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Abstract

Small changes in the code and assets of a videogame can have
drastic impacts on the player experience. The primary way
to discover these impacts is with extensive human playtest-
ing. However, the time and effort expended for playtesting is
costly enough that it cannot be conducted after every incre-
mental build of a game. We propose an information visualiza-
tion technique that approximately reifies a game’s space of in-
teractivity as a static image. Considering incremental changes
to the game, our visualizations can suggest what has been
effectively added, preserved, or removed from the space by
those changes. These visual summary reports would ideally
be used in the continuous integration (CI) software develop-
ment process. We demonstrate a prototype implementation of
this visualization on two commercial games, considering both
minor and major design changes.

Introduction
Editing a single line of code in interactive software can have
major impacts on the space of interactivity for the soft-
ware. Minor edits can quickly shift a game from playable
to unplayable, and the impacts of these edits are not read-
ily understandable without thorough testing. Ideally, de-
velopers who implement incremental changes to software
could directly examine the impacts on interactivity they have
made from a visualization of the interactive space. As early
as 1997, researchers proposed tools to visualize interactiv-
ity in Java games (Storey et al. 1997) and more recently
have developed techniques that can visualize interactive sto-
ries (Partlan et al. 2019). In videogame development, there
is an emphasis on verifying that the code created by a devel-
oper corresponds to the intent of what they wanted to create.
There is a large gap between proper functioning of individ-
ual software modules and the overall player experience.

Because there is no oracle that can fully play and un-
derstand games, user researchers use human playtesters to
encounter the significant moments of a game, reacting to
them as normal players would. During testing, user research
teams record these reactions, and compare them to the re-
actions the developers intended to elicit. Mismatches in re-
actions are returned back to the developers, who can apply
the playtesters’ feedback to the game to remedy problems in
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the game’s playable space. While it would be nice to have a
complete map of a game’s significant moments, playtesting
provides only a partial view of what is available in the game,
bounded by time expenditure. Using recent human playtest-
ing amplifications tools (Chang, Aytemiz, and Smith 2019),
we might gather evidence of the unique gameplay experi-
ence a game supports, but the question of how to summarize
this space into a compact report remains. This paper takes a
step towards giving designers a tool to directly perceive the
space that they are designing within.

We contribute Differentia, a technique that visualizes per-
ceptual differences between incremental changes applied
to videogames. The technique uses a (high-dimensional)
gameplay map of a game’s playable moments to build a
two-dimensional map of differences between two succes-
sive builds of a videogame, isolating differences as visual
reports that developers might quickly read and understand.
This map is built by recording normal gameplay conducted
by human players. We believe that this is a forward step to-
wards improved development tools in continuous integration
(CI) development environments, which emphasizes daily in-
cremental improvements in a game’s development cycle in-
formed by automatically generated reports of software qual-
ity. We have operationalized Differentia in a software proto-
type and applied it to modifications of Super Mario World
(for the Super Nintendo Entertainment System) and Poke-
mon Red (for Game Boy). We include visual representations
generated by our prototype and analyze its ability to convey
design changes.

Background
Overall, our work is intended to advance the practice of
quality assurance testing in games. We propose to augment
the continuous integration development processes increas-
ingly being adopted in the game industry with automatically
generated summary reports resulting from (semi-)automated
gameplay exploration tools.

Development feedback
Incremental changes are difficult to visualize, and in game
development dedicated User Research teams test the soft-
ware to ensure that the experience a player has matches the
intent of the developers. Traditionally, this process involves



testing the videogame on test audiences to perceive their re-
actions. Recently, large scale analysis of live gameplay data
extracted in real time has augmented and expedited this anal-
ysis. Wherever the analysis comes from, the importance of
quality user research is paramount, in short: “While no one is
in danger of a collision in the world of videogames, there is
the real danger of taking thousands of hours of developer ef-
forts (not to mention perhaps millions of dollars) and releas-
ing something substandard to the public.” (Collins 1997).
Because of this risk, playtesting a videogame is a key com-
ponent of verifying that the game is heading in the right di-
rection. The game must not only be enjoyable to play, but
should also work as intended without bugs (Felder 2015).

