
SMES: Adapting Dexterity-based Games for Deliberative Play

Batu Aytemiz, Hunter Lynch, Carl Erez, Adam M. Smith

University of California, Santa Cruz
1156 High Street

Santa Cruz, California 95064
{baytemiz, hflynch, cerez, amsmith}@ucsc.edu

Abstract
In this paper we describe the Sharp Multi-input Editing Soft-
ware (SMES), a prototype system which allows players to
convert dexterity challenges to planning challenges in exist-
ing games. SMES accomplishes this by recording the player
input, displaying it in a visual form, allowing the player to
edit the recorded playtrace, and replay the edited sequence
back again. Our system combines ideas from tool-assisted
speedruns (TAS) with interaction design patterns from Ca-
sual Creators and Accessible Player Experiences. Because
our implementation is based on intercepting input events at
the operating system level, no engineering effort is needed
to apply the tool to new games. The result is a new mode
of play for existing games that further allows players to real-
ize new behaviors in the game. SMES could support making
games more inclusive by letting players adapt the challenge
type they face. Furthermore we claim that AI systems that
operate over playtraces to assist the player is a rich avenue to
explore.

Challenge is a crucial component of videogames (Adams
2014). From solving puzzles to defeating enemies, from
scaling cliffs to uncovering mysteries, games often ask their
players to overcome a variety of obstacles. The presence
of at least some challenges has shown to be important for
player engagement and fun (Juul 2009). Yet, not everyone
wants to engage with the same types of challenges (Hamari
and Tuunanen 2014). One group of players might find dex-
terity based challenges more fun whereas others might pre-
fer a slower-paced logical puzzle. Furthermore, an individ-
ual player might want to engage with different types of chal-
lenges at different times.

Beyond personal preference, however, some challenges
can be much less accessible to certain groups of players.
If one has a motor disability then it is much more diffi-
cult for them to engage with a high-intensity dexterity based
game (Pitaru 2008). It is one thing for a player to choose to
not play a certain type, and another for the player to not be
able to play the game.

When faced with barriers to engagement it is common
for people to modify games through using the different in-

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

terfaces to play the game such as switch controls (Sethfors
2018) or Microsoft Universal Controller (Englard 2018), or
by changes in software via trainers.

Inspired by the spirit of modifying how people engage
with games, in this paper we discuss our work-in-progress
Sharp Multi-input Editing Software (SMES). The SMES al-
lows converting high-paced dexterity based challenges to
deliberative planning challenges in a narrow set of games
that exist in the wild. SMES was built with difficult plat-
formers with very short levels in mind such as Celeste (Matt
Makes Games 2018) and Super Meat Boy (Team Meat
2010).

SMES allows the players to save, display, modify and re-
play their keypress sequences. SMES works through the fol-
lowing four steps:

1. The player attempts the challenge and SMES records their
keypresses.

2. The SMES visualizes the keypresses over time.

3. The player makes experimental changes to the keypresses.

4. The SMES replays the edited keypresses (and the player
returns to step 2).

This loop allows the player to change how they engage
with dexterity based games. The challenge stops being about
the precise timing of button presses, but rather becomes
more like a puzzle game where the player incrementally re-
fines the play trace until they clear the level.

When we extract and replay the playtrace of the player,
we treat the sequence of actions as a stateless, fixed pol-
icy. Similar stateless action sequences have been used suc-
cessfully for difficult exploration problems (Ecoffet et al.
2019) (Zhan, Aytemiz, and Smith 2018) and is shown to be
a promising starting point.

We believe that AI techniques can be effective in assisting
players while operating on playtraces. Representing dexter-
ity based games as playtraces, and then recording how player
changes allows us to get another type of data as to how a
player might improve their playtraces.

In the rest of this paper we will discuss the technical de-
tails and the design decisions of SMES, and how the ex-
tracted play traces can be a fruitful avenue for AI research.



