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ABSTRACT
Some problems in procedural content generation for games
involve hard constraints (e.g. that a generated puzzle is nec-
essarily solvable). Common techniques for generator design
lack a way to specify crisp (yes/no) constraints on what
counts as a valid content artifact and guarantee these con-
straints are satisfied in the generator’s output. In this paper
we present two independent implementations of three diverse
level design automation tools for the popular online educa-
tional game Refraction. All of the systems guarantee key
properties of their output. Applying a constraint-focused
generator design perspective in depth, we found that even
emergent aesthetic style properties were straightforward to
directly control. Our results with Refraction provide further
concrete evidence for the claim that the expressive power
of constraints and the ease with which they can be incor-
porated into suitably designed generative processes makes
them a powerful tool for producing reliably-controllable gen-
erators for game content.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games; I.2.3
[Artificial Intelligence]: Deduction and Theorem Prov-
ing – Logic programming; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search – Backtrack-
ing

Keywords
procedural content generation, backtracking search, answer
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1. INTRODUCTION
In procedural content generation (PCG) for games, the topic
of what guarantees a generator makes about its output often
goes unaddressed. When seeking to apply PCG to a future,
player-adapting version of the popular online educational
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game Refraction1, we encountered a strong need for assur-
ances regarding generated content. Refraction is a Flash
puzzle game in which players arrange devices on a grid to
construct networks of laser beams. By requiring the player
to construct beams of varying power levels, the game aims
to teach mathematical skills, such as proportional reasoning,
while exercising spatial problem solving abilities.

With regard to guarantees, we require that puzzles gener-
ated for a given player be not just solvable, but solvable un-
der conditions appropriate for that player’s progress: with
precisely dictated size, complexity, and required mathemati-
cal and spatial skills (such as being able to understand frac-
tion simplification or use three left-turns to make a right-
turn). Further, we want to prescribe aesthetics of the vi-
sual composition to continue the standards of control used
in the creation of the game’s current hand-authored puzzle
sequence. While some of these requirements flow from our
game’s educational goals, it should be clear that methods
for addressing these requirements will have use well outside
of the realm of educational games.

Content generators are often designed as either directly con-
structive processes or generate-and-test systems [15]. Con-
structive processes guarantee some properties of their out-
puts by construction, however other properties can only be
enforced by carefully hand-picking from sampled outputs.
Generate-and-test systems attempt to automate this pro-
cess, however they are often implemented as open-ended
optimization processes (such as genetic algorithms) which
still require human intervention to decide precisely when
generated artifacts are sufficiently fit for use in gameplay.
Crisp thresholds (sharp boundaries defining what content
is acceptable or not) are not defined in the problem for-
mulation used by these system because picking a single ac-
ceptance threshold on artifacts’ computed fitness (usually a
single scalar value) is difficult to impossible.

Ideally, we would have many examples of generators with
crisply defined output spaces to draw from when design-
ing new systems. These example generators should handle
the full complexity of well-known games to provide realistic
references for familiar problems. Towards generality, they
should demonstrate direct control over a wide variety of
features of interest (e.g. low-level structural validity, user-
specified control parameters, and high-level aesthetic con-

1As of March 2012, Refraction had over 490,000 plays at
http://kongregate.com/games/GameScience/refraction



cerns). Schanda and Brain’s Diorama, a highly controllable
map generator for Warzone 2100 (Pumpkin Studios 1999),
is one such system in the domain of real-time strategy games,
but it has only been briefly reviewed in the literature [12].

In this paper we describe six systems that guarantee key
output properties. We consider three diverse level design
automation problems in Refraction: generation of high-
level missions (under educational and gameplay constraints),
transforming missions into spatially-realized puzzles (which
must be solvable in particular ways), and producing alterna-
tive solutions to pre-existing puzzles (allowing us to probe
the requirements of our hand-made levels and those gener-
ated with different goals). For each problem, we provide two
system implementations. Our initial implementations were
based on either constructive techniques or familiar complete-
search techniques (bounded depth-first search). Exploring
recently proposed techniques [12], our subsequent implemen-
tations used answer set programming (ASP), a declarative
programming paradigm that targets difficult combinatorial
search problems with state-of-the-art algorithms.