This pipeline (Green 2018) of develop-test-report has be-
come commonplace, and many avenues for speeding up this
pipeline with automation are being considered. However,
the complexity of analyzing human reactions in the user re-
search component of game development does not lend itself
to automation. We want to improve this process with a tool
that can enhance visualizations of the game in development,
not replacing user research with automation, but rather giv-
ing user researchers stronger tools.

Continuous Integration

Hand-written reports provide actionable feedback for game
developers, but the involvement of another human team adds
latency in the feedback cycle. In software engineering, Con-
tinuous Integration (CI) (Fowler 2006) refers to the process
of automatically running build and testing tools in response
to each change to the code or data of a project.

In an ACM Queue article (Coatta, Donat, and Husain
2014), the developers of FIFA Soccer 1 (released in 2009)
describe experiments with automation of the QA testing pro-
cess. They created scripts that would programmatically pro-
vide inputs to the game over time to navigate between differ-
ent screens of the game, verifying that they were still reach-
able. While the scripts could be re-run against different ver-
sions of the game, the scripts would often need to be mod-
ified as the layout of screens or the timing of interactions
changed. More recently, in a GDC 2018 talk,1 the develop-
ers of Call of Duty described how they integrated lightweight
QA tools directly into their CI development flow. In re-
sponse to each incremental code or data change, a tool di-
rectly launches the game into a set of specific scenarios in
which it gathers numerical metrics (e.g. memory usage and
frame rate) as well as reference screenshots for visual in-
spection. The strategy of jumping directly to a testing sce-
nario is somewhat more robust than replaying a script of
precise input events. However, professional QA workers still
contribute to this flow, now asynchronously, by creating and
maintaining the list of scenarios that will be represented in
the resulting build reports. We imagine an integration of user
research and CI, where some elements of traditional user re-
search can be automated to decrease the latency of generat-
ing software quality reports.

1https://www.youtube.com/watch?v=8d0wzyiikXM

Automated Exploration
So far, the overlap of QA and CI has focused on spot-
checking the execution of a game: gathering targeted feed-
back from precisely specified moments or pathways. In our
vision, automated exploration techniques might be used to
gather feedback from a much wider variety of moments.

In the development of the puzzle game The Witness (re-
leased 2016), Walk Monster2 is the name of an automated
reachability testing tool that would teleport the player to ev-
ery point in the game’s world grid and ask the physics engine
if the player could walk to every other nearby grid point. The
resulting map visualizations highlighted areas both where
the player could move too much (quickly pushing into a
region of the map that was supposed to only be accessible
later in the game) and where the player could move too lit-
tle (when leftover collision geometry blocked navigation on
an apparently free path). Despite the simplicity of the explo-
ration algorithms applied, the resulting reports (visual maps)
were immediately actionable because most of the game’s
overall state was well captured by knowing the player’s 2D
position on a map.

When data from human playtesters is available, game-
play data amplification techniques might be more appro-
priate for automated QA purposes. The Reveal-More algo-
rithm (Chang, Aytemiz, and Smith 2019), is based on auto-
matically exploring branches off of a given human demon-
stration. In particular, this technique teleports the player to
scenarios extracted from human gameplay before running
less expensive, local exploration techniques. Rather than as-
suming the player is exploring, for example, a 2D space,
some of these techniques summarize the space of play as the
latent vector space implied by a gameplay moment embed-
ding function (operationalized as a neural network). Zhan
et al. (Zhan, Aytemiz, and Smith 2018) showed that fully-
automated exploration can benefit from pre-training this em-
bedding function on past recordings of human play (which
might be sourced from a previous version of the game).

Given the open-ended space of automated exploration
methods here, our present work is focused on only human
gameplay data. To be directly applied in a CI development
flow, one of the semi- or fully automated alternatives would
need to replace this. Regardless of the source of the game-
play data, we still need to distill the results of that explo-
ration into an interpretable, static report.

Visualizing Design Changes with Differentia
The goal of Differentia’s visualizations is to provide an
overview of differences in the experiential content present
between two versions of a game, and from this overview pro-
vide specific details on demand for specific clusters of im-
ages. This zoom-in style of communication follows Schnei-
derman’s mantra (Shneiderman 1996) “Overview first, zoom
and filter, then details-on-demand,” a generalized rule-of-
thumb to help encapsulate and deliver information effi-
ciently.