Figure 1: On the left, the approximate path that player took from the bottom left of the map to the top right of the map in the
game Celeste. On the right, the buttons press sequence that the player pressed in order to take this path.

Related Work

Videogames provide intrinsically valuable experiences to
millions of individuals (Juul 2011). Maybe more impor-
tantly, games are an important part of how people connect to
one another (Organization 2020). While multiplayer games
offer moment-to-moment connectivity, the connective na-
ture of games also extends to single player games through
creating a set of shared experiences (John 2020) and com-
munities (Gee and Hayes 2012).

It is important for everyone to be able to engage in this
shared culture. Yet, through a combination of design deci-
sions of developers and differing abilities of players, a sig-
nificant group of people are excluded from engaging with
games (Taylor 2013). To make games more inclusive, in re-
cent years there have been a number of games that include
assist modes such as Celeste (Matt Makes Games 2018) and
Super Mario Odyssey (Nintendo 2017). These assist modes
allow the player to change the magnitude of difficulty they
encounter by tweaking variables such as game speed, player
and enemy attributes and other relevant factors. The addition
of assist mode has been met with positive feedback from the
players (Klepek 2019).

Most assist modes do not modify what type of challenge
there is but rather they work by changing the magnitude of
the challenge. In this project we wanted to explore whether
we could change the type of challenge that the game pre-
sented. We use the Taxonomy of Failure (ToF) to categorize
the types of challenges (Aytemiz and Smith forthcoming).
ToF offers six different categories of failure which map to
different types of challenges that exist in a game. For this
project the relevant categories are Planning and Execution.

Planning refers to the challenge category where the player is
deciding on what actions to take. The Execution category on
the other hand refers to the challenge of the player to actu-
ally take those actions, by pressing the correct buttons in the
correct order and timing.

In the context of difficult platformer games, which SMES
is targeting, the planning challenge would be deciding what
route to take and when to use the relevant abilities such as
dash or jump, and the execution challenge would be related
to pressing the buttons to activate the relevant abilities at the
correct time. Our goal in this project is to replace the chal-
lenging execution aspect from playing difficult platformers
into a planning one.

Instead of building a new game that has the planning chal-
lenge present as a default, in this project we explore a tool
that targets already existing culturally relevant games and
supports people’s ability to engage with them. While there
have been many successful games that are specifically de-
signed to target groups with disabilities (Grammenos et al.
2006) we believe that due to the social nature of games it is
important to support players in engaging with pre-existing
cultural artifacts.

In building the SMES we were inspired by the ideas of
transgressive play (Aarseth 2014) and the diversity of ways
players customize how they engage with games. One ex-
ample of this is the WeMod community1. WeMod allows
players to reconfigure over a thousand single player games
through a unified interface, letting them customize the game
to their liking, often through changing difficulty and pro-
gression variables. As of July 2020 WeMod advertises that

1https://www.wemod.com



it has over 8 million users. This shows that a significant pop-
ulation of players are accustomed to modifying their play
experience by reaching outside the game.

The Speedrunning community is another group that in-
spired this project. Speedrunners are interested in com-
pleting a game as fast as humanly possible. Tool Assisted
Speedruns (TAS), take this concept a step further and use
emulators to complete a game as fast as possible using any
and all available tools. While most TAS systems run the
game in an emulated environment to have frame by frame
control, in order to increase generalizability of our system
we simply replay keypress events (which is not guaranteed
to reproduce gameplay over long periods of time) instead of
attempting to emulate the whole game.

The disability community has also been customizing the
way they engage with games through a combination of soft-
ware and hardware (Beeston et al. 2018). The Accessible
Player Experiences (Cairns et al. 2019) design patterns are a
great resource when it comes to making games more inclu-
sive. These 22 patterns target both the ability of the players
to access the game content, and their ability to adjust the
challenges present in the game. In the later chapter we will
be discussing how SMES fits these design patterns.