Because all of our systems are correct by design (in that they
always produce content conforming to input requirements
upon termination when it is logically possible to do so), we
focus our analysis of these systems on their uncontrolled
aspects: code size, running times, accidental style features,
and authoring affordances. We found that our ASP-based
tools often produced example outputs which directly drove
refinement of our problem formulations, causing us to better
understand the deeper issues of puzzle design in games like
Refraction. Because we were able to rapidly iterate on the
specification of constraints, our later ASP-based tools are
significantly more controllable and thus more useful in the
face of our design automation problems.

The primary finding of our case study is the unexpected ex-
pressive power that resulted from the in-depth application of
a constraint-focused generator design perspective. Our re-
sults provide further evidence for the claim that declarative
languages with first-class constraints such as those available
in ASP are powerful tools for producing expressively con-
strainable generators, systems that accept a wide range of
hard constraints as part of their input while providing theo-
retical guarantees for the production of that content if it is
feasible. By treating aesthetic failures (e.g. poor composi-
tional balance of a puzzle) as equivalent to gameplay failures
(e.g. an unsolvable puzzle), we not only raise the stakes on
a question Togelius et al. [15] identify as a major research
challenge in search-based PCG (How can we avoid patholog-
ical failures? ), but provide multiple real-world examples as
answers.

2. RELATED WORK
In previous research into automatically generating puzzles,
there is often a search algorithm in the core of systems that
works to separate broken or uninteresting puzzles from those
that are well formed and elegant. Colton [3] identified puzzle
generation as a creative task, requiring a designer to produce
an artifact (the puzzle) that would cause the solver (the
player) to make a personal discovery (finding an interesting
solution). Much of the search in Colton’s system is dedicated
to ensuring that the puzzle’s intended solution is derivable

from the clues provided and that are no simpler solutions.

Focusing specifically on the problem of controlling the com-
plexity of a puzzle’s simplest solution, Ashlock [1] demon-
strated an evolutionary algorithm for generating Chromatic
and Chess mazes (both are spatial puzzles) with preferen-
tially long shortest-path solutions. Oranchak’s Shinro puzzle
generator [10] also used an evolutionary algorithm. How-
ever, instead of optimizing solution length, Oranchak’s sys-
tem optimized a metric that balanced structural validity
(which is non-trivial for Shinro, involving global agreement
of puzzle clues) with closeness to a set of user-specified pa-
rameters that expressed a target number of pieces and solu-
tion steps. Though these measures of a puzzle’s fitness pro-
vided informative evolutionary pressure to guide the search
process in the direction of desirable puzzles, they alone do
not guarantee eventual generation of suitable puzzles by
these systems (an inherent property of metaheuristic opti-
mization techniques [17] that also applies to the feasibility
constraints of FI-2Pop [9]).

Gebser’s Sudoku puzzle generator [5], by contrast, provides
strict theoretical guarantees. This 38 source-line generator,
based on answer set programming (described later), defines
the structural properties of desired puzzles (including the
minimality of clue sets with respect to ensuring a unique
solution) and then uses an off-the-shelf answer set solver
to deterministically enumerate all (and only) those puzzles
with the required properties.

A number of related systems have explored content gen-
eration with the application of hard constraints. To our
knowledge Diorama2 is the only one to enforce these con-
straints through without the need to have defined custom
algorithm. Tanagra [13] (a platformer level generator that
uses an off-the-shelf numerical constraint solver to enforce
reachability for all of a map’s platforms), SketchaWorld [11]
(a declarative 3D modeling tool for terrains that foregrounds
constraints in its user interface), and the layout solver de-
scribed by Tutenel et al. [16] (rule-based system for arrang-
ing building-interior scenes under layout constraints) are
highly relevant projects whose applicability to a deployed
game remains to be seen.

3. ANSWER SET PROGRAMMING
While a best-first heuristic search algorithm such as A∗ is
likely to be familiar to game developers, the search algo-
rithms3 underlying some of the core tools in our systems are
less so. We have made extensive use of answer set program-
ming (ASP), a logic programming paradigm that borrows
syntax from Prolog and search algorithms from solutions to
the Boolean satisfiability (SAT) problem [2].

