et al. examine the design implications of undersam-
pling in more detail (2013).

Where possible, the criteria for what makes a gameplay
trace interesting should be taken as an input (if they can be
declaratively described) or made available to the sampler via
hooks or callbacks to project-specific systems outside of the
sampler instead of being fixed internally. The intent is to
allow a designer to ask new questions on a whim, without
re-engineering the sampler, or allowing an enclosing sys-
tem, such as a game-specific content generator, to treat the
sampler as a trusted and informative oracle for the trace-
sampling problem.

In content generation systems, often a mix of easy-to-
formalize gameplay properties (e.g. reachability in interac-
tive play) are combined with hazily defined properties (e.g.
visual aesthetics). Instead of treating both types of concerns
uniformly in a generator’s search process, reusable game-
play trace samplers could provide clear and objective ev-
idence to judge the formalizable properties of the content
artifact. This would decouple the design of the search pro-
cess that is responsible for exploring an artifact’s gameplay
from the search process responsible for finding good arti-
facts (where guarantees about the semantics of outputs are
much more informative for the inner search process than the
outer process). That a larger design automation system deals
with informal properties need not imply that the sampling
subsystem works on an equally informal basis.

Technical Expertise & Engineering Costs
In the ideal case, technical work put into implementing
reusable samplers displaces equivalent work that would have
been required to produce a project-specific sampler in larger
projects requiring one. Here, we look at look at the potential

costs associated with developing samplers as a way to both
estimate what effort can be saved and what effort must be
expended to produce these samplers.

Reusability demands some degree of generality in how
games are represented for or exposed to the sampler (though
generality across genres is not an immediate concern). Even
in the context of a single game design project, the ability to
reuse a sampler across several design iterations would be de-
sirable. The developers of a sampler are responsible for de-
signing representations for game mechanics, player behav-
ior, and other conditions on traces that balances the interests
of generality with immediate usefulness on design projects
in a specific genre. Game engine developers are in a good
position to make some of these choices on behalf of the de-
velopers who use their engine (in the same way that a game
engine might support a single type of navigation mesh for
all client games).

Advanced state-space and symbolic model checking tools
internally make use of state-of-the-art combinatorial search
algorithms (Edelkamp et al. 2008). The technical expertise
required to reliably implement such advanced techniques is
unlikely to overlap with the expertise needed to develop rich,
genre-specific design tools. Although samplers can provide
centralized implementations of powerful but otherwise in-
accessible algorithms, some effort will always be needed to
translate the abstract outputs of these techniques into game-
relevant terms.

As many instances of the gameplay trace sampling are
structurally similar to the problem of sampling photon paths
in graphics applications (ray tracing), there are significant
opportunities for parallelization, approximation, and sophis-
ticated sampling methods. To pick just one example, beam
tracing is alternative to ray tracing that, instead of tracking
individual rays of infinitesimal width, models thick beams
of light which account for bundles of related paths, account-
ing for whole polygonal surfaces at a time (Heckbert and
Hanrahan 1984). In any one application, these advanced im-
plementation techniques might be ignored in the interest of
engineering costs, but, in a reusable system, applying these
methods become much more attractive.

Extended Reach
If samplers are going to give designers visibility into the
broad space of play for the games they support, they need to
explore this space significantly faster than the designers can
do themselves in traditional playtesting. We conjecture that
the quality of insight a sampler can generate is proportional
to the logarithm of the number of traces considered by the
sampler times a factor related to the level of abstraction used
by the sampler. As a result, systems that intend to deliver
deep insight for designers (or precise metrics for larger auto-
mated systems) will demand that samplers have a wide reach
across the space of play arising from a query scenario. This
implies, compared to a reference setting of manual playtest-
ing, we should demand a significant increase over real-time
simulation. Whether this extended reach should be provided
by clever abstraction or aggressive parallelization, however,
is a subjective design choice.



New Applications
Absent the availability of samplers, many applications that
depend on them, particularly design tools that might rely on
them for interactive feedback, cannot be explored. In a plat-
former level design setting, geometric platforms could snap,
not just to a uniform grid, but to the point of first player
reachability from other platforms. For post-deployment
analysis, it should be possible to sample low-level gameplay
details that are consistent with high-level log data, allow-
ing statistical inference over unrecorded properties of hu-
man player traces. Being able to sample alternative futures
from snapshots of game state observed during high-interest
play (e.g. eSports) would allow running detailed what-if sce-
narios from player models fit to expert play styles. Until
such samplers are readily available, we can only speculate
on other what new applications might be opened up.

Closing Challenge
The technology required to develop reusable samplers is
available, but it needs to be repackaged in a more useful
way. In particular, generic sampling procedures need to be
demonstrated in a way that makes their usefulness in game
design processes clear. Game-specific shortcuts and assump-
tions should either be generalized or factored out of the de-
sign of the samplers to improve reusability. Meanwhile, new
applications that were not possible in a world without access
to samplers should be explored.