Figure 1 shows one of the generated reports from our vi-
sualization tool. It shows differences introduced to the game

2https://caseymuratori.com/blog 0005



Figure 1: A static report resulting from applying Differentia to a game design change. The left side shows an overview of the
moments reachable in the two versions of the game (color coded by version). The right offers filtered views of individual data
clusters (zoom for details) including both average and representative sample screenshots from both versions of the game.

Super Mario World by modifying the effect of gravity on the
player character (more details on this experiment are given
in the next section). The scatterplot on left side of the report
offers an overview of the distribution of content seen before
and after the design change. Each point in the scatter plot
represents a single moment sampled from the gameplay data
gathered from one version of the game or the other (again,
details in a later section). Clusters of points indicate collec-
tions of similar moments. When a cluster consists of data
mostly from one specific version of the game, it suggests
those moments of gameplay experiences were only possi-
ble in one version of the game. That is, they were either re-
moved or freshly introduced by the recent, incremental de-
sign change. The overall arrangement of clusters in the visu-
alization, however, is not significant. It represents only our
best effort to render the high-dimensional structure of game
moments into a two-dimensional chart using modern dimen-
sionality reduction techniques.

Detail views on the right examine one data cluster at a
time. Of the five small images present in each row (Figure 2
shows two such rows, enlarged), the first shows a scatter-
plot of the local structure within the cluster, the next two
images show the average appearance of all data in the clus-
ter (grouped by which version of the game they came from),
and the next two images sample point representative point
(so that details missed in the averages can be examined). Be-
cause the grouping of data into clusters is automated in our
technique (and thus not perfectly aligned with developer in-
tuitions), the per-cluster visualizations can help discriminate
significant from insignificant differences.

Figure 2: The first image (left) shows the local structure of
a cluster (using the corresponding glyph from the overview
image). The images to the right of the scatterplot visualize
(in order) a single sample screenshot from version 1, an av-
eraged image of all version 1 screenshots, a sample screen-
shot from version 2, and an averaged image of all version 2
screenshots.

Technical Design of Differentia Prototype
To produce the aforementioned visualizations, we made a
software prototype of our technique. Differentia is a collec-
tion of Python scripts that ingests a collection of screenshots
generated from playing each version of the games being
compared. From these screenshots, we train an autoencoder
model that yields a high-dimensional vector representation
of each image. The precise architecture of our autoencoder
model is not significant here, and another technique that di-
rectly optimized the embedding of game moments to match
their screenshots, e.g. a variational auto-decoder (Hinton and
Salakhutdinov 2006), would be a fair replacement. The high-
dimensional moment vectors are projected onto the 2D plane
using t-SNE (Maaten and Hinton 2008), allowing us to ren-
der scatterplots. The high-dimensional vectors (not their 2D



projections) are the clustered with K-means to yield (ide-
ally) interpretable groups for focused analysis. The specific
implementation here is only one interpretation of the tech-
nique. One might consider alternative ways of represent-
ing game moments as vectors (see a comparison of alterna-
tives by Zhan et al. (2018)), other ways of projecting high-
dimensional moment vectors into 2D for scatterplot display
(e.g. UMAP (McInnes, Healy, and Melville 2018)), or other
methods of grouping comparable moments for inspection
(e.g. spectral clustering (Ng, Jordan, and Weiss 2002)).

Visualization Design
The outputs of Differentia are: (1) an overview map of pro-
jected gameplay moments; (2) a collection of images repre-
senting the placement of gameplay moments for a specific
cluster; (3) a collection of images representing the average
image of each version’s moments per cluster; (4) a collection
of screenshots representing one frame of gameplay from a
version per cluster.

Output 1 is our overview map so readers may see the en-
tire space of mapped moments in one image. If they wish to
read deeper into a cluster, outputs 2 and 3 provide informa-
tion about each specific moment, showing the reader the mix
of moments from each version as well as what that moment
looks like on average. Output 4 gives the most specific de-
tail, exactly one frame of gameplay, so a reader may quickly
see exactly what was happening in this moment. These out-
puts are intended to roughly follow Schniederman’s mantra:
Overview first, zoom and filter, then details-on-demand (de-
tails accessed by zooming an achievable static image rather
than interacting with a complex interactive visualization).