Like regular expressions for string matching or structured
query languages (SQL) for retrieval from databases, AnsPro-
log (the common language for answer set solving systems)
is a highly declarative language for solving combinatorial
search and optimization problems, not a general-purpose

2http://warzone2100.org.uk/
3The answer set solver we used employs conflict-driven no-
good learning (CDNL), a state-of-the-art, complete, back-
tracking, heuristic search algorithm loosely inspired by the
Davis-Putnam algorithm for Boolean satisfiability [7].



programming language such as C++ or Java. Most ASP
systems work by translating the programmer-provided prob-
lem definition into a low-level, domain-independent repre-
sentation through the process of grounding (also called in-
stantiation). Then the ground problem is solved by a high-
performance combinatorial search algorithm.

One of the goals of ASP is to allow programmers to construct
solutions to complex search problems without the need to
develop and maintain advanced combinatorial search infras-
tructure. The imperative details of the answer set solver’s
underlying algorithm (which are easily reconfigured with
command-line settings) are unimportant so long as suitable
outputs are produced in an acceptable amount of time.

3.1 ASP for PCG
In a recent journal article [12], we described the general ap-
proach of applying ASP to PCG problems, offering a tutorial
introduction to answer set programming and a review of four
existing applications using the technique.

Regarding the software engineering practices around using
ASP for PCG, we noted that properties of artifacts pro-
duced during the development of a generator will often in-
spire changes to the design space definition, motivating the
need for flexible generation systems which admit sculpting
the space of outputs without an overall redesign of the gen-
erator. Some of these changes involve “zooming in” on con-
tent exhibiting patterns of interest or rejecting content with
easily describable flaws.

In contrast with modern multi-paradigm languages (e.g.
Python), the structure of answer set programs is relatively
simple. These logic programs contain two constructs: facts
and rules. Facts are statements (akin to data literals or doc-
uments in a data language like XML) that can be used to de-
scribe bulk configuration or the properties of an input prob-
lem instance. Three types of rules control the production
of new facts. Choice rules specify how to guess a descrip-
tion of a candidate solution. Deductive (Prolog-like) rules
specify how to deduce the properties of a guessed solution.
Finally, integrity constraints forbid solutions exhibiting or
not exhibiting certain deduced properties.

For the purposes of high-level design, the programmer can
imagine the answer set solver runs a generate-and-test pro-
cess, repeatedly guessing solution candidates, deducing their
properties, and then testing if they should be forbidden. In
actuality, solvers will propagate constraints forwards and
backwards through the rules in a non-trivial manner that
further includes learning of new constraints (called nogoods)
on the fly from dead-ends discovered by the live search pro-
cess. Further, whole spaces of partial solutions that exhibit
forbidden substructures are often eliminated before any are
completely assembled.

When building a content generator with ASP, the program-
mer focuses almost exclusively on how the content design
space is declaratively defined, treating the solver as an un-
interesting black box.

4. REFRACTION PUZZLE DESIGN

Figure 1: A screenshot of gameplay in Refraction depict-

ing a puzzle solution involving benders, splitters, com-

biners, and an expander.

The premise of Refraction is that the player must arrange
devices to form a network of laser beams that will restore
power to animals stranded in underpowered spaceships. The
power of laser sources and the power required by targets are
mismatched, so the player must split and recombine beams
to provide power in the correct proportion, indicated by a
fraction. Figure 1 shows an example puzzle and solution.

When play begins, the 10-by-10 grid is clear except for laser
sources, laser targets (animals in spaceships), and blockers
(asteroids or other space debris). The position and orien-
tation of these pieces are fixed. Additionally, sources and
targets are annotated with the fractional power that they
emit or require to be satisfied.

All player-movable pieces (beam manipulating devices with
a fixed rotation) start in the panel on the right. There are
four broad piece categories. Benders simply apply a 90-
degree deflection to a beam without changing power. Split-
ters consume one input beam and produce two beams at
one half of the input power (or three beams at one-third
power depending on the number of outputs on the splitter).
Combiners (which come in two-input and three-input vari-
eties) produce an output beam with a power that is the sum
of all of the input beams (but only if all inputs are filled
and the input fractions share the same denominator). Ex-
panders (which do not deflect) facilitate combining of unlike
fractions by multiplying the numerator and denominator by
a common factor. Expanders are available with factors of 2,
3, and 5 such that applying a 3-expander to the fraction 1/2
results in the (unreduced) fraction 3/6.