The challenge to developers of these samplers is to make
them reusable across game designs so that design explo-
ration (assumed to be contained within a single genre at a
time) is cheap to setup and apply. In order to be useful, the
interface (likely at the level of APIs) needs to expose enough
control that interesting and unforeseen game and designer-
specific questions can be asked and answered by sampling
specific kinds of traces. Samplers should just sample, accu-
rately, efficiently, and in a programmable direction, leaving
summarization and interpretation to project-specific compo-
nents.

We hope this open problem definition spurs development
of technology that changes the conversation around the use
of artificial intelligence and other forms of automation in the
game design process from “we’ve never tried something like
that before” to “we’re looking for a sampler that works for
our game’s genre.”

References
Bauer, A., and Popović, Z. 2012. RRT-based game level analysis,
visualization, and visual refinement. In Proc. Artificial Intelligence
and Interactive Digital Entertainment Conf.
Bauer, A.; Cooper, S.; and Popović, Z. 2013. Automatic redesign of
local playspace properties. In Proc. Foundations of Digital Games
Conf.
Browne, C., and Maire, F. 2010. Evolutionary game design. Com-
putational Intelligence and AI in Games, IEEE Trans. on 2(1):1–
16.
Butler, E.; Smith, A. M.; Liu, Y.; and Popović, Z. 2013. A mixed-
initiative tool for designing level progressions in games. In Proc.
User Interface Software and Technology, ACM Symp. on.

Clarke, E.; Kroening, D.; and Lerda, F. 2004. A tool for checking
ANSI-C programs. In Jensen, K., and Podelski, A., eds., Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2988 of LNCS. Springer Berlin / Heidelberg. 168–176.
Dormans, J. 2011. Simulating mechanics to study emergence in
games. In Workshops at the Seventh Artificial Intelligence and In-
teractive Digital Entertainment Conf.
Edelkamp, S.; Schuppan, V.; Bosnacki, D.; Wijs, A.; Fehnker,
A.; and Aljazzar, H. 2008. Survey on directed model check-
ing. In AAAI Wksp. on Model Checking and Artificial Intelligence
(MoChArt), 65–89.
Fisher, J. 2012. How to make insane, procedural plat-
former levels. Gamasutra. http://www.gamasutra.
com/view/feature/170049/How_to_Make_Insane_
Procedural_Platformer_Levels_.php.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game play-
ing: Overview of the AAAI competition. AI Magazine 26(2):62.
Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.; Bonawitz, K.;
and Tenenbaum, J. B. 2008. Church: A language for generative
models. In Proc. Conf. on Uncertainty in Artificial Intelligence
(UAI2008), 220–229.
Heckbert, P. S., and Hanrahan, P. 1984. Beam tracing polygonal
objects. In ACM SIGGRAPH Computer Graphics, volume 18, 119–
127. ACM.
Jaffe, A.; Miller, A.; Andersen, E.; Liu, Y.; Karlin, A.; ; and
Popović, Z. 2012. Evaluating competitive game balance with re-
stricted play. In Proc. Artificial Intelligence and Interactive Digital
Entertainment Conf., 26–31.
Jaffe, A. 2013. Understanding Game Balance with Quantitative
Methods. Ph.D. Dissertation, University of Washington.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011. PRISM 4.0:
Verification of probabilistic real-time systems. In Gopalakrishnan,
G., and Qadeer, S., eds., Proc. Conf. on Computer Aided Verifica-
tion, volume 6806 of LNCS, 585–591. Springer.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kinody-
namic planning. The International Journal of Robotics Research
20(5):378–400.
Muratori, C. 2012. Mapping the islands walkable
surfaces. http://the-witness.net/news/2012/12/
mapping-the-islands-walkable-surfaces/.
Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z. 2012.
A case study of expressively constrainable level design automation
tools for a puzzle game. In Proc. Foundations of Digital Games
Conf., 156–163. ACM.
Smith, A. M.; Butler, E.; and Popović, Z. 2013. Quantifying over
play: Constraining undesirable solutions in puzzle design. In Proc.
Foundations of Digital Games Conf.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Ludocore: A
logical game engine for modeling videogames. In Comp. Intel. and
Games (CIG), IEEE Conf., 91–98.
Tavener, S.; Perez, D.; Samothrakis, S.; and Colton, S. 2012. A
survey of monte carlo tree search methods. Computational Intelli-
gence and AI in Games, IEEE Trans. on.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards auto-
matic personalised content creation for racing games. In Computa-
tional Intelligence and Games, IEEE Symp., 252–259. IEEE.
Tozour, P. 2002. Building a near-optimal navigation mesh. AI
game programming wisdom 1:171–185.