Example Applications
To demonstrate potential applications of Differentia, we ap-
plied it to modifications of commercial videogames, includ-
ing changes to both static content and game mechanics.
We considered two Super Nintendo Entertainment System
games, Super Mario World and GravHack, and two Game
Boy games, Pokemon Red and Pokemon Brown.

Super Mario World (SMW) is a platformer type game
released for the Super Nintendo Entertainment System in
1990 while Pokemon Red is a role-playing game released for
the Game Boy in 1996. We obtained copies of these games
from Archive.org, and emulate their execution using open
source hardware emulators. We use the gym-retro (Nichol
et al. 2018) Python library to allow us to interface with the
games, giving us the ability to run the modified games, inject
controller events, screenshot gameplay, save memory snap-
shots, and return to gameplay moments saved in the past.
This framework gives us the tools needed to capture game-
play in offline records.

While two of our games are commercial releases, two are
modifications created by patching the commercial releases.
GravHack is a modification of SMW where the effects of
gravity upon Mario is halved, causing Mario to be able to
jump higher and float down slower. The same modification
was used to demonstrate automated amplification of human
gameplay data in previous research (Chang, Aytemiz, and

Smith 2019). The immediate effects of this change are eas-
ier jumping at the expense of being able to deftly control
Mario. This modification to the game was made using Lunar
Magic 3,3 an open source ROM editor used by fans to cre-
ate custom games within the SMW executable ROM. Poke-
mon Brown4 is a fan-made content expansion of Pokemon
Red, released in 2014. Although game mechanics remains
the same, it adds new art assets to the game, as well as new
regions to traverse and additional Pokemon to catch. This ex-
pansion was added to the game using ROM editing tools, and
is emulated in the same manner as Pokemon Red. GravHack
presents to us what a developer may implement during an
incremental change in the CI workflow. Changing gravity in
SMW is similar to a minor change in gameplay balancing,
while Pokemon Brown can be seen as a major content re-
lease for a game in early access.

Incremental Change: SMW vs GravHack

Figure 3: SMW vs. GravHack: Game moments are divided
into discrete clusters. Some clusters have strong biases to-
wards one game version or the other, however the clusters
with solely moments from one version suggests that this par-
ticular moment was present in only one version of this par-
ticular playthrough.

In the overview image Figure 3, we observe that dis-
tinct modes of gameplay have clustered into distinct groups.
While many clusters are populated with moments from both
game versions, some clusters contain data from just one ver-
sion or the other: this is evidence that a numerical change to
the game’s mechanics has resulted in additions and removals
of experiential game content.

3https://fusoya.eludevisibility.org/lm/program.html
4https://www.romhacking.net/hacks/134/



Figure 4: SMW deletion: In this cluster, a moment was
present in SMW, but not GravHack. In GravHack, Mario
flies off screen during this cutscene, causing the game to be-
come unresponsive.

A major standout is the cluster seen in Figure 4. This clus-
ter detected that this end card scene was present in the un-
modified version of SMW (right) and not in GravHack. Dur-
ing the gameplay of GravHack, this cutscene did not func-
tion correctly. Normally, Mario is supposed to jump onto a
plunger to demolish the castle, however because the gravity
was lowered, Mario jumps off screen and crashes the game.
Hence, Differentia did not find any moments in GravHack
that matched this moment in SMW.

Figure 5: Most of the gameplay between SMW and
GravHack remained the same. Visually, most levels did not
change, however the changed user perception of progressing
the level was not well captured.

For most other parts of the game, Differentia does not
suggest obvious additions or removals. Because the way we
embed game moments into high-dimensional vectors in this
prototype operates at the time between frames of animation
(details in a later section), the most obvious change to the
human player (floaty avatar controls) is not represented in
the summary report because the player can navigate (float-
ing or not) through almost all of the same game modes and
levels. An alternate embedding strategy that was sensitive
object velocities could separate floating moments into dis-
tinct clusters.