Not all of the pieces provided to a player are necessary to
form a solution. Most puzzles will include extra pieces that
are intended to distract the player. Distractors are not al-
ways useless because they may be used to construct alternate
(often more elaborate than necessary) solutions.

The designer’s challenge is to produce a progression of puz-
zles that incrementally introduces the player to the spa-
tial and mathematical reasoning challenges of the game and
eventually prepares them for the game’s full complexity, re-
quiring fluent use of many types of pieces simultaneously. In



the context of this progression, it is clear that what makes
a level acceptable (as the product of generation) depends
far more on its relevance to the player’s progress than any
simple measure of its solution length or the like.

The bare-minimum challenge for deployable level design au-
tomation in Refraction is to produce a generator that can
recreate levels in the style and complexity of each point in
the current, hand-authored linear progression. Even this re-
quires generators with highly controllable output sufficient
to express what makes a puzzle appropriate for the very be-
ginning, the very end, or, say, the first level that introduces
expanders. Beyond this, we are interested in enabling non-
linear, player-specific concept and difficulty progressions.

5. PROBLEM FORMALIZATION
To make the challenge of level design automation for Re-
fraction more concrete, we have broken it down into three
artifact generation problems. To structure our puzzle gener-
ator, we have adopted Dormans and Bakkes’ [4] distinction
between missions and spaces. A mission is a logical order
of the goals a player must accomplish to complete the level,
and a space is the actual physical layout of the level. Our
first two problems are concerned with producing missions
for Refraction and subsequently embedding those missions
in a puzzle grid. The final problem is concerned with seeking
alternative solutions to existing puzzle designs, regardless of
the mission for which it was originally designed.

5.1 Mission Generation
The intent of the mission generation problem is to capture
the high-level design concerns of a Refraction puzzle: Which
pieces are active? How big is the imagined solution? What
level of mathematical knowledge will be involved? Because
fractions are integral to the game’s educational goals, mis-
sion generation includes working out which fractions should
be constructed and how the construction might proceed.

The primary input to our mission generators is a set of math-
ematical expressions that the player should construct during
play. The set {(1/2) + (1/4), (1/4) + (1/4), (((1/2)/2)/2)}
suggests the need for adding twice (once with the use of
an expander to build a common denominator) and repeated
splitting by half. The mission generator is also given a target
number of blockers (24), benders (7), and distractor pieces
(7) to modulate difficulty. These were the inputs to the
mission generation process that eventually resulted in the
puzzle and solution shown in Figure 1.

In the ASP-based mission generator, an upper bound and
optional lower bound on piece counts are specified for all
piece types, along with style constraints affecting the pres-
ence or absence of arbitrary mission subgraphs. These con-
straints are not expressible with the initial mission generator
(described later) without a major redesign.

The output of mission generation is an annotated directed
acyclic graph (DAG) where there is a node for every piece in
the imagined puzzle and an edge for every solution-critical
laser beam connecting pieces. Nodes describe a piece’s
mathematical type (such as 2-splitter or 5-expander) but
not its spatial type (such as having an input from the west
and an output to the north). Source and target nodes are la-
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Figure 2: A mission DAG containing several 2-splitters

(S2), benders (B), 2-combiners (C2), and a 2-expander

(E2). Several blockers (x) and distracting pieces will also

be present in any spatial realization of this mission.

beled with the fraction power they emit or require. Figure 2
shows an example mission satisfying the constrains above.

5.2 Grid Embedding
In the grid-embedding problem, the intent is to realize a
puzzle with sufficient detail to be played in the live game.
That is, embedding resolves the spatial concerns ignored
in the mission generation problem. While the current ver-
sion of Refraction is played on a discrete, rectilinear, two-
dimensional grid, a version for play on, say, continuous
spaces, hex maps, or three-dimensional grids would not dis-
rupt our high-level problem formulation or solution meth-
ods.

The primary input to the embedding problem is the same as
the output of the mission generation problem. These mis-
sion DAGs may come from either of our mission generation
systems, extraction from the hand-designed levels, or origi-
nal human authoring effort. The ASP-based embedder also
accepts additional style constraints describing spatial prop-
erties such as symmetry, compositional balance, and piece
spacing.