Technical Design of the SMES
Design Inspirations
Before the development phase of the SMES we reached out
to different communities on Reddit to inform our design. We
had conversations on the disabledgamers, TAS (tool assisted
speed run) and pc gaming subreddits. While few in number,
the discussions around how such a tool might be used was
immensely valuable in prioritizing certain features over oth-
ers and understanding potential user needs.

Our design was informed by a public discussion of a sys-
tem prototype on Reddit’s r/disabledgamers commu-
nity and r/TAS communities

We incorporated casual creator design patterns wherever
possible (Compton and Mateas 2015). Casual creator pat-
terns aim to make systems more usable and friendly. While
these design patterns are traditionally used in the context
of generative systems, we found them useful in our design.
Like most casual creators, SMES is a tool that prioritizes ap-
proachability and flexibility over control and frame-perfect
precision.

Finally SMES also drew inspiration from the Accessi-
ble Player Experiences (Cairns et al. 2019) (APX) patterns.
APX patterns have two distinct categories: Access patterns
support players accessing the game by allowing them to tune
the experience to meet their unique needs, and challenge pat-
terns on the other hand allow players to modulate the amount
of challenge they want to face.

Recording Key Presses One decision we had to make
early on was what layer of abstraction to have SMES in-
tegrate. While extending an emulator would allow us to be
much more precise both in recording and replaying our play-
traces, it would also limit the games that the SMES would be
compatible with to those that could run on the decided em-
ulator. One of our guiding principles while building SMES

was to support access to a broader set of culturally relevant
games, and we therefore decided not to limit ourselves with
any specific emulator

In order to reach a wider range of games SMES uses the
Win32 API2 to integrate into the keyboard input layer. After
the player starts recording, the SMES intercepts and saves
the virtual keyboard calls that happen while the game is
focused. When the player stops recording, the keypresses
are saved into a text file. Having players seed the starting
playtrace with their own action connects with the “No blank
slate” pattern of casual creators. While the players can start
from scratch to create the full playtrace using SMES, having
a starting playtrace to edit makes the iterative process much
faster.

To support the quickest edit-and-replay interaction loop, it
is the player’s responsibility to include input sequences that
would reset the game to a safe state (e.g. accessing an in-
game menu to restart the level from a checkpoint). If there
is no such obvious sequence to include in the playtrace that
will accomplish this goal, the player can always use manual
controls (similar to how they recorded the original playtrace)
to reset the game before continuing the SMES loop.

Representing Key Presses It is common for speed-runs
to be shared through a BK23 file. These files are a way to
record which combination of keys were pressed down at
which frame. Inspired by this, our intermediate representa-
tion is in a simple human readable text file. This was decided
in part to support the easy sharing of play traces. The easy
sharing component is aligned with the “Self promotion” ca-
sual creator design pattern that acknowledges the shared and
social nature of playing games and generation.

Having a semi-permanent copy of the playtrace that the
player can keep editing also aligns with the “Save Early,
Save Often” and “Slow it Down” patterns of APX. The
player can take as many iterations as they would like to
edit the playtrace. This allows the player to engage with the
game on their own pace instead of being locked to the speed
the game demands. Furthermore, even if they have to close
SMES and come back later, the text file will be there for
them to pick up where they left of

Because SMES can not know what exact frame each but-
ton was pressed, instead of matching keypresses to frames,
we record the timing of each press. We record the timing of
whenever a key is pressed down and later released. However,
instead of recording at what time these actions of key down
and key up happen, we record how much time elapses in
the middle. This makes keeping track of multiple keypresses
and the duration of a specific keypress easier. To be more
specific, our representation is a series of two data points,
the action type and the modifier. There are three possible
actions, key down, key up, or delay, and each action has a
modifier associated with it. If the action type is key up or
down, then the modifier is the name of the key that is pressed
or released. Whereas if the action type is delay, the modifier
is how many milliseconds have elapsed since the last entry.

2https://docs.microsoft.com/en-us/windows/win32/api/
3http://tasvideos.org/Bizhawk/BK2Format.html



Figure 2: The visual path that is described by the given play-
trace.