Extensive change: Pokemon Red vs. Brown
In a major content change, Differentia notices a very stark
difference in the game’s viewable content. In the space of
the game itself, Pokemon Brown overhauls the entire game’s
art assets, including backgrounds, while leaving the layout
and most of gameplay the same. We see a formation where
many of the clusters from one version are very far away from
the clusters of the second. In the center, there is one big
cluster of similar game moments. In the game itself, there
are many gameplay moments that are the same, such as the

Figure 6: Red vs. Brown: Major content changes show a ma-
jor shift in moments. Strongly different visual content pro-
duces clusters that are placed far away from the other ver-
sion. Whatever remains similar congregates in the middle.

menu layout, the RPG style top down perspective, and the
battle screen. However, many of the art assets have changed,
and because of that unique moments present in one game are
visualized as absent in the other.

Figure 7: New content: Some moments remained the same,
such as the starting house for both Pokemon Red and Brown.
Differing moments are illustrated in the bottom row, such as
a new Charmander sprite for Pokemon Brown.

In the zoomed in cluster seen in Figure 7, we observe one
cluster in which a moment is present in both versions of the
game (top row), and one moment present in only Pokemon
Brown (bottom row). Overall, many clusters out of the 30
created with K-means were detected to only have moments
from either Red or Brown, indicating that the games have
very different gameplay moments. In reality, the content
of Pokemon Brown is extremely different: art assets have
changed, backgrounds have changed, yet gameplay has not
been modified. The bottom row of Figure 7 shows a spe-
cific moment in Pokemon Brown where this particular bat-



tle scene does not happen in Pokemon Red, demonstrating
Differentia’s ability to find visual differences. Despite major
changes, it is significant that Differentia does not simply re-
port that the entire space of interactivity has been added and
removed as a whole—many structures can still be matched
up before and after the change.

No change: SMW vs. SMW

Figure 8: SMW vs. SMW (no changes): All clusters contain
moments from both versions, and there are no clusters that
contain moments from only one version.

In this experiment, we probe for false-positives in our
change-visualization system prototype: we see if it high-
lights additions/removals when none have actually been
made. Extracting two distinct sets of human gameplay data
from a single version of the game, and then running the
components of our Differentia prototype with different ran-
dom seeds, it seems plausible that the system might identify
and report some differences as an artifact of data collection
and analysis despite their being no underlying game design
change. At the same time, it would be encouraging to see the
system abstract over these incidental differences and report
the consistent structure of the unchanging game.

In Figure 8, we see no clusters that predominantly contain
moments from one (identical) version of the game or the
other. The substructure within clusters is not identical (be-
cause, e.g. the human player played through levels in slightly
different ways each time), but the system has nevertheless
decided to place the corresponding moments together as de-
sired.

Limitations and Future Work
Our current implementation of the technique has two major
limitations: it is not fully automated enough for CI work-

Figure 9: SMW unchanged: In two human gameplay traces
from the early game, we do not see any difference in how the
moments were grouped, indicating that Differentia considers
these moments present in both (identical) versions.

flows (it requires human gameplay for each game version
analyzed), and human interpretation is needed to decide if a
cluster that has been apparently added or removed represents
a design problem. While the goal should not be to eliminate
human intervention and interpretation, future work should
allow for human effort to be contributed asychronously. Fu-
ture work should examine how a recording of gameplay in
one version of a game can be automatically translated or
adapted into an incrementally-changed version of a game.
The ability to enhance automated exploration efficiency (of a
fixed game) by pre-training on past records of human game-
play data has been previously demonstrated (Zhan, Aytemiz,
and Smith 2018), but transfer has not be attempted across
incremental design changes to the game. Meanwhile, if a
dataset of the gameplay implications of past design changes
can be classified as breaking or non-breaking changes, it
may be possible to train a system to automatically inter-
pret the results of clustering produced by Differentia. For
example, such a system might easily learn that any change
that has the effect of removing reachablilty of the credits
screen is a breaking change that requires immediate human
attention. Finally, we should also consider the body of games
with procedural content generation and/or non-deterministic
gameplay, since our current approach may focus too much
on the differences in normal content generation and not on
perceivable gameplay changes.

Conclusion
We have illustrated the Differentia technique and demon-
strated its ability to visualize player-perceivable changes in
commercial videogames. Differentia represents an effort to
make changes to the medium of interactive design directly
observable. In our current visualization prototype, we can vi-
sually report shifts in gameplay due to incremental changes
in game code as well as larger content changes. Our tech-
nique has some drawbacks regarding automation and inter-
pretation, however we open up new avenues of research to
find ways to better interpret and report the clusters.
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