The output of grid embedding is the (x/y) position and
(north/south/east/west) input/output port configuration of
all pieces such that one example solution is constructed that
realizes the input mission DAG. Figure 3 shows an alternate
embedding, to the one depicted in Figure 1, for the mission
shown in Figure 2. Generally, there may be astronomically
many valid embeddings of a mission, but we are concerned
with producing only a single one.

5.3 Puzzle Solving
Finally, the intent of the puzzle-solving problem is to simply
construct alternative reference solutions (at the spatial grid
level). In addition to revealing which pieces and patterns are
required in a solutions to a puzzle, a fully automated puzzle
solver can be used to provide feedback to players by telling
them if their solution-under-construction can be extended
to a complete solution without removing any piece already
placed. This same type of partial solution feasibility check-
ing can be used in offline analysis of recorded game data
to track how much time different players spend in infeasible
regions of the game’s state space.

The input to the puzzle-solving problem is a complete def-
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Figure 3: An embedding of the mission DAG from Fig-

ure 2 into Refraction’s 10-by-10 spatial grid under no

special style constraints.

inition of available pieces and their mathematical and spa-
tial configurations (excepting the positions of player-placed
pieces, of course). The ASP-based puzzle solver also takes
additional style constraints as input: requirements to use or
avoid a certain piece or grid cell, to construct or not con-
struct certain sub-networks of laser flow, etc.

The output of puzzle solving is simply the position of every
piece such that the resulting configuration satisfies all laser
targets or an assertion that the puzzle has no solution of the
required style.

6. SYSTEM DESCRIPTIONS
In this section we describe the two implementations of each
of our three level design automation tools. We review them
in the order they were developed to help convey the idea
that each was a legitimate best-effort research solution to
the stated problems given the knowledge at hand. Each
system was created with the intent of use in a production
setting, not specifically for the purposes of comparison.

6.1 Feed-Forward Mission Generation
Addressing the first problem, that of generating high-level
missions, our initial implementation adopted a constructive
approach consisting of a seven-step pipeline:

1. Expression Translation: Mission graph fragments cor-
responding to the required input expression trees were
generated though straightforward compiler techniques.
For example, {(1/4)+(1/4)} becomes a three-node graph
with one 2-combiner node (to represent the “+”) linked
by edges labeled 1/4 from two untyped nodes.

2. Opportunistic Combination: In a randomized fash-
ion, nodes are unified so that the output of one required
expression could be the input to another. This process
proceeds, avoiding cycle creation, until exhaustion.

3. Target Completion: To motivate (though admittedly
not to guarantee) the player to construct the imagined

graph so far, target nodes are added to consume all laser
outputs that are not consumed by another piece already.

4. Expander Insertion: Expanders are inserted so that
the inputs to combiners all have the same denominator.

5. Bender Insertion: The requested number of bender
pieces are randomly inserted into the graph on paths be-
tween sources and targets.

6. Distractor Selection: A number of randomly typed
pieces are also added to the graph without adding edges.

7. Obstacle Insertion: Similarly to distractors, the re-
quired number of disconnected blocker pieces are added.

By construction, generated mission DAGs will describe fea-
sible solutions (at least at the network level) that involve
the required mathematical construction and the requested
number of blockers, benders, and distractors. This system
serves as an example how to guarantee certain properties of
outputs through bespoke algorithm design. Note, however,
that the above algorithm is carefully adapted to just those
design requirements known at the time of its creation.

6.2 Grid Embedding with DFS
The problem of grid embedding immediately appeared to
us as a highly constrained search problem (unlikely to be
fruitfully addressed with feed-forward or simple generate-
and-test approaches). While the problem somewhat resem-
bles the place-and-route problem from electronic design au-
tomation (EDA) [14], the particular mechanics of Refraction
made a hand-rolled complete-search implementation seem
the most approachable solution at the time.

Our randomized depth-first search (DFS4) algorithm was
configured as follows:

• States: list of embedded pieces and their positions; graph
of remaining pieces to be embedded; list of outgoing
beams with their directions

• Successor Function: place a piece with no un-
embedded inputs from the mission somewhere along the
beams to which it must connect and assign its input di-
rections as necessary; if the piece has output directions,
then assign them randomly at this time according to the
piece’s type (ensuring benders deflect the laser, etc.)