Let us give an example of a playtrace. Imagine a character
starts running to the right, then jumps over a gap, and stops
running. This can be shown as follows:

key_down , d

delay , 500

key_down , w

delay , 1000

key_up , w

delay , 500

key_up , d

In this example, the player holds down “d” for two sec-
onds, while pressing “w” for a single second in the middle.

Visualizing and Editing Keypresses After the playtrace
is saved into a text file, the SMES GUI loads them and visu-
alizes them. The current GUI is written using the QT frame-
work and is still a work in progress. While designing the
visualization we were inspired by digital audio workstation
(DAW) software packages. SMES allows the users to ma-
nipulate the playtraces by changing when and for how long
a key is pressed down. When the desired changes are done
the updated playtrace is once again saved into the text docu-
ment.

This design is aligned with the “Improved Precision” and
“Personal Interface” patterns of APX. It is an additional in-
terface that the players can use to engage with dexterity
games and by removing the temporal aspect of taking ac-
tions the player can be more precise. Depending on motor
skills and personal preferences, players may have an easier
time with our GUI or with a text editing for which they have
built deeper fluency (in which case the GUI forms a passive
viewer tool).

Replaying the Playtrace The player can start the replay
whenever they want by pressing the replay button. SMES
then starts replaying the playtraces that is saved in the inter-
mediate text file. In order to replay the playtrace we use the
underlying Win32 API, the same system we used to record
the keys. We use the python package winput4 to send Virtual
Key Codes as input to the operating system directly.

Due to the game not running in an emulator and the Win32
API not being instantaneous the playtrace that is replayed
is not completely deterministic. In our experiments there is
an 2% average divergence between the length of the input
sequence and its realized replay. Because the errors com-
pound in a playtrace this can result in perceivable differences

4https://pypi.org/project/winput/

Figure 3: The visual mock-up of the editor. The prototype
GUI is actively in development.

in outcomes across different replays of the same playtrace.
This is the main bottleneck that limits the usefulness of the
current state of the SMES in supporting longer playtraces
or styles of play that rely on precise determinism (e.g. luck
manipulation strategies used in TAS). These are not critical
limitations, however, because we imagine SMES being ap-
plied to localized scenes (which can be re-attempted many
times) in games that were otherwise completable within the
limits of human dexterity.

Future work: Manipulating Playtraces with AI
As mentioned earlier, there is currently no AI system acting
on the saved playtraces. However, other work shows that by
adding a simple level state awareness reusing parts of play
traces can be very useful. For an example from the games
industry, in the fighting game Killer Instinct, the enemy
shadow AI learns how to play by memorizing sequences of
player actions (Neal 2016). Then the AI agent replays parts
of the player’s action sequences when a correct game state
is matched. This method proves effective enough to be de-
ployed in a live commercial game, and it has been met with
approval from the player base5.

In the future, we are interested in taking a co-creator
approach to supporting playtraces similar to the reinforce-
ment learning based mixed-initiative level creator Morai
Maker (Guzdial et al. 2019) or the work on user empow-
erment where a reinforcement learning agent is trained to
augment (rather than replace) player input (Du et al. 2020).

We imagine that the edits that the user makes to the time-
line are not directly applied but are instead taken as train-
ing data points to tune a stateful and observation-dependent

5https://forums.ultra-combo.com/t/shadows-ai-retrospective-
discussion/24899



action policy. In this setup, the player is still making delib-
erate choices about how to act in specific moments, but the
local choices they make can have impact on several other
moments (e.g. those that arise in the future or as the result
of different stochastic elements of the game).

Furthermore, we believe that the datasets describing how
a player iteratively refines their playtrace can be interesting
for future applications.

Conclusion
In this paper we presented the work-in progress Sharp Multi-
input Editing Tool (SMES) which allows the players of dif-
ficult platformer games to change the challenge type from
a dexterity based execution challenge to a cerebral plan-
ning challenge. SMES does this by recording the actions of
a player, and then presents it to them in a visual interface
where they can make changes and replay the updated play-
traces. We also discussed how playtraces can be operated on
via AI systems with the goal of assisting and empowering
players. We hope that with SMES we can contribute to the
ongoing conversation of how we can use AI techniques to
assist our player.