• Goal: no pieces remain to be embedded

When our DFS terminates at a goal state, that state nec-
essarily represents a valid embedding of the mission DAG
with respect to Refraction’s rules. While this implementa-
tion is sufficient to solve the problem, we later back-ported
the use of a geometric restart policy (a common technique
for boosting combinatorial search [8]) from our ASP-based
embedder, resulting in observed performance improvements
of up to four orders of magnitude for realistic problems.

4Note that DFS is complete for search spaces with bounded
diameter. In the grid-embedding problem, no paths have a
length that exceeds the total number of pieces in a puzzle.



6.3 Puzzle Solving with DFS
Based on the initial success with DFS as an implementation
strategy for complete and correct embedding, we decided to
address the problem of producing reference solutions with
this algorithm as well. Puzzle solving involves a similar
spatial search to the embedding problem. However, in em-
bedding, a plausible solution graph (the mission DAG with
fully-resolved mathematical concerns) is given and the piece
input/output port configurations are flexible (to be gener-
ated). In solving, port configurations are constrained as part
of the input and no solution sketch is provided (dramatically
complicating the problem).

Our DFS for puzzle solving was configured as follows:

• States: list of pieces placed so far and their positions; list
of outgoing beams with their direction and power

• Successor Function: select an unused piece that has
an input port that can accept an existing, unconsumed
outgoing beam and place it somewhere along that beam;
decide if the new piece will produce new beams, and com-
pute their direction and power

• Goal: the simplified sum of beam powers entering every
target matches its required value

As before, correctness with respect to input requirements
on successful termination is assured by well-known results
for DFS. The geometric restart policy was also back-ported
to the DFS-based puzzle solver after our experiments with
ASP, yielding solutions for previously intractable puzzles.

6.4 Grid Embedding with ASP
Having assembled and tested the previous three systems and
integrated them into a research version of the game, we iden-
tified the existing grid embedding system as the biggest bot-
tleneck for runtime performance and expressive control in
our plans for a player-adapting revision to the game. Seeking
to replace this system with a simpler (towards better adapt-
ability) and potentially faster implementation, we adopted
the following organization for our ASP-based grid embed-
ding system.

• Choice Rules:

– Guess absolute (x/y) positions for pieces.

– Guess port configurations based on piece type.

• Deductive Rules:

– Deduce relative (north/south/east/west) positions from
absolute positions.

– Deduce free paths from relative positions.

– Deduce realization of beams (embedding for mission
edges) from paths and guessed port configurations.

– Deduce presence of style patterns (compositional bal-
ance, symmetry of blockers, etc.).

• Integrity Constraints:

– Forbid two pieces overlapping.

– Forbid lack of embedding for mission edges.

– Forbid illegal port configurations (benders must bend,
expanders must not, etc.).

– Forbid violation of style policy (reject if balance or sym-
metry not detected, etc.).

Correct enumeration of all and only those embeddings that
are valid is assured by the correctness of the answer set
solver. The source code for our ASP-based embedder did
not contain any descriptions of search algorithms, only a
declarative description of the search space, artifact analysis
methods, and goal conditions.

6.5 Mission Generation with ASP
Success in using the ASP-based embedder as a drop-in re-
placement for the previous embedder was enticing, so we
next looked at replacing the mission generator with an ASP-
based variant as well.

Thus far, the mission generator and grid embedder had been
run with an overall generate-and-test architecture (because
some mission DAGs are formally impossible to embed, such
as those containing triangular undirected cycles). ASP held
promise for the ability to run the mission generator and
grid embedder as an integrated whole under constraints that
jointly bound both phases of generation. With the goal of
upgrading our embedder into a complete puzzle generator,
our ASP-based mission generator was designed as follows.

• Choice Rules:

– Guess which pieces will be active.
– Guess power level for laser sources.
– Guess presence of edges between pieces.

• Deductive Rules:

– Deduce a piece’s emitted laser power from the power of
all edges into it (using a recursive definition).

– Deduce simplified power for all targets.
– Deduce set of pieces that are upstream of active targets.
– Deduce the presence of mathematical or other graph

properties (“half plus quarter”, “triple bending”, etc.).

• Integrity Constraints:

– Forbid directed edges above port limits (only one edge
into a splitter, only one edge out of a combiner, etc.).

– Forbid edges to nodes not on a path to a target.
– Forbid presence or absence of particular mathematical

and style patterns.