References
Aarseth, E. 2014. I fought the law: Transgressive play and
the implied player. In Segal, N., and Koleva, D., eds., From
Literature to Cultural Literacy. London: Palgrave Macmil-
lan UK. 180–188.
Adams, E. 2014. Fundamentals of Game Design. Pearson
Education.
Aytemiz, B., and Smith, A. M. forthcoming. Proceedings
of the 15th International Conference on the Foundations of
Digital Games.
Beeston, J.; Power, C.; Cairns, P.; and Barlet, M. 2018. Ac-
cessible player experiences (APX): The players. In Comput-
ers Helping People with Special Needs, 245–253. Springer
International Publishing.
Cairns, P.; Power, C.; Barlet, M.; and Haynes, G. 2019. Fu-
ture design of accessibility in games: A design vocabulary.
International Journal of Human.
Compton, K., and Mateas, M. 2015. Casual creators. In
ICCC, 228–235. axon.cs.byu.edu.
Du, Y.; Tiomkin, S.; Kiciman, E.; Polani, D.; Abbeel, P.; and
Dragan, A. 2020. AvE: Assistance via empowerment.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-Explore: a new approach for Hard-
Exploration problems.
Englard, K. 2018. Microsoft has created the most accessi-
ble gaming controller ever made. https://www.vice.com/en
us/article/d3kvx7/microsoft-adaptive-controller. Accessed:
2020-7-24.
Gee, J. P., and Hayes, E. 2012. Nurturing affinity spaces and
game-based learning.
Grammenos, D.; Savidis, A.; Georgalis, Y.; and Stephanidis,
C. 2006. Access invaders: Developing a universally accessi-

ble action game. In Computers Helping People with Special
Needs, 388–395. Springer Berlin Heidelberg.
Guzdial, M.; Liao, N.; Chen, J.; Chen, S.-Y.; Shah, S.; Shah,
V.; Reno, J.; Smith, G.; and Riedl, M. 2019. Friend, collab-
orator, student, manager: How design of an AI-Driven game
level editor affects creators.
Hamari, J., and Tuunanen, J. 2014. Player types: A meta-
synthesis.
John, M. 2020. There are no single player video games.
Juul, J. 2009. Fear of failing? the many meanings of
difficulty in video games. The video game theory reader
2(01):2009.
Juul, J. 2011. Half-Real: Video Games between Real Rules
and Fictional Worlds. MIT Press.
Klepek, P. 2019. The small but important
change ’celeste’ made to its celebrated assist mode.
https://www.vice.com/en us/article/43kadm/celeste-assist-
mode-change-and-accessibility. Accessed: 2020-5-8.
Matt Makes Games. 2018. Celeste. Windows PC version.
Neal, D. 2016. Designing AI for killer instinct. https://www.
youtube.com/watch?v=9yydYjQ1GLg.
Nintendo. 2017. Super mario odyssey. Nintendo Switch.
Organization, W. H. 2020. Games industry unites to pro-
mote world health organization messages against COVID-
19; launch #playaparttogether campaign.
Pitaru, A. 2008. E is for everyone: The Case for inclu-
sive game design. MacArthur Foundation Digital Media and
Learning Initiative.
Sethfors, H. 2018. I used a switch control for a day - 24 ac-
cessibility. https://www.24a11y.com/2018/i-used-a-switch-
control-for-a-day/. Accessed: 2020-7-24.
Taylor, C. 2013. Able gamers includification.
Team Meat. 2010. Super meat boy. Windows PC version.
Zhan, Z.; Aytemiz, B.; and Smith, A. M. 2018. Taking the
scenic route: Automatic exploration for videogames. arXiv
preprint arXiv:1812.03125.