To simplify the AnsProlog definition of mission generation
logic, we used an auxiliary answer set program to pre-
compute a table of all ways of manipulating beams of dif-
ferent powers. Parts of this program (notably Euclid’s algo-
rithm used in fraction simplification) were expressed in Lua,
a scripting language made available for performing arbitrary
transformations of logical terms with imperative code.

The final ASP-based mission generator can be run stan-
dalone, as a drop-in replacement for the previous mission
generator, or it can be combined with the ASP-based grid
embedder (by simply concatenating the source for the two
programs) to form a monolithic puzzle generator.

6.6 Puzzle Solving with ASP
With the accumulated logical modeling experience of pro-
ducing the mission generator and grid embedder, creating a
styleable puzzle-solver using ASP was straightforward.

• Choice Rules:



– Guess piece positions (the player’s only responsibility).

• Deductive Rules:

– Deduce relative positions from piece positions.
– Deduce free paths from relative positions.
– Deduce beam flow from paths and port configurations.
– Deduce emission fractions from beam flow (recursively).
– Deduce target power from beam entrance.
– Deduce presence of solution-style patterns.

• Integrity Constraints:

– Forbid two pieces overlapping.
– Forbid leaving targets unpowered.
– Forbid incorrectly powering targets.
– Forbid violation of style policy.

In the puzzle solver, a piece’s effect on fractions was again
expressed in Lua. However, no table was pre-computed be-
cause, when pieces are fully specified, a much smaller and
puzzle-specific space of fractions is encountered.

In addition to correctly reporting whether a puzzle is solv-
able under stylistic restrictions (yes/no), this puzzle solver
is radically reusable for online and offline analysis of partial
solutions and queries as to whether a particular piece type
or placement is essential to solving a puzzle (regardless of
the originally imagined mission for that puzzle).

7. ANALYSIS
Our comparative analysis of the two sets of level design au-
tomation tools breaks down into a quantitative comparison
of the software systems and a qualitative comparison of the
inputs and outputs for each tool.

7.1 Quantitative Comparisons
When comparing our respective generator implementations
side-by-side, the most apparent difference is in their lan-
guage distribution and code size. The original tools consist
of a moderate amount of Java code whereas the newer tools
consist of a smaller amount of code in AnsProlog and Lua.
For the three tools, here are the code size5 distributions:

• Mission Generation:
1,145 Java lines — 194 AnsProlog, 38 Lua lines

• Grid Embedding:
987 Java lines — 75 AnsProlog, no Lua lines

• Puzzle Solving:
988 Java lines — 83 AnsProlog, 61 Lua lines

In another numerical comparison, we looked at the running
time of the tools on a fixed set of inputs derived from the
example shown in Figure 1, a high-complexity puzzle in the
class of late-game challenges that involve several pieces from
every major piece category. Configuring the tools as equiva-
lently as possible (applying no style constraints for the ASP-
based tools), we averaged times6 for 1,000 runs with different
random seeds.
5We counted (non-blank, non-comment) source lines. These
line counts are intended to record all code needed to support
each tool assuming the others already existed (thus, shared
utilities such as parsers and printers for the XML level file
format are not counted).
6Experiments were performed on a 2006-era (“Dempsey”)
Intel Xeon CPU at 3.0 GHz. DFS times record search-time
for the implementation with restarts.

• Mission Generation:
Feed-forward algorithm: < 1 ms. total
ASP: < 1 ms. search (530 ms. grounding/preprocessing)

• Grid Embedding:
DFS: 650 ms. search (negligible overhead)
ASP: 110 ms. search (630 ms. grounding/preprocessing)

• Puzzle Solving:
DFS: did not find solution within 1-hour timeouts
ASP: 350 ms. search (340 ms. grounding/preprocessing)

Generally, for difficult search problems, the advanced search
algorithms of the answer set solver (Clingo 3.0.3 [6]) are bet-
ter suited than the hand-rolled search in the original tools
(dramatically more so before the post-hoc addition of a geo-
metric restart policy). In all cases, the ASP-based solutions
spend a significant amount of time on non-search activities
(predominantly in propositional grounding). This ground-
ing cost need only be paid when input requirements change
if the grounded program is cached. Although the time re-
quired for grounding grows with problem size (our current
encodings are cubic in player-controlled piece count), the
fact that Refraction is played on a constant-bounded scale
(with no more than a handful of player-controlled pieces)
means this growth is a theoretical curiosity so long as re-
sults are swiftly found at the scale of interest. That the
solver’s worst case running time is bounded only by an ex-
ponential in the size of the grounded problem is similarly
uninteresting for realistic problems.

7.2 Qualitative Comparisons
Resulting from the target completion phase used in the con-
structive mission generator’s pipeline, every mission DAG
generated by this implementation describes a puzzle solu-
tion that does not involve laser wasting (the situation where
a beam emitted by one of a piece’s outputs goes unused in
the solution). While (in concert with distractor pieces) play-
ers are often capable of wasting lasers if they choose, this
style quirk of the original mission generator is an interesting
secondary effect of attempting to motivate players to con-
struct a particular network. Knowing of the laser wasting
aversion in the original generator, the ASP-based mission
generator intentionally includes hooks for requiring or for-
bidding the presence of laser wasting at the mission level.
Similarly, the greedy nature of the opportunistic combina-
tion phase meant that mathematical expressions would only
be realized in a subset of all feasible ways, prompting the
subsequent development of arbitrary mission subgraph con-
straints which could control how expressions were realized
more generally.

In the ASP-based embedder, we found that running the an-
swer set solver with a fast-but-simplistic heuristic often led
to embeddings that compacted all of a puzzles pieces into
a cluster near the one corner of the grid. Crudely address-
ing this concern by telling the answer set solver to use more
randomness in its search or to use a different heuristic was
not a reliable solution. While the compacted embedding was
in strict conformance with the definition of the embedding
problem, the result was aesthetically unacceptable. Analysis
of these compacted solutions prompted us to define a basic
model of compositional balance: after deducing active hemi-
spheres (e.g. “laser flows through a piece in the west half of
puzzle”), we forbid configurations that leave any hemisphere
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Figure 4: Two oppositely styled embeddings: the left

exhibits compositional balance, blocker symmetry, beam

spacing, and a lack of crossings while the right exhibits

forced imbalance on both axes, asymmetry, piece abut-

ting and multiple beam crossings.

inactive. The pattern of “abutting” (where laser flows be-
tween two immediately adjacent pieces without revealing the
beam) could also be controlled to produce cleanly spaced ref-
erence solutions (meaning that players, particularly novices,
would not be required to abut their pieces to complete the
puzzle). Finally, the pattern of “crossing the beams” rep-
resented yet another feature of exactly-controllable output
style in the ASP-based embedder. Figure 4 demonstrates
driving the embedder in opposite stylistic directions.

When no style constraints are provided for the ASP-based
embedder, the space of embeddings it might generate is iden-
tical to that of the DFS-based embedder running on the
same inputs. Adding style constraints results in a genera-
tive space that is a strict subset of the unconstrained space.
A similar situation applies to adding style constraints to the
ASP-based puzzle solver.

While the original puzzle solver was intended primarily to
produce a simple (yes/no) answer, the inclusion of style con-
straints in the input to our other tools naturally prompted
our brainstorming of the potential alternate uses of an ex-
pressively constrainable puzzle solver mentioned previously.
The ability to attach novel constrains to the input of our
ASP-based tools, even when the existing definitions were
not designed with these constraints in mind, represents a
major qualitative difference between our two sets of tool im-
plementations owing to ASP’s architectural affordances.

7.3 Conclusion
We have described six examples of level design automation
systems that make hard guarantees on key properties of their
output. Covering three diverse level design automation chal-
lenges for Refraction, we have demonstrated that such guar-
antees can be made for the full complexity of a popular on-
line game (further, one that was not designed around future
design automation). In achieving this for an initial set of
constraints, we made use of a constructive generator (which
guarantees properties of its output by careful construction)
and a familiar complete-search algorithm (DFS in a bounded
space). To quickly produce generators for a wider variety of
output guarantees, we explored emerging PCG results sug-
gesting the use of answer set programming to declaratively
capture exactly the design space we required.

Our results suggest the developers of procedural content gen-

erators should not shy away from working with hard con-
straints. By applying a constraint-focused generator design
perspective in depth, it is possible to not only produce reli-
ably controlled generators with attractive performance mea-
sures, but to also come to better understand design automa-
tion problems through iterative exploration of constraints
and generated output
